C4graphGraph forms for C4 [ 320, 121 ] = UG(ATD[320,161])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 320, 121 ] = UG(ATD[320,161]).

(I) Following is a form readable by MAGMA:

g:=Graph<320|{ {44, 45}, {232, 233}, {216, 217}, {212, 213}, {192, 193}, {182, 183}, {102, 103}, {80, 81}, {62, 63}, {58, 59}, {132, 133}, {146, 147}, {148, 149}, {174, 175}, {109, 111}, {136, 138}, {1, 2}, {189, 190}, {40, 43}, {116, 119}, {124, 127}, {49, 53}, {51, 55}, {50, 54}, {2, 7}, {273, 276}, {185, 188}, {123, 126}, {153, 156}, {1, 6}, {272, 279}, {234, 237}, {233, 238}, {96, 103}, {11, 12}, {122, 125}, {3, 8}, {272, 284}, {4, 9}, {275, 286}, {39, 42}, {117, 120}, {176, 189}, {135, 137}, {5, 10}, {84, 91}, {38, 41}, {19, 28}, {118, 121}, {160, 176}, {163, 179}, {263, 278}, {4, 22}, {13, 31}, {12, 30}, {9, 27}, {8, 26}, {5, 23}, {142, 157}, {202, 217}, {171, 184}, {129, 149}, {67, 86}, {299, 318}, {295, 306}, {69, 80}, {2, 20}, {40, 62}, {11, 29}, {10, 28}, {3, 21}, {64, 87}, {172, 187}, {77, 85}, {261, 285}, {230, 254}, {168, 177}, {262, 287}, {295, 317}, {35, 56}, {65, 90}, {161, 186}, {6, 24}, {7, 25}, {15, 16}, {76, 108}, {75, 106}, {73, 107}, {283, 313}, {223, 253}, {263, 291}, {277, 305}, {147, 181}, {287, 313}, {129, 166}, {210, 245}, {19, 59}, {144, 184}, {204, 229}, {259, 298}, {218, 243}, {89, 115}, {31, 52}, {273, 314}, {275, 319}, {16, 61}, {212, 249}, {69, 104}, {14, 32}, {201, 231}, {15, 33}, {88, 119}, {257, 302}, {64, 113}, {66, 115}, {16, 34}, {17, 35}, {128, 178}, {65, 114}, {210, 225}, {22, 34}, {257, 309}, {143, 187}, {139, 190}, {259, 310}, {256, 309}, {18, 36}, {261, 307}, {19, 37}, {71, 112}, {215, 224}, {94, 98}, {260, 312}, {67, 126}, {148, 169}, {154, 164}, {213, 235}, {131, 195}, {256, 320}, {7, 68}, {130, 193}, {12, 72}, {14, 74}, {13, 73}, {6, 67}, {32, 101}, {146, 213}, {188, 251}, {158, 217}, {24, 80}, {30, 86}, {29, 85}, {28, 84}, {27, 83}, {26, 82}, {25, 81}, {42, 96}, {43, 97}, {133, 207}, {47, 100}, {155, 208}, {178, 254}, {8, 69}, {186, 247}, {46, 99}, {10, 71}, {156, 209}, {175, 226}, {173, 227}, {184, 246}, {9, 70}, {63, 112}, {57, 118}, {45, 98}, {162, 237}, {135, 215}, {187, 235}, {173, 253}, {48, 97}, {190, 239}, {138, 219}, {141, 220}, {18, 64}, {136, 218}, {159, 205}, {60, 111}, {133, 214}, {142, 221}, {57, 109}, {58, 110}, {134, 210}, {135, 211}, {154, 206}, {156, 200}, {48, 101}, {277, 320}, {49, 103}, {130, 213}, {23, 79}, {160, 248}, {20, 77}, {42, 115}, {43, 113}, {51, 105}, {50, 104}, {16, 75}, {55, 108}, {21, 78}, {17, 76}, {37, 120}, {52, 106}, {53, 107}, {153, 251}, {63, 92}, {164, 199}, {62, 91}, {163, 198}, {33, 70}, {162, 197}, {181, 221}, {299, 320}, {178, 223}, {44, 66}, {177, 222}, {179, 220}, {134, 246}, {171, 219}, {138, 248}, {146, 224}, {132, 247}, {183, 196}, {180, 192}, {58, 79}, {148, 225}, {30, 104}, {52, 66}, {41, 95}, {135, 241}, {159, 233}, {32, 87}, {142, 249}, {54, 78}, {154, 226}, {155, 227}, {157, 229}, {31, 102}, {39, 94}, {37, 92}, {35, 90}, {33, 88}, {159, 230}, {152, 226}, {34, 89}, {176, 203}, {38, 93}, {147, 232}, {191, 195}, {36, 91}, {53, 180}, {127, 254}, {55, 181}, {27, 158}, {95, 218}, {78, 203}, {88, 222}, {93, 219}, {52, 179}, {100, 236}, {82, 219}, {36, 174}, {37, 175}, {107, 231}, {59, 182}, {126, 243}, {22, 152}, {35, 173}, {34, 172}, {127, 241}, {125, 242}, {44, 188}, {24, 138}, {2, 145}, {113, 228}, {120, 239}, {76, 212}, {90, 194}, {89, 193}, {88, 192}, {41, 176}, {93, 196}, {95, 197}, {114, 233}, {45, 177}, {54, 170}, {46, 178}, {121, 229}, {92, 195}, {108, 204}, {109, 205}, {54, 151}, {94, 255}, {70, 231}, {60, 157}, {107, 202}, {57, 155}, {76, 238}, {114, 208}, {115, 209}, {5, 166}, {61, 158}, {53, 150}, {106, 201}, {96, 198}, {97, 199}, {7, 160}, {47, 134}, {63, 149}, {65, 235}, {120, 210}, {121, 211}, {56, 147}, {79, 228}, {45, 131}, {102, 200}, {91, 245}, {62, 144}, {119, 217}, {36, 139}, {109, 194}, {32, 144}, {111, 223}, {48, 129}, {23, 164}, {101, 214}, {27, 168}, {25, 170}, {99, 215}, {20, 161}, {30, 171}, {28, 169}, {22, 163}, {124, 201}, {57, 143}, {21, 162}, {29, 170}, {118, 193}, {14, 182}, {85, 237}, {98, 216}, {126, 196}, {48, 139}, {55, 140}, {24, 165}, {81, 236}, {73, 244}, {26, 167}, {112, 206}, {113, 207}, {25, 166}, {100, 164}, {71, 134}, {81, 144}, {13, 206}, {105, 173}, {4, 195}, {102, 172}, {70, 141}, {58, 246}, {93, 145}, {17, 220}, {87, 154}, {65, 140}, {20, 218}, {44, 226}, {110, 191}, {75, 153}, {33, 242}, {66, 150}, {41, 252}, {123, 160}, {101, 185}, {42, 244}, {74, 148}, {125, 163}, {31, 255}, {60, 220}, {100, 133}, {124, 157}, {125, 156}, {67, 167}, {74, 174}, {103, 131}, {122, 158}, {127, 155}, {21, 240}, {68, 162}, {111, 137}, {29, 250}, {83, 180}, {82, 186}, {87, 191}, {86, 190}, {85, 189}, {84, 188}, {83, 187}, {94, 180}, {110, 132}, {105, 130}, {99, 143}, {72, 165}, {99, 142}, {116, 153}, {78, 161}, {98, 141}, {119, 152}, {56, 201}, {117, 132}, {8, 250}, {69, 183}, {68, 182}, {9, 251}, {61, 206}, {77, 184}, {79, 185}, {105, 159}, {23, 239}, {73, 177}, {121, 128}, {6, 252}, {12, 240}, {10, 247}, {19, 236}, {15, 271}, {13, 268}, {14, 266}, {39, 289}, {60, 311}, {5, 264}, {49, 316}, {50, 317}, {43, 313}, {50, 293}, {26, 258}, {38, 319}, {17, 267}, {56, 290}, {51, 297}, {18, 264}, {18, 265}, {61, 289}, {4, 281}, {39, 314}, {3, 294}, {51, 278}, {49, 276}, {47, 266}, {40, 269}, {3, 298}, {1, 300}, {11, 292}, {1, 309}, {46, 280}, {59, 269}, {47, 279}, {11, 306}, {46, 274}, {15, 304}, {40, 279}, {68, 260}, {71, 261}, {77, 264}, {116, 307}, {72, 258}, {123, 305}, {75, 263}, {72, 262}, {122, 308}, {95, 272}, {92, 271}, {89, 270}, {82, 266}, {84, 268}, {83, 267}, {80, 265}, {90, 259}, {116, 301}, {118, 303}, {86, 269}, {112, 276}, {123, 286}, {38, 320}, {96, 263}, {114, 277}, {122, 285}, {104, 256}, {117, 282}, {97, 273}, {124, 270}, {74, 313}, {64, 312}, {106, 274}, {117, 265}, {108, 275}, {110, 273}, {186, 312}, {179, 315}, {150, 281}, {130, 274}, {146, 257}, {140, 280}, {151, 258}, {175, 314}, {139, 284}, {185, 289}, {143, 278}, {129, 282}, {141, 278}, {172, 311}, {169, 308}, {181, 299}, {166, 262}, {165, 260}, {191, 285}, {140, 303}, {152, 316}, {150, 307}, {136, 302}, {168, 270}, {151, 319}, {128, 297}, {137, 288}, {137, 290}, {183, 284}, {174, 261}, {161, 269}, {149, 312}, {131, 301}, {167, 264}, {168, 280}, {169, 281}, {171, 282}, {165, 279}, {145, 293}, {136, 318}, {189, 266}, {145, 296}, {170, 272}, {128, 315}, {151, 300}, {167, 283}, {225, 289}, {244, 308}, {240, 305}, {252, 317}, {196, 262}, {234, 296}, {207, 268}, {215, 275}, {250, 318}, {224, 293}, {245, 304}, {199, 271}, {249, 305}, {242, 314}, {231, 303}, {230, 302}, {228, 301}, {216, 274}, {252, 310}, {248, 306}, {224, 298}, {223, 277}, {232, 291}, {197, 265}, {238, 288}, {214, 281}, {255, 304}, {253, 306}, {227, 300}, {200, 280}, {235, 315}, {228, 308}, {203, 283}, {203, 282}, {241, 291}, {248, 298}, {243, 294}, {253, 296}, {249, 300}, {243, 292}, {245, 301}, {230, 319}, {197, 287}, {209, 267}, {194, 286}, {234, 310}, {225, 316}, {227, 318}, {240, 302}, {232, 311}, {238, 270}, {192, 290}, {255, 285}, {229, 257}, {250, 286}, {198, 288}, {214, 304}, {204, 292}, {234, 258}, {205, 293}, {198, 303}, {246, 287}, {222, 311}, {205, 292}, {202, 291}, {200, 290}, {239, 260}, {247, 284}, {208, 317}, {237, 256}, {251, 276}, {202, 315}, {207, 316}, {212, 295}, {199, 307}, {211, 295}, {221, 296}, {208, 294}, {194, 309}, {236, 283}, {222, 297}, {209, 297}, {216, 288}, {211, 299}, {204, 310}, {241, 267}, {221, 294}, {244, 271}, {254, 259}, {242, 268} }>;

(II) A more general form is to represent the graph as the orbit of {44, 45} under the group generated by the following permutations:

a: (2, 309)(4, 13)(5, 118)(6, 300)(7, 257)(8, 294)(9, 268)(10, 303)(12, 306)(14, 232)(15, 44)(16, 226)(17, 40)(18, 143)(19, 201)(20, 194)(21, 298)(22, 206)(23, 193)(24, 249)(25, 229)(26, 208)(27, 207)(28, 231)(29, 292)(30, 253)(31, 195)(32, 311)(33, 188)(34, 154)(35, 269)(36, 278)(37, 106)(39, 116)(41, 319)(42, 307)(43, 267)(45, 304)(46, 117)(47, 238)(48, 297)(49, 122)(50, 234)(51, 139)(52, 92)(53, 308)(54, 310)(55, 284)(56, 59)(57, 264)(58, 290)(60, 144)(61, 152)(62, 220)(63, 179)(64, 187)(65, 186)(66, 271)(67, 227)(68, 146)(69, 221)(70, 84)(71, 198)(72, 295)(73, 281)(74, 291)(75, 175)(76, 279)(77, 109)(78, 259)(79, 192)(80, 142)(81, 157)(82, 114)(83, 113)(85, 205)(86, 173)(87, 172)(88, 185)(89, 164)(90, 161)(91, 141)(93, 320)(94, 301)(95, 275)(96, 261)(97, 209)(98, 245)(99, 265)(100, 270)(101, 222)(102, 191)(103, 285)(104, 296)(105, 190)(107, 169)(108, 272)(110, 200)(111, 184)(112, 163)(115, 199)(119, 289)(120, 274)(121, 166)(123, 136)(124, 236)(125, 276)(126, 318)(127, 283)(128, 129)(130, 239)(131, 255)(132, 280)(133, 168)(134, 288)(135, 287)(137, 246)(138, 305)(140, 247)(145, 256)(147, 182)(148, 202)(149, 315)(150, 244)(151, 252)(153, 314)(155, 167)(156, 273)(158, 316)(159, 189)(160, 302)(162, 224)(165, 212)(170, 204)(171, 223)(174, 263)(176, 230)(177, 214)(178, 282)(180, 228)(181, 183)(196, 299)(197, 215)(203, 254)(210, 216)(211, 262)(213, 260)(217, 225)(218, 286)(219, 277)(233, 266)(235, 312)(237, 293)(240, 248)(241, 313)(242, 251)(243, 250)(258, 317)
b: (2, 6)(3, 11)(4, 15)(5, 18)(7, 24)(8, 29)(9, 33)(10, 36)(12, 21)(13, 44)(14, 47)(16, 22)(17, 56)(19, 62)(20, 67)(23, 64)(25, 80)(26, 85)(27, 88)(28, 91)(30, 78)(31, 66)(32, 100)(37, 63)(39, 49)(40, 59)(41, 93)(42, 103)(43, 58)(45, 73)(46, 128)(48, 132)(51, 140)(53, 94)(54, 104)(60, 124)(61, 152)(65, 105)(68, 165)(69, 170)(71, 174)(72, 162)(74, 134)(75, 163)(76, 147)(77, 167)(79, 113)(82, 189)(83, 192)(86, 161)(87, 164)(89, 172)(90, 173)(95, 196)(97, 110)(98, 107)(99, 121)(101, 133)(102, 115)(106, 179)(108, 181)(109, 155)(111, 127)(112, 175)(114, 159)(116, 122)(117, 129)(118, 143)(119, 158)(120, 149)(123, 136)(125, 153)(126, 218)(130, 235)(131, 244)(137, 241)(138, 160)(139, 247)(141, 231)(142, 229)(144, 236)(145, 252)(146, 212)(148, 210)(150, 255)(151, 256)(166, 265)(168, 222)(169, 245)(171, 203)(176, 219)(182, 279)(183, 272)(184, 283)(185, 207)(186, 190)(187, 193)(188, 268)(191, 199)(194, 227)(195, 271)(197, 262)(198, 263)(200, 209)(201, 220)(202, 216)(204, 221)(205, 208)(206, 226)(211, 215)(223, 254)(224, 295)(230, 277)(232, 238)(237, 258)(239, 312)(242, 251)(246, 313)(249, 257)(253, 259)(267, 290)(270, 311)(274, 315)(275, 299)(276, 314)(278, 303)(280, 297)(281, 304)(285, 307)(286, 318)(288, 291)(289, 316)(292, 294)(293, 317)(296, 310)(298, 306)(300, 309)(301, 308)(302, 305)(319, 320)
c: (1, 2)(3, 8)(4, 9)(5, 213)(6, 145)(7, 300)(10, 235)(11, 12)(13, 31)(14, 127)(15, 45)(16, 44)(17, 149)(18, 147)(19, 143)(20, 309)(21, 250)(22, 251)(23, 130)(24, 296)(25, 249)(26, 298)(27, 281)(28, 187)(29, 240)(30, 292)(32, 124)(33, 131)(34, 188)(35, 312)(36, 232)(37, 278)(38, 41)(39, 42)(40, 111)(43, 137)(46, 100)(47, 178)(48, 238)(49, 125)(50, 126)(51, 120)(52, 206)(53, 122)(54, 123)(55, 117)(56, 64)(57, 59)(58, 118)(60, 62)(61, 66)(63, 220)(65, 247)(67, 293)(68, 227)(69, 294)(70, 195)(71, 315)(72, 306)(73, 255)(74, 241)(75, 226)(76, 129)(77, 257)(78, 286)(79, 193)(80, 221)(81, 142)(82, 259)(83, 169)(84, 172)(85, 302)(86, 205)(87, 201)(88, 301)(89, 185)(90, 186)(91, 311)(92, 141)(93, 252)(94, 244)(95, 320)(96, 314)(97, 288)(98, 271)(99, 236)(101, 270)(102, 268)(103, 242)(104, 243)(105, 239)(106, 154)(107, 285)(108, 282)(109, 269)(110, 303)(112, 179)(113, 290)(114, 284)(115, 289)(116, 119)(121, 246)(128, 134)(132, 140)(133, 280)(135, 313)(136, 237)(138, 234)(139, 233)(144, 157)(146, 264)(148, 267)(150, 158)(151, 160)(152, 153)(155, 182)(156, 316)(159, 190)(161, 194)(162, 318)(163, 276)(164, 274)(165, 253)(166, 212)(167, 224)(168, 214)(170, 305)(171, 204)(173, 260)(174, 291)(175, 263)(176, 319)(177, 304)(180, 308)(181, 265)(183, 208)(184, 229)(189, 230)(191, 231)(192, 228)(196, 317)(197, 299)(198, 273)(199, 216)(200, 207)(202, 261)(203, 275)(209, 225)(210, 297)(211, 287)(215, 283)(217, 307)(218, 256)(219, 310)(222, 245)(223, 279)(248, 258)(254, 266)(262, 295)(272, 277)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 320, 121 ]
320
-1 309 2 300 6
-2 1 145 7 20
-3 298 8 294 21
-4 22 281 195 9
-5 264 23 166 10
-6 1 67 24 252
-7 2 68 25 160
-8 3 69 26 250
-9 4 70 27 251
-10 5 71 247 28
-11 12 292 29 306
-12 11 72 30 240
-13 268 73 206 31
-14 266 182 74 32
-15 33 16 271 304
-16 34 15 61 75
-17 220 35 267 76
-18 264 265 36 64
-19 37 59 236 28
-20 77 2 161 218
-21 78 3 162 240
-22 34 4 152 163
-23 79 5 239 164
-24 165 80 6 138
-25 166 81 170 7
-26 167 82 258 8
-27 168 158 83 9
-28 169 84 19 10
-29 11 170 85 250
-30 12 104 171 86
-31 13 255 102 52
-32 144 101 14 87
-33 88 242 15 70
-34 22 89 16 172
-35 56 90 17 173
-36 91 18 139 174
-37 92 19 120 175
-38 319 320 93 41
-39 289 94 314 42
-40 279 269 62 43
-41 176 38 95 252
-42 244 115 39 96
-43 113 313 40 97
-44 66 45 188 226
-45 44 177 98 131
-46 99 178 280 274
-47 100 134 266 279
-48 101 139 129 97
-49 276 103 316 53
-50 104 293 317 54
-51 55 297 278 105
-52 66 179 106 31
-53 180 49 150 107
-54 78 170 50 151
-55 181 51 140 108
-56 35 201 147 290
-57 143 155 118 109
-58 110 79 59 246
-59 58 269 182 19
-60 220 111 157 311
-61 289 158 16 206
-62 144 91 40 63
-63 112 92 149 62
-64 113 312 18 87
-65 90 114 235 140
-66 44 115 150 52
-67 167 126 6 86
-68 182 7 260 162
-69 80 104 183 8
-70 33 231 9 141
-71 112 134 261 10
-72 165 12 258 262
-73 177 13 244 107
-74 14 148 313 174
-75 16 106 153 263
-76 212 17 238 108
-77 264 85 184 20
-78 203 161 21 54
-79 23 58 228 185
-80 265 24 69 81
-81 144 25 80 236
-82 266 26 186 219
-83 187 267 180 27
-84 188 91 268 28
-85 77 189 237 29
-86 67 190 269 30
-87 154 191 64 32
-88 33 222 192 119
-89 34 115 193 270
-90 35 259 194 65
-91 36 245 62 84
-92 37 271 63 195
-93 145 38 196 219
-94 255 180 39 98
-95 41 272 218 197
-96 198 103 42 263
-97 199 48 273 43
-98 45 94 216 141
-99 143 46 215 142
-100 133 47 236 164
-101 48 214 185 32
-102 200 103 172 31
-103 102 49 96 131
-104 69 256 50 30
-105 159 51 173 130
-106 201 52 75 274
-107 231 202 73 53
-108 55 275 204 76
-109 111 57 194 205
-110 132 58 191 273
-111 223 60 137 109
-112 276 71 63 206
-113 228 64 207 43
-114 233 277 65 208
-115 66 209 89 42
-116 301 119 153 307
-117 132 265 282 120
-118 121 57 193 303
-119 88 116 217 152
-120 210 37 117 239
-121 211 128 118 229
-122 308 125 158 285
-123 286 126 160 305
-124 157 201 127 270
-125 242 122 156 163
-126 67 243 123 196
-127 155 254 124 241
-128 121 297 178 315
-129 166 48 149 282
-130 213 105 193 274
-131 45 103 301 195
-132 110 133 247 117
-133 132 100 214 207
-134 210 47 246 71
-135 211 137 215 241
-136 302 138 218 318
-137 111 288 135 290
-138 24 136 248 219
-139 36 190 48 284
-140 55 280 303 65
-141 220 278 70 98
-142 99 221 157 249
-143 99 187 57 278
-144 81 62 184 32
-145 2 93 293 296
-146 257 224 213 147
-147 56 232 146 181
-148 169 225 149 74
-149 312 148 63 129
-150 66 281 53 307
-151 319 300 258 54
-152 22 226 316 119
-153 156 116 75 251
-154 226 206 87 164
-155 57 127 227 208
-156 209 200 125 153
-157 124 60 229 142
-158 122 27 61 217
-159 233 105 205 230
-160 176 123 248 7
-161 78 269 20 186
-162 68 237 21 197
-163 22 198 179 125
-164 154 23 100 199
-165 24 279 72 260
-166 25 5 129 262
-167 264 67 26 283
-168 177 27 280 270
-169 308 148 28 281
-170 25 29 272 54
-171 282 30 184 219
-172 187 34 102 311
-173 253 35 105 227
-174 36 74 261 175
-175 37 226 314 174
-176 189 203 160 41
-177 45 222 168 73
-178 254 46 223 128
-179 220 315 52 163
-180 192 83 94 53
-181 55 221 299 147
-182 68 14 59 183
-183 69 182 196 284
-184 77 144 246 171
-185 188 79 101 289
-186 312 82 247 161
-187 143 235 83 172
-188 44 84 185 251
-189 176 266 190 85
-190 189 139 239 86
-191 110 195 87 285
-192 88 180 290 193
-193 89 192 118 130
-194 286 309 90 109
-195 4 92 191 131
-196 93 126 183 262
-197 265 287 95 162
-198 288 303 96 163
-199 271 97 164 307
-200 156 102 290 280
-201 231 56 124 106
-202 291 315 107 217
-203 176 78 282 283
-204 310 292 108 229
-205 159 292 293 109
-206 154 13 112 61
-207 133 113 268 316
-208 155 114 294 317
-209 297 156 267 115
-210 134 245 225 120
-211 121 299 135 295
-212 213 249 295 76
-213 146 212 235 130
-214 133 101 281 304
-215 99 275 135 224
-216 288 217 98 274
-217 158 202 216 119
-218 243 136 95 20
-219 82 93 138 171
-220 179 60 17 141
-221 181 294 142 296
-222 88 297 177 311
-223 253 111 178 277
-224 298 146 215 293
-225 210 289 148 316
-226 44 154 152 175
-227 155 300 173 318
-228 308 79 113 301
-229 121 157 257 204
-230 319 254 159 302
-231 201 70 303 107
-232 233 311 147 291
-233 232 114 159 238
-234 310 258 237 296
-235 187 213 315 65
-236 100 81 19 283
-237 234 256 85 162
-238 233 288 270 76
-239 23 190 260 120
-240 12 302 305 21
-241 135 267 291 127
-242 33 125 268 314
-243 126 292 294 218
-244 308 73 271 42
-245 210 91 301 304
-246 287 134 58 184
-247 132 284 10 186
-248 298 138 160 306
-249 212 300 305 142
-250 286 29 8 318
-251 188 276 9 153
-252 310 6 41 317
-253 223 173 306 296
-254 178 127 259 230
-255 94 304 31 285
-256 309 320 104 237
-257 309 146 302 229
-258 234 26 72 151
-259 254 298 90 310
-260 165 68 312 239
-261 71 174 285 307
-262 166 287 72 196
-263 278 291 96 75
-264 77 167 5 18
-265 80 18 117 197
-266 189 14 47 82
-267 209 17 83 241
-268 242 13 84 207
-269 59 40 161 86
-270 89 124 168 238
-271 199 244 15 92
-272 279 170 95 284
-273 110 276 314 97
-274 46 106 216 130
-275 286 319 215 108
-276 112 49 251 273
-277 320 223 114 305
-278 143 51 141 263
-279 165 47 40 272
-280 46 200 168 140
-281 4 169 214 150
-282 203 171 117 129
-283 167 203 236 313
-284 247 139 183 272
-285 122 255 191 261
-286 275 123 194 250
-287 246 313 262 197
-288 198 137 216 238
-289 225 39 61 185
-290 56 200 137 192
-291 232 202 241 263
-292 11 243 204 205
-293 145 224 50 205
-294 221 243 3 208
-295 211 212 306 317
-296 253 221 145 234
-297 209 222 51 128
-298 3 224 248 259
-299 320 211 181 318
-300 1 227 249 151
-301 245 116 228 131
-302 136 257 240 230
-303 198 231 118 140
-304 255 245 15 214
-305 123 277 249 240
-306 11 253 248 295
-307 199 116 150 261
-308 122 244 169 228
-309 1 256 257 194
-310 234 204 259 252
-311 232 222 60 172
-312 149 260 64 186
-313 287 74 283 43
-314 242 39 273 175
-315 179 202 235 128
-316 49 225 152 207
-317 50 295 208 252
-318 299 136 227 250
-319 275 38 151 230
-320 277 299 256 38
0

**************