[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 119 ] =
UG(ATD[320,155]).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {16, 17}, {296, 297}, {198, 199}, {124, 126}, {128, 130}, {1, 2},
{269, 270}, {49, 50}, {40, 43}, {112, 115}, {2, 7}, {177, 180}, {106, 111}, {41,
44}, {1, 6}, {42, 45}, {11, 12}, {113, 118}, {137, 142}, {225, 233}, {53, 63},
{292, 302}, {276, 286}, {275, 281}, {241, 251}, {231, 237}, {3, 8}, {4, 9},
{288, 301}, {54, 56}, {291, 301}, {55, 57}, {5, 10}, {102, 105}, {135, 136},
{146, 157}, {41, 57}, {100, 117}, {12, 30}, {13, 31}, {4, 23}, {8, 27}, {197,
209}, {3, 22}, {300, 313}, {294, 307}, {9, 28}, {110, 123}, {140, 153}, {166,
176}, {235, 253}, {196, 210}, {2, 21}, {10, 29}, {160, 184}, {203, 210}, {237,
244}, {37, 62}, {194, 217}, {77, 86}, {111, 116}, {109, 113}, {194, 222}, {5,
24}, {7, 26}, {1, 31}, {228, 250}, {6, 25}, {29, 61}, {207, 236}, {264, 299},
{135, 163}, {275, 311}, {85, 112}, {260, 289}, {219, 254}, {18, 52}, {208, 246},
{76, 107}, {274, 314}, {287, 311}, {141, 164}, {278, 319}, {88, 114}, {265,
291}, {152, 179}, {156, 183}, {11, 39}, {26, 54}, {205, 224}, {282, 311}, {14,
32}, {266, 292}, {15, 33}, {138, 165}, {201, 249}, {277, 293}, {256, 304}, {16,
34}, {259, 305}, {20, 38}, {17, 35}, {128, 178}, {27, 40}, {284, 303}, {270,
317}, {193, 242}, {137, 186}, {13, 56}, {215, 226}, {79, 122}, {18, 36}, {73,
127}, {19, 37}, {137, 191}, {139, 189}, {201, 241}, {130, 184}, {151, 173}, {84,
111}, {143, 179}, {258, 318}, {211, 239}, {213, 232}, {262, 315}, {261, 312},
{24, 38}, {195, 253}, {128, 190}, {16, 82}, {24, 91}, {177, 245}, {7, 66}, {51,
118}, {43, 110}, {41, 108}, {14, 72}, {15, 73}, {6, 65}, {51, 116}, {48, 119},
{42, 109}, {47, 103}, {25, 80}, {12, 70}, {30, 84}, {27, 81}, {13, 71}, {8, 67},
{46, 101}, {145, 221}, {168, 228}, {9, 68}, {144, 221}, {168, 229}, {28, 82},
{29, 83}, {10, 69}, {48, 96}, {137, 217}, {51, 98}, {55, 102}, {53, 100}, {132,
213}, {134, 215}, {161, 240}, {4, 87}, {59, 104}, {54, 101}, {50, 97}, {130,
209}, {133, 214}, {60, 105}, {62, 107}, {150, 195}, {52, 99}, {131, 212}, {159,
200}, {19, 75}, {23, 79}, {22, 78}, {21, 77}, {20, 76}, {25, 64}, {128, 218},
{129, 219}, {17, 74}, {49, 106}, {35, 120}, {3, 95}, {55, 107}, {58, 103}, {179,
237}, {1, 94}, {135, 216}, {167, 248}, {155, 251}, {146, 240}, {158, 252}, {153,
250}, {29, 121}, {178, 214}, {5, 96}, {129, 228}, {54, 80}, {33, 70}, {136,
239}, {148, 252}, {157, 245}, {129, 232}, {186, 211}, {146, 251}, {58, 81},
{299, 320}, {59, 84}, {180, 219}, {150, 249}, {151, 248}, {46, 94}, {47, 95},
{164, 212}, {172, 220}, {173, 221}, {45, 92}, {184, 201}, {182, 199}, {154,
233}, {34, 86}, {180, 192}, {35, 87}, {32, 85}, {40, 93}, {44, 91}, {168, 223},
{147, 233}, {149, 238}, {36, 88}, {39, 90}, {53, 75}, {10, 117}, {38, 89}, {19,
108}, {149, 234}, {61, 189}, {21, 148}, {27, 154}, {25, 152}, {23, 150}, {30,
156}, {34, 160}, {31, 157}, {22, 149}, {39, 164}, {26, 153}, {36, 161}, {38,
163}, {28, 155}, {37, 162}, {7, 143}, {47, 167}, {46, 166}, {44, 165}, {100,
239}, {43, 167}, {58, 182}, {56, 181}, {76, 194}, {24, 151}, {75, 196}, {61,
172}, {63, 174}, {56, 170}, {103, 245}, {62, 173}, {116, 224}, {97, 247}, {60,
171}, {94, 201}, {121, 238}, {126, 230}, {60, 165}, {115, 234}, {90, 193}, {52,
168}, {53, 169}, {93, 192}, {55, 169}, {104, 246}, {97, 193}, {102, 198}, {114,
210}, {65, 224}, {87, 244}, {124, 216}, {125, 217}, {75, 238}, {127, 218}, {16,
183}, {111, 200}, {118, 209}, {18, 185}, {83, 255}, {115, 223}, {80, 253}, {45,
131}, {76, 226}, {81, 254}, {92, 243}, {113, 222}, {127, 208}, {36, 148}, {74,
250}, {73, 249}, {72, 248}, {71, 247}, {122, 202}, {123, 203}, {124, 204}, {125,
205}, {66, 243}, {68, 245}, {126, 207}, {14, 188}, {88, 234}, {78, 252}, {65,
242}, {69, 246}, {119, 196}, {125, 206}, {50, 134}, {62, 138}, {57, 141}, {82,
231}, {105, 220}, {118, 195}, {77, 251}, {121, 207}, {67, 244}, {112, 199},
{117, 194}, {41, 145}, {48, 136}, {89, 227}, {85, 232}, {120, 197}, {32, 158},
{59, 133}, {58, 132}, {33, 159}, {109, 211}, {4, 187}, {121, 198}, {127, 191},
{15, 206}, {100, 165}, {115, 177}, {6, 197}, {60, 255}, {46, 237}, {39, 226},
{11, 205}, {37, 227}, {2, 202}, {3, 203}, {5, 204}, {119, 189}, {96, 171}, {15,
193}, {47, 225}, {12, 195}, {19, 220}, {122, 170}, {34, 243}, {18, 192}, {74,
152}, {35, 241}, {66, 150}, {90, 142}, {89, 141}, {83, 135}, {69, 144}, {43,
252}, {65, 155}, {86, 140}, {11, 208}, {20, 207}, {48, 236}, {126, 162}, {78,
147}, {79, 146}, {45, 242}, {57, 230}, {23, 247}, {98, 131}, {42, 200}, {68,
166}, {63, 221}, {92, 191}, {51, 215}, {90, 190}, {89, 189}, {88, 188}, {71,
160}, {26, 240}, {14, 229}, {84, 184}, {85, 185}, {86, 187}, {104, 134}, {49,
222}, {64, 175}, {59, 212}, {64, 176}, {8, 250}, {67, 177}, {66, 176}, {114,
129}, {70, 178}, {71, 179}, {113, 133}, {67, 181}, {28, 235}, {124, 139}, {77,
181}, {79, 183}, {78, 182}, {99, 154}, {105, 144}, {70, 186}, {72, 180}, {82,
175}, {83, 174}, {123, 132}, {125, 130}, {30, 287}, {61, 313}, {31, 279}, {40,
294}, {50, 291}, {32, 314}, {20, 271}, {52, 303}, {49, 275}, {44, 264}, {9,
290}, {13, 288}, {17, 289}, {21, 295}, {33, 280}, {63, 261}, {22, 296}, {42,
276}, {64, 256}, {69, 269}, {117, 319}, {116, 315}, {80, 258}, {87, 256}, {94,
262}, {68, 285}, {109, 308}, {114, 299}, {74, 272}, {99, 313}, {91, 257}, {95,
260}, {110, 309}, {106, 310}, {112, 300}, {92, 258}, {93, 259}, {98, 317}, {81,
304}, {108, 271}, {104, 268}, {96, 261}, {107, 270}, {98, 263}, {97, 262}, {106,
269}, {120, 273}, {123, 274}, {91, 305}, {99, 264}, {122, 273}, {101, 265},
{103, 267}, {102, 266}, {72, 293}, {120, 265}, {93, 297}, {95, 295}, {101, 287},
{108, 278}, {119, 266}, {73, 311}, {110, 272}, {181, 309}, {156, 286}, {161,
290}, {190, 317}, {153, 285}, {155, 287}, {159, 283}, {172, 296}, {173, 297},
{139, 270}, {185, 316}, {166, 289}, {167, 303}, {158, 279}, {188, 309}, {178,
315}, {159, 278}, {144, 283}, {186, 310}, {145, 284}, {157, 272}, {147, 285},
{131, 275}, {176, 288}, {142, 286}, {162, 306}, {163, 307}, {169, 313}, {170,
314}, {134, 276}, {136, 283}, {148, 256}, {141, 280}, {143, 282}, {187, 301},
{142, 281}, {162, 312}, {175, 309}, {170, 304}, {174, 308}, {140, 279}, {191,
291}, {220, 320}, {139, 278}, {183, 298}, {182, 299}, {140, 273}, {171, 310},
{138, 277}, {164, 261}, {188, 285}, {187, 282}, {174, 268}, {175, 267}, {143,
298}, {185, 272}, {169, 259}, {171, 263}, {236, 320}, {172, 257}, {147, 316},
{190, 268}, {161, 274}, {132, 305}, {248, 320}, {138, 307}, {160, 281}, {152,
290}, {133, 318}, {149, 302}, {151, 300}, {156, 288}, {145, 302}, {154, 293},
{158, 289}, {163, 284}, {231, 295}, {232, 296}, {202, 267}, {206, 269}, {229,
294}, {225, 292}, {222, 280}, {210, 277}, {238, 294}, {244, 316}, {243, 315},
{247, 318}, {209, 282}, {224, 301}, {255, 306}, {216, 264}, {230, 308}, {239,
317}, {227, 310}, {208, 263}, {242, 298}, {204, 277}, {197, 286}, {234, 305},
{223, 260}, {199, 284}, {211, 271}, {254, 290}, {231, 314}, {213, 266}, {214,
265}, {225, 257}, {217, 312}, {230, 263}, {204, 302}, {198, 293}, {192, 292},
{253, 281}, {229, 257}, {215, 306}, {218, 319}, {213, 307}, {203, 300}, {255,
280}, {218, 306}, {254, 279}, {196, 303}, {212, 319}, {235, 262}, {249, 276},
{223, 304}, {236, 259}, {228, 267}, {227, 268}, {200, 312}, {216, 297}, {205,
318}, {241, 258}, {240, 260}, {202, 316}, {226, 283}, {246, 271}, {206, 308},
{235, 273}, {233, 274}, {214, 298}, {219, 295} }>;
(II) A more general form is to represent the graph as the orbit of {16, 17}
under the group generated by the following permutations:
a: (1, 2)(3, 84)(4, 9)(5, 10)(6, 202)(7, 31)(8, 30)(11, 154)(12, 27)(13, 26)(14,
191)(15, 192)(16, 17)(18, 193)(19, 37)(20, 165)(21, 94)(22, 111)(23, 290)(24,
117)(25, 122)(28, 87)(29, 96)(32, 92)(33, 93)(34, 289)(35, 82)(36, 97)(38,
100)(39, 99)(40, 70)(41, 107)(42, 232)(43, 178)(44, 76)(45, 85)(46, 77)(47,
130)(48, 83)(49, 234)(50, 88)(51, 182)(52, 90)(53, 89)(54, 56)(55, 57)(58,
118)(59, 203)(60, 207)(61, 261)(62, 108)(63, 189)(64, 273)(65, 316)(66, 279)(67,
287)(68, 187)(69, 204)(71, 240)(72, 127)(73, 180)(74, 183)(75, 227)(78, 116)(79,
152)(80, 170)(81, 195)(86, 166)(91, 194)(95, 184)(98, 199)(101, 181)(102,
230)(103, 209)(104, 210)(105, 126)(106, 149)(109, 213)(110, 214)(112, 131)(113,
132)(114, 134)(115, 275)(119, 174)(120, 175)(121, 171)(123, 133)(124, 144)(125,
225)(128, 167)(129, 276)(135, 136)(137, 229)(138, 271)(139, 221)(140, 176)(141,
169)(142, 168)(143, 157)(145, 270)(146, 179)(147, 224)(148, 262)(150, 254)(151,
319)(153, 288)(155, 244)(156, 250)(158, 243)(159, 297)(160, 260)(161, 247)(162,
220)(163, 239)(164, 313)(172, 312)(173, 278)(177, 311)(185, 242)(186, 294)(188,
291)(190, 303)(196, 268)(197, 267)(198, 263)(200, 296)(201, 295)(205, 233)(206,
292)(208, 293)(211, 307)(212, 300)(215, 299)(216, 283)(217, 257)(218, 248)(219,
249)(222, 305)(223, 281)(226, 264)(228, 286)(231, 241)(235, 256)(236, 255)(237,
251)(238, 310)(245, 282)(246, 277)(252, 315)(253, 304)(258, 314)(259, 280)(265,
309)(266, 308)(269, 302)(272, 298)(274, 318)(284, 317)(285, 301)(306, 320) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 31)(3, 27)(4, 16)(5, 165)(6, 94)(7, 13)(9, 82)(10, 100)(11, 70)(14,
88)(15, 90)(17, 87)(18, 85)(19, 207)(20, 108)(21, 279)(22, 40)(23, 183)(24,
44)(25, 46)(26, 56)(29, 53)(30, 195)(32, 36)(33, 39)(34, 187)(37, 126)(38,
41)(42, 134)(43, 78)(45, 50)(47, 58)(48, 105)(49, 131)(51, 111)(52, 112)(55,
189)(57, 89)(59, 113)(60, 96)(61, 169)(62, 124)(63, 83)(64, 166)(65, 262)(66,
288)(67, 250)(68, 175)(69, 239)(71, 143)(72, 114)(73, 142)(74, 244)(75, 121)(76,
278)(77, 140)(80, 101)(81, 95)(84, 118)(92, 291)(93, 296)(97, 242)(98, 106)(99,
300)(102, 119)(104, 109)(107, 139)(110, 147)(115, 168)(120, 241)(122, 146)(123,
233)(125, 128)(127, 137)(129, 180)(132, 225)(135, 221)(136, 144)(138, 204)(145,
163)(148, 158)(149, 294)(150, 156)(151, 264)(152, 237)(153, 181)(154, 203)(155,
235)(157, 202)(159, 226)(160, 282)(161, 314)(164, 280)(167, 182)(170, 240)(172,
259)(173, 216)(177, 228)(178, 205)(184, 209)(186, 208)(190, 206)(192, 232)(194,
319)(196, 198)(197, 201)(199, 303)(200, 215)(210, 293)(211, 246)(212, 222)(213,
292)(214, 318)(217, 218)(220, 236)(224, 315)(227, 230)(229, 234)(231, 290)(243,
301)(245, 267)(247, 298)(248, 299)(249, 286)(251, 273)(253, 287)(254, 295)(255,
261)(256, 289)(257, 305)(258, 265)(260, 304)(263, 310)(268, 308)(269, 317)(272,
316)(281, 311)(285, 309)(302, 307)(306, 312)
c: (2, 94)(3, 70)(5, 165)(6, 31)(7, 46)(8, 12)(9, 187)(10, 44)(11, 27)(13,
25)(14, 131)(15, 78)(17, 183)(18, 134)(19, 189)(20, 169)(21, 262)(22, 33)(23,
87)(24, 100)(26, 101)(28, 86)(29, 41)(30, 250)(32, 45)(34, 82)(35, 79)(36,
50)(37, 119)(38, 53)(39, 40)(42, 85)(43, 90)(47, 128)(48, 62)(49, 88)(51,
180)(52, 104)(55, 207)(56, 80)(57, 121)(58, 125)(59, 168)(60, 204)(61, 108)(63,
163)(64, 71)(65, 279)(66, 237)(67, 195)(68, 282)(69, 264)(72, 98)(73, 147)(74,
156)(75, 89)(76, 259)(77, 235)(81, 205)(83, 145)(84, 228)(91, 117)(92, 314)(93,
226)(95, 178)(96, 138)(97, 148)(99, 246)(102, 126)(103, 130)(105, 124)(106,
114)(107, 236)(109, 112)(110, 142)(111, 129)(113, 115)(116, 219)(118, 177)(120,
146)(122, 241)(123, 137)(127, 233)(132, 217)(133, 223)(135, 221)(136, 173)(139,
220)(140, 155)(141, 238)(143, 166)(144, 216)(149, 280)(150, 244)(151, 239)(152,
288)(153, 287)(154, 208)(157, 197)(158, 242)(159, 296)(160, 175)(161, 291)(162,
266)(164, 294)(167, 190)(170, 258)(171, 277)(172, 278)(174, 284)(176, 179)(181,
253)(182, 206)(184, 267)(185, 276)(186, 203)(188, 275)(191, 274)(192, 215)(193,
252)(194, 305)(196, 227)(198, 230)(199, 308)(200, 232)(201, 202)(209, 245)(210,
310)(211, 300)(212, 229)(213, 312)(214, 260)(218, 225)(222, 234)(224, 254)(231,
243)(240, 265)(247, 256)(248, 317)(249, 316)(251, 273)(255, 302)(257, 319)(261,
307)(263, 293)(268, 303)(269, 299)(270, 320)(271, 313)(272, 286)(281, 309)(283,
297)(285, 311)(289, 298)(290, 301)(292, 306)(295, 315)(304, 318)
C4[ 320, 119 ]
320
-1 2 6 94 31
-2 1 202 7 21
-3 22 203 95 8
-4 187 23 9 87
-5 24 204 96 10
-6 1 25 65 197
-7 66 143 2 26
-8 67 3 27 250
-9 68 4 290 28
-10 69 5 29 117
-11 12 39 205 208
-12 11 70 30 195
-13 56 288 71 31
-14 188 72 229 32
-15 33 193 73 206
-16 34 82 17 183
-17 35 289 16 74
-18 36 192 52 185
-19 220 37 75 108
-20 38 271 207 76
-21 77 2 148 295
-22 78 3 149 296
-23 79 4 247 150
-24 91 5 38 151
-25 80 6 64 152
-26 7 240 54 153
-27 154 81 40 8
-28 155 235 82 9
-29 121 61 83 10
-30 12 287 156 84
-31 1 13 157 279
-32 14 158 314 85
-33 15 70 159 280
-34 243 16 160 86
-35 17 87 120 241
-36 88 148 18 161
-37 62 227 19 162
-38 89 24 20 163
-39 11 90 226 164
-40 27 93 294 43
-41 44 57 145 108
-42 45 276 200 109
-43 110 167 40 252
-44 165 264 91 41
-45 242 92 42 131
-46 166 101 94 237
-47 167 103 225 95
-48 136 236 96 119
-49 275 222 50 106
-50 134 49 291 97
-51 116 215 118 98
-52 99 168 303 18
-53 100 169 63 75
-54 56 101 80 26
-55 57 102 169 107
-56 13 170 181 54
-57 55 41 141 230
-58 132 81 103 182
-59 133 212 104 84
-60 165 255 105 171
-61 189 313 29 172
-62 37 138 107 173
-63 221 261 53 174
-64 176 25 256 175
-65 242 155 224 6
-66 176 243 7 150
-67 177 244 181 8
-68 166 245 9 285
-69 144 246 269 10
-70 33 12 178 186
-71 13 179 247 160
-72 14 180 248 293
-73 311 15 127 249
-74 17 250 272 152
-75 238 19 53 196
-76 226 194 107 20
-77 181 86 251 21
-78 22 147 182 252
-79 23 122 146 183
-80 253 25 258 54
-81 254 58 27 304
-82 231 16 28 175
-83 255 135 29 174
-84 111 59 30 184
-85 232 112 185 32
-86 77 187 34 140
-87 35 244 256 4
-88 188 36 234 114
-89 189 38 227 141
-90 190 39 193 142
-91 44 24 257 305
-92 45 243 191 258
-93 297 192 259 40
-94 1 46 201 262
-95 3 47 260 295
-96 48 5 171 261
-97 247 50 193 262
-98 51 317 131 263
-99 154 264 313 52
-100 165 117 239 53
-101 265 287 46 54
-102 55 198 266 105
-103 58 245 267 47
-104 134 59 246 268
-105 220 144 102 60
-106 111 310 49 269
-107 55 270 62 76
-108 278 271 19 41
-109 308 211 113 42
-110 309 123 272 43
-111 200 116 84 106
-112 199 300 115 85
-113 133 222 118 109
-114 88 210 299 129
-115 177 112 223 234
-116 111 224 51 315
-117 319 100 194 10
-118 209 113 51 195
-119 189 266 48 196
-120 265 35 273 197
-121 198 29 238 207
-122 79 202 170 273
-123 110 132 203 274
-124 126 204 139 216
-125 205 206 217 130
-126 124 162 207 230
-127 191 73 218 208
-128 178 190 130 218
-129 232 114 228 219
-130 209 125 128 184
-131 275 45 212 98
-132 123 58 213 305
-133 113 59 214 318
-134 276 104 50 215
-135 136 83 216 163
-136 135 48 239 283
-137 191 217 142 186
-138 165 277 62 307
-139 189 124 278 270
-140 279 86 273 153
-141 89 57 280 164
-142 286 90 137 281
-143 298 179 7 282
-144 221 69 105 283
-145 221 302 41 284
-146 79 157 240 251
-147 78 233 316 285
-148 36 256 21 252
-149 22 234 302 238
-150 66 23 249 195
-151 24 300 248 173
-152 25 179 290 74
-153 26 140 250 285
-154 99 233 27 293
-155 287 28 251 65
-156 286 288 183 30
-157 146 245 272 31
-158 289 279 32 252
-159 33 200 278 283
-160 34 71 281 184
-161 36 290 240 274
-162 37 312 126 306
-163 135 38 284 307
-164 212 39 261 141
-165 44 100 60 138
-166 176 46 68 289
-167 47 248 303 43
-168 223 52 228 229
-169 55 313 259 53
-170 56 122 314 304
-171 310 60 96 263
-172 220 257 61 296
-173 297 221 62 151
-174 308 268 83 63
-175 309 267 82 64
-176 66 166 288 64
-177 67 245 180 115
-178 70 214 128 315
-179 143 71 237 152
-180 177 192 72 219
-181 77 56 67 309
-182 78 199 299 58
-183 298 79 156 16
-184 201 160 84 130
-185 18 85 272 316
-186 211 310 70 137
-187 4 301 282 86
-188 88 309 14 285
-189 89 61 139 119
-190 90 268 128 317
-191 92 137 291 127
-192 180 93 292 18
-193 242 90 15 97
-194 222 117 217 76
-195 253 12 150 118
-196 210 303 75 119
-197 209 286 6 120
-198 121 199 102 293
-199 198 112 182 284
-200 111 312 159 42
-201 94 249 184 241
-202 122 2 267 316
-203 210 123 3 300
-204 277 124 5 302
-205 11 125 224 318
-206 308 15 125 269
-207 121 126 236 20
-208 11 246 127 263
-209 282 118 130 197
-210 277 114 203 196
-211 271 239 109 186
-212 319 59 131 164
-213 132 232 266 307
-214 133 265 298 178
-215 134 226 51 306
-216 264 297 124 135
-217 125 312 137 194
-218 319 127 128 306
-219 254 180 129 295
-220 320 105 172 19
-221 144 145 63 173
-222 113 49 280 194
-223 168 115 260 304
-224 301 116 205 65
-225 233 47 257 292
-226 39 215 283 76
-227 89 310 37 268
-228 168 267 129 250
-229 14 168 257 294
-230 308 57 126 263
-231 82 237 314 295
-232 213 85 129 296
-233 154 147 225 274
-234 88 115 149 305
-235 253 28 262 273
-236 320 48 259 207
-237 231 46 244 179
-238 121 149 294 75
-239 100 211 136 317
-240 146 26 161 260
-241 35 201 258 251
-242 45 298 193 65
-243 66 34 92 315
-244 67 237 316 87
-245 177 68 157 103
-246 69 104 271 208
-247 23 71 97 318
-248 320 167 72 151
-249 276 201 73 150
-250 8 74 228 153
-251 77 155 146 241
-252 78 158 148 43
-253 80 235 281 195
-254 81 279 290 219
-255 60 280 83 306
-256 148 304 64 87
-257 91 225 172 229
-258 80 92 241 318
-259 169 93 236 305
-260 223 289 95 240
-261 312 63 96 164
-262 235 94 315 97
-263 171 98 208 230
-264 44 99 299 216
-265 101 214 291 120
-266 102 213 292 119
-267 103 202 228 175
-268 190 104 227 174
-269 69 270 106 206
-270 269 139 107 317
-271 211 246 20 108
-272 110 157 74 185
-273 122 235 140 120
-274 123 233 314 161
-275 311 49 281 131
-276 286 134 249 42
-277 210 138 204 293
-278 319 159 139 108
-279 254 158 140 31
-280 33 222 255 141
-281 253 275 160 142
-282 143 187 209 311
-283 144 136 159 226
-284 199 145 303 163
-285 188 68 147 153
-286 276 156 142 197
-287 155 101 311 30
-288 176 13 156 301
-289 166 158 17 260
-290 254 161 9 152
-291 265 191 301 50
-292 266 192 225 302
-293 154 198 277 72
-294 40 238 229 307
-295 231 95 21 219
-296 22 297 232 172
-297 93 216 173 296
-298 143 242 214 183
-299 264 320 114 182
-300 112 203 313 151
-301 187 288 224 291
-302 145 149 204 292
-303 167 52 196 284
-304 223 256 81 170
-305 132 91 234 259
-306 255 215 162 218
-307 213 138 294 163
-308 206 174 109 230
-309 110 188 181 175
-310 171 106 227 186
-311 275 287 73 282
-312 200 162 217 261
-313 99 300 169 61
-314 231 170 32 274
-315 243 178 116 262
-316 244 147 202 185
-317 190 270 239 98
-318 133 247 258 205
-319 212 278 117 218
-320 220 299 236 248
0