[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 136 ] =
UG(ATD[320,191]).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {104, 105}, {304, 305}, {228, 229}, {184, 185}, {126, 127}, {130,
131}, {162, 163}, {121, 123}, {312, 314}, {241, 243}, {1, 2}, {301, 302}, {265,
266}, {220, 223}, {85, 86}, {61, 62}, {53, 54}, {24, 28}, {1, 4}, {305, 308},
{3, 6}, {122, 124}, {203, 205}, {202, 204}, {178, 180}, {2, 5}, {299, 300},
{211, 212}, {186, 189}, {51, 52}, {40, 47}, {107, 108}, {2, 10}, {259, 267}, {7,
15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {23, 30}, {310, 319}, {68, 78}, {291,
297}, {274, 280}, {114, 120}, {98, 110}, {209, 221}, {213, 216}, {275, 286},
{214, 219}, {227, 237}, {230, 233}, {291, 300}, {246, 249}, {194, 210}, {296,
312}, {239, 255}, {238, 254}, {39, 54}, {133, 148}, {137, 152}, {135, 149},
{289, 307}, {169, 187}, {38, 53}, {165, 182}, {227, 247}, {7, 18}, {236, 249},
{10, 31}, {8, 29}, {166, 176}, {9, 30}, {132, 147}, {8, 16}, {9, 17}, {234,
243}, {297, 304}, {292, 317}, {6, 28}, {303, 309}, {15, 21}, {111, 117}, {96,
123}, {288, 315}, {263, 284}, {233, 245}, {289, 317}, {97, 124}, {234, 247}, {4,
26}, {5, 27}, {111, 112}, {301, 306}, {136, 151}, {261, 293}, {272, 304}, {138,
171}, {192, 225}, {130, 160}, {1, 34}, {285, 318}, {128, 163}, {93, 121}, {270,
298}, {258, 294}, {94, 122}, {85, 115}, {280, 318}, {196, 226}, {283, 316},
{204, 228}, {212, 254}, {11, 32}, {218, 241}, {158, 178}, {12, 33}, {275, 318},
{273, 316}, {95, 114}, {85, 120}, {14, 35}, {132, 169}, {13, 34}, {260, 299},
{213, 250}, {133, 170}, {204, 252}, {285, 301}, {148, 165}, {202, 251}, {209,
227}, {257, 306}, {286, 301}, {16, 36}, {278, 290}, {270, 314}, {87, 99}, {25,
45}, {24, 44}, {19, 39}, {18, 38}, {17, 37}, {10, 63}, {91, 109}, {210, 228},
{76, 123}, {147, 164}, {64, 120}, {217, 225}, {78, 118}, {212, 237}, {258, 315},
{269, 311}, {281, 291}, {273, 298}, {18, 46}, {259, 319}, {23, 43}, {22, 42},
{21, 41}, {20, 40}, {19, 47}, {91, 102}, {281, 292}, {221, 224}, {267, 309},
{207, 240}, {47, 109}, {155, 216}, {168, 235}, {174, 235}, {136, 206}, {137,
207}, {141, 203}, {150, 208}, {161, 231}, {172, 234}, {128, 199}, {146, 218},
{129, 200}, {265, 320}, {158, 215}, {175, 230}, {61, 119}, {131, 201}, {134,
204}, {135, 205}, {11, 64}, {15, 68}, {131, 200}, {136, 195}, {51, 127}, {12,
65}, {33, 108}, {14, 67}, {137, 196}, {30, 80}, {31, 81}, {132, 202}, {133,
203}, {13, 66}, {49, 96}, {134, 215}, {1, 83}, {59, 105}, {58, 104}, {55, 101},
{54, 100}, {29, 79}, {28, 78}, {25, 75}, {24, 74}, {142, 220}, {20, 71}, {50,
97}, {49, 98}, {10, 94}, {40, 124}, {30, 74}, {16, 69}, {277, 320}, {62, 107},
{183, 226}, {26, 76}, {60, 106}, {53, 99}, {52, 98}, {27, 77}, {3, 84}, {17,
70}, {140, 219}, {143, 216}, {41, 112}, {154, 195}, {134, 220}, {152, 194}, {27,
71}, {50, 110}, {29, 65}, {21, 72}, {8, 86}, {57, 103}, {56, 102}, {22, 73},
{191, 224}, {60, 99}, {179, 236}, {183, 232}, {56, 88}, {189, 223}, {187, 222},
{39, 77}, {188, 214}, {58, 80}, {156, 246}, {157, 247}, {173, 198}, {13, 97},
{157, 241}, {153, 244}, {188, 209}, {48, 95}, {146, 253}, {154, 245}, {20, 101},
{47, 94}, {45, 92}, {43, 90}, {41, 88}, {36, 85}, {137, 248}, {181, 196}, {32,
82}, {57, 75}, {33, 83}, {21, 102}, {46, 93}, {42, 89}, {37, 86}, {48, 69}, {18,
100}, {35, 84}, {44, 91}, {42, 93}, {130, 250}, {145, 232}, {60, 70}, {314,
320}, {171, 208}, {46, 82}, {151, 234}, {164, 217}, {58, 68}, {59, 69}, {139,
245}, {40, 87}, {63, 64}, {143, 240}, {81, 208}, {48, 178}, {126, 253}, {91,
221}, {53, 185}, {76, 193}, {118, 248}, {26, 139}, {29, 140}, {31, 141}, {34,
183}, {106, 255}, {70, 208}, {78, 216}, {65, 214}, {88, 192}, {102, 254}, {120,
224}, {126, 231}, {107, 240}, {116, 239}, {113, 237}, {62, 160}, {7, 167}, {92,
252}, {22, 180}, {95, 253}, {89, 251}, {104, 202}, {117, 215}, {60, 159}, {56,
157}, {59, 158}, {116, 209}, {111, 201}, {20, 179}, {80, 247}, {68, 227}, {28,
187}, {7, 173}, {63, 149}, {51, 153}, {55, 156}, {83, 248}, {2, 175}, {94, 243},
{87, 250}, {84, 249}, {54, 155}, {38, 139}, {34, 143}, {119, 218}, {27, 181},
{62, 144}, {52, 154}, {32, 142}, {105, 199}, {125, 211}, {93, 242}, {100, 212},
{114, 194}, {3, 176}, {64, 243}, {39, 148}, {35, 144}, {92, 232}, {116, 192},
{118, 194}, {11, 190}, {45, 152}, {38, 147}, {36, 145}, {103, 210}, {37, 146},
{9, 177}, {79, 246}, {127, 198}, {121, 195}, {44, 151}, {125, 198}, {72, 244},
{73, 245}, {43, 150}, {26, 164}, {122, 196}, {123, 197}, {42, 149}, {23, 215},
{31, 223}, {96, 162}, {97, 163}, {109, 174}, {117, 182}, {72, 141}, {73, 142},
{96, 168}, {14, 199}, {71, 140}, {113, 189}, {114, 190}, {115, 191}, {63, 242},
{113, 188}, {8, 198}, {81, 159}, {83, 131}, {99, 179}, {103, 183}, {105, 184},
{101, 182}, {106, 185}, {111, 188}, {74, 158}, {75, 159}, {101, 176}, {110,
187}, {52, 226}, {108, 186}, {110, 184}, {98, 181}, {36, 252}, {61, 229}, {45,
244}, {67, 154}, {15, 213}, {66, 152}, {66, 153}, {90, 133}, {65, 161}, {67,
163}, {66, 162}, {33, 192}, {77, 172}, {75, 170}, {73, 168}, {71, 166}, {69,
164}, {35, 193}, {88, 186}, {82, 176}, {79, 173}, {48, 210}, {56, 219}, {74,
169}, {70, 165}, {89, 189}, {125, 153}, {112, 149}, {115, 150}, {24, 254}, {76,
171}, {86, 177}, {92, 180}, {126, 150}, {90, 179}, {46, 197}, {89, 178}, {49,
222}, {72, 167}, {49, 193}, {107, 155}, {16, 225}, {112, 134}, {119, 129}, {19,
235}, {115, 138}, {23, 236}, {113, 141}, {119, 138}, {80, 174}, {95, 161}, {81,
175}, {82, 173}, {61, 316}, {6, 257}, {50, 315}, {25, 277}, {58, 311}, {59,
297}, {44, 319}, {4, 274}, {57, 303}, {5, 275}, {50, 298}, {22, 271}, {57, 293},
{9, 276}, {19, 268}, {25, 316}, {17, 310}, {51, 276}, {43, 259}, {55, 284}, {41,
261}, {55, 256}, {37, 287}, {12, 304}, {32, 285}, {84, 278}, {106, 296}, {67,
263}, {90, 287}, {79, 258}, {116, 315}, {87, 262}, {104, 319}, {125, 293}, {100,
313}, {103, 312}, {122, 280}, {77, 294}, {108, 256}, {121, 279}, {109, 286},
{117, 256}, {118, 257}, {127, 259}, {124, 258}, {182, 310}, {170, 299}, {135,
261}, {177, 307}, {165, 294}, {128, 260}, {177, 309}, {166, 288}, {143, 264},
{166, 289}, {167, 303}, {200, 320}, {138, 263}, {136, 262}, {144, 256}, {185,
297}, {145, 257}, {156, 269}, {181, 295}, {157, 270}, {132, 272}, {167, 307},
{129, 278}, {155, 268}, {162, 309}, {146, 266}, {186, 290}, {144, 265}, {159,
261}, {175, 308}, {151, 267}, {129, 284}, {180, 277}, {168, 267}, {160, 262},
{128, 295}, {184, 273}, {142, 292}, {172, 262}, {140, 295}, {169, 260}, {156,
306}, {139, 292}, {160, 271}, {161, 272}, {191, 270}, {190, 269}, {190, 264},
{191, 265}, {147, 299}, {148, 300}, {135, 318}, {171, 274}, {174, 276}, {130,
313}, {170, 273}, {145, 302}, {172, 275}, {242, 306}, {218, 283}, {248, 313},
{225, 288}, {206, 268}, {223, 285}, {222, 284}, {217, 282}, {200, 268}, {255,
314}, {221, 283}, {231, 288}, {237, 293}, {239, 295}, {211, 281}, {193, 266},
{246, 317}, {220, 279}, {213, 281}, {214, 282}, {226, 303}, {251, 310}, {236,
290}, {242, 317}, {205, 287}, {201, 282}, {253, 302}, {222, 269}, {231, 307},
{250, 300}, {195, 276}, {238, 313}, {207, 280}, {233, 305}, {206, 279}, {251,
290}, {238, 311}, {206, 277}, {244, 296}, {229, 312}, {201, 278}, {249, 294},
{241, 302}, {205, 274}, {232, 264}, {203, 296}, {235, 271}, {197, 291}, {238,
264}, {229, 271}, {240, 282}, {230, 266}, {252, 272}, {217, 308}, {233, 263},
{199, 311}, {219, 298}, {211, 289}, {228, 279}, {197, 305}, {239, 283}, {230,
287}, {207, 308}, {255, 260}, {224, 286} }>;
(II) A more general form is to represent the graph as the orbit of {104, 105}
under the group generated by the following permutations:
a: (2, 4)(3, 7)(5, 12)(6, 15)(8, 20)(9, 23)(10, 26)(11, 18)(13, 33)(14, 21)(16,
40)(17, 43)(19, 48)(24, 58)(25, 61)(27, 65)(28, 68)(29, 71)(31, 76)(32, 46)(34,
83)(35, 72)(36, 87)(37, 90)(38, 64)(39, 95)(41, 67)(42, 73)(44, 104)(45, 62)(47,
69)(49, 113)(50, 116)(51, 117)(52, 111)(53, 120)(54, 114)(55, 125)(56, 128)(57,
129)(59, 109)(60, 115)(63, 139)(66, 108)(70, 150)(74, 80)(75, 119)(77, 161)(79,
166)(81, 171)(84, 167)(85, 99)(86, 179)(88, 163)(89, 168)(91, 105)(92, 160)(93,
142)(94, 164)(96, 189)(97, 192)(98, 188)(100, 190)(101, 198)(102, 199)(103,
200)(106, 191)(107, 152)(110, 209)(112, 154)(118, 216)(121, 220)(122, 217)(123,
223)(124, 225)(126, 165)(127, 182)(130, 232)(131, 183)(132, 234)(133, 146)(134,
195)(135, 233)(136, 204)(137, 240)(138, 159)(141, 193)(143, 248)(144, 244)(145,
250)(147, 243)(148, 253)(149, 245)(151, 202)(153, 256)(155, 194)(156, 211)(157,
260)(158, 174)(162, 186)(169, 247)(170, 218)(172, 272)(173, 176)(175, 274)(177,
236)(178, 235)(180, 271)(181, 214)(184, 221)(185, 224)(187, 227)(196, 282)(197,
285)(201, 226)(203, 266)(205, 230)(206, 228)(210, 268)(212, 269)(213, 257)(215,
276)(219, 295)(222, 237)(229, 277)(231, 294)(239, 298)(241, 299)(242, 292)(246,
289)(249, 307)(251, 267)(252, 262)(254, 311)(255, 270)(258, 288)(259, 310)(261,
263)(264, 313)(265, 296)(273, 283)(275, 304)(278, 303)(280, 308)(281, 306)(284,
293)(286, 297)(290, 309)(291, 301)(300, 302)(305, 318)(312, 320) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 83)(3, 218)(4, 34)(5, 33)(6, 146)(7, 170)(8, 110)(9, 74)(10, 131)(11,
119)(12, 13)(14, 253)(15, 133)(16, 98)(17, 24)(18, 75)(19, 112)(20, 209)(21,
148)(22, 279)(23, 80)(25, 46)(26, 183)(27, 192)(28, 37)(29, 50)(31, 130)(32,
61)(35, 302)(36, 49)(38, 57)(39, 41)(40, 188)(42, 206)(43, 58)(44, 310)(45,
197)(47, 111)(48, 154)(51, 59)(52, 69)(53, 293)(54, 261)(55, 224)(56, 294)(60,
212)(62, 285)(63, 200)(64, 129)(65, 97)(66, 304)(67, 95)(68, 90)(70, 254)(71,
116)(72, 300)(73, 228)(76, 232)(77, 88)(78, 287)(79, 298)(81, 313)(82, 316)(84,
241)(85, 222)(86, 187)(87, 113)(89, 136)(91, 182)(92, 123)(93, 277)(94, 201)(96,
252)(99, 237)(100, 159)(101, 221)(102, 165)(103, 139)(104, 259)(105, 127)(106,
211)(107, 318)(108, 275)(109, 117)(114, 263)(115, 269)(118, 230)(120, 284)(121,
180)(122, 282)(124, 214)(125, 185)(126, 199)(128, 231)(132, 309)(134, 235)(135,
155)(137, 308)(138, 190)(140, 315)(141, 250)(142, 229)(143, 274)(144, 301)(145,
193)(147, 303)(149, 268)(150, 311)(151, 251)(152, 305)(153, 297)(156, 191)(157,
249)(158, 276)(160, 223)(161, 163)(162, 272)(164, 226)(166, 239)(167, 299)(168,
204)(169, 177)(171, 264)(172, 186)(173, 273)(174, 215)(175, 248)(176, 283)(178,
195)(179, 227)(181, 225)(184, 198)(189, 262)(194, 233)(196, 217)(202, 267)(203,
213)(205, 216)(208, 238)(210, 245)(219, 258)(220, 271)(234, 290)(236, 247)(240,
280)(242, 320)(243, 278)(244, 291)(246, 270)(255, 289)(256, 286)(257, 266)(260,
307)(265, 306)(281, 296)(288, 295)(292, 312)(314, 317)
c: (1, 2, 5, 13, 34)(3, 8, 21, 53, 121)(4, 10, 27, 66, 143)(6, 16, 41, 99,
195)(7, 18, 46, 82, 173)(9, 24, 59, 134, 236)(11, 29, 72, 54, 123)(12, 31, 77,
162, 264)(14, 36, 88, 60, 136)(15, 38, 93, 176, 198)(17, 44, 105, 204, 290)(19,
49, 114, 214, 203)(20, 51, 78, 164, 149)(22, 55, 126, 227, 299)(23, 30, 74, 158,
215)(25, 62, 138, 241, 239)(26, 63, 71, 153, 216)(28, 69, 112, 179, 276)(32, 79,
167, 100, 197)(33, 81, 172, 163, 232)(35, 85, 56, 106, 206)(37, 91, 184, 228,
278)(39, 96, 190, 65, 141)(40, 52, 118, 217, 135)(42, 101, 127, 68, 147)(43, 80,
169, 178, 117)(45, 107, 171, 243, 295)(47, 98, 194, 282, 205)(48, 111, 90, 174,
187)(50, 103, 131, 230, 286)(57, 130, 233, 301, 315)(58, 132, 89, 182, 259)(61,
119, 218, 283, 316)(64, 140, 244, 155, 76)(67, 145, 192, 159, 262)(70, 151, 199,
252, 186)(73, 156, 231, 237, 300)(75, 160, 263, 302, 116)(83, 175, 275, 97,
183)(84, 86, 102, 185, 279)(87, 154, 257, 225, 261)(92, 108, 208, 234, 128)(94,
181, 152, 240, 274)(95, 188, 133, 235, 222)(104, 202, 251, 310, 319)(109, 110,
210, 201, 287)(113, 148, 168, 269, 161)(115, 157, 255, 277, 144)(120, 219, 296,
268, 193)(122, 196, 137, 207, 280)(124, 226, 248, 308, 318)(125, 213, 139, 242,
166)(129, 146, 221, 273, 229)(142, 246, 307, 212, 291)(150, 247, 260, 180,
256)(165, 267, 311, 272, 189)(170, 271, 284, 253, 209)(177, 254, 297, 220,
249)(191, 270, 314, 320, 265)(200, 266, 224, 298, 312)(211, 281, 292, 317,
289)(223, 294, 309, 238, 304)(245, 306, 288, 293, 250)(258, 303, 313, 305,
285)
C4[ 320, 136 ]
320
-1 34 2 4 83
-2 1 5 10 175
-3 11 176 6 84
-4 1 12 26 274
-5 275 2 13 27
-6 3 14 257 28
-7 167 15 18 173
-8 198 16 29 86
-9 177 276 17 30
-10 2 94 63 31
-11 3 190 64 32
-12 33 4 304 65
-13 66 34 5 97
-14 67 199 35 6
-15 68 213 7 21
-16 36 69 225 8
-17 310 37 70 9
-18 100 46 38 7
-19 47 235 268 39
-20 101 179 71 40
-21 102 15 72 41
-22 180 73 271 42
-23 236 215 30 43
-24 44 254 28 74
-25 45 277 316 75
-26 4 139 76 164
-27 77 5 71 181
-28 187 78 24 6
-29 79 8 140 65
-30 23 80 74 9
-31 223 81 141 10
-32 11 82 142 285
-33 12 192 83 108
-34 143 1 13 183
-35 144 14 193 84
-36 145 16 85 252
-37 287 146 17 86
-38 147 18 139 53
-39 77 148 19 54
-40 47 124 20 87
-41 88 112 261 21
-42 22 89 93 149
-43 23 90 259 150
-44 319 24 91 151
-45 244 25 92 152
-46 82 93 18 197
-47 94 40 19 109
-48 210 178 69 95
-49 222 193 96 98
-50 110 298 315 97
-51 276 127 52 153
-52 154 226 51 98
-53 99 38 185 54
-54 100 155 39 53
-55 101 156 256 284
-56 88 102 157 219
-57 103 303 293 75
-58 68 80 311 104
-59 297 69 158 105
-60 99 70 159 106
-61 62 316 119 229
-62 144 61 160 107
-63 242 149 64 10
-64 11 243 63 120
-65 12 214 29 161
-66 13 162 152 153
-67 154 14 163 263
-68 78 58 15 227
-69 48 59 16 164
-70 165 60 17 208
-71 166 27 140 20
-72 167 244 141 21
-73 22 168 245 142
-74 24 158 169 30
-75 57 25 159 170
-76 123 26 171 193
-77 27 39 172 294
-78 68 28 216 118
-79 246 258 29 173
-80 58 247 30 174
-81 159 31 175 208
-82 176 46 173 32
-83 33 1 248 131
-84 35 3 278 249
-85 36 115 86 120
-86 177 37 8 85
-87 99 40 250 262
-88 56 192 41 186
-89 178 189 42 251
-90 133 287 179 43
-91 44 221 102 109
-92 45 232 180 252
-93 121 242 46 42
-94 122 243 47 10
-95 253 48 114 161
-96 123 168 49 162
-97 13 124 50 163
-98 110 49 181 52
-99 179 60 53 87
-100 212 313 18 54
-101 55 176 182 20
-102 56 254 91 21
-103 210 57 312 183
-104 319 58 202 105
-105 199 59 104 184
-106 255 60 185 296
-107 155 62 108 240
-108 33 256 107 186
-109 286 47 91 174
-110 187 50 184 98
-111 188 112 201 117
-112 111 134 149 41
-113 188 189 237 141
-114 190 95 194 120
-115 191 138 150 85
-116 209 192 315 239
-117 111 256 182 215
-118 78 257 248 194
-119 61 138 129 218
-120 114 224 85 64
-121 123 279 93 195
-122 124 280 94 196
-123 121 96 76 197
-124 122 258 40 97
-125 198 211 293 153
-126 231 253 127 150
-127 198 126 259 51
-128 199 260 163 295
-129 200 278 119 284
-130 313 160 250 131
-131 200 201 83 130
-132 147 169 202 272
-133 90 148 170 203
-134 220 112 204 215
-135 149 205 261 318
-136 151 195 206 262
-137 248 152 196 207
-138 115 171 119 263
-139 245 26 38 292
-140 71 29 295 219
-141 113 203 72 31
-142 220 292 73 32
-143 264 34 216 240
-144 265 35 256 62
-145 232 36 257 302
-146 253 266 37 218
-147 132 299 38 164
-148 165 133 300 39
-149 112 135 63 42
-150 115 126 43 208
-151 44 234 267 136
-152 66 45 137 194
-153 66 244 125 51
-154 67 245 52 195
-155 268 216 107 54
-156 55 246 269 306
-157 56 247 270 241
-158 178 59 215 74
-159 81 60 261 75
-160 62 271 130 262
-161 231 95 272 65
-162 66 309 96 163
-163 67 128 162 97
-164 69 26 147 217
-165 70 148 182 294
-166 176 288 289 71
-167 72 303 7 307
-168 267 235 73 96
-169 132 187 260 74
-170 133 299 75 273
-171 138 76 208 274
-172 77 275 234 262
-173 198 79 82 7
-174 276 80 235 109
-175 308 2 81 230
-176 166 101 3 82
-177 309 9 86 307
-178 89 48 158 180
-179 99 90 236 20
-180 22 178 277 92
-181 27 196 295 98
-182 165 101 310 117
-183 34 232 103 226
-184 110 105 185 273
-185 297 106 184 53
-186 88 189 290 108
-187 110 222 169 28
-188 209 111 113 214
-189 89 113 223 186
-190 11 264 114 269
-191 265 224 115 270
-192 33 88 225 116
-193 35 266 49 76
-194 210 114 118 152
-195 121 154 276 136
-196 122 137 181 226
-197 46 123 291 305
-198 125 127 8 173
-199 14 311 105 128
-200 320 268 129 131
-201 111 278 282 131
-202 132 104 204 251
-203 133 205 141 296
-204 134 202 228 252
-205 287 135 203 274
-206 277 136 268 279
-207 308 137 280 240
-208 70 81 171 150
-209 188 221 116 227
-210 48 103 194 228
-211 212 289 125 281
-212 100 254 211 237
-213 15 281 216 250
-214 188 282 65 219
-215 23 134 158 117
-216 143 78 155 213
-217 308 225 282 164
-218 146 283 119 241
-219 56 298 214 140
-220 134 223 279 142
-221 209 91 224 283
-222 187 49 269 284
-223 220 189 31 285
-224 286 221 191 120
-225 288 16 192 217
-226 303 183 52 196
-227 209 68 247 237
-228 210 279 204 229
-229 312 61 271 228
-230 287 233 266 175
-231 288 126 161 307
-232 264 145 92 183
-233 245 305 230 263
-234 243 247 172 151
-235 168 271 19 174
-236 23 179 290 249
-237 113 212 227 293
-238 264 254 311 313
-239 255 116 283 295
-240 143 282 107 207
-241 243 157 302 218
-242 93 63 306 317
-243 234 94 64 241
-244 45 72 153 296
-245 154 233 73 139
-246 79 156 249 317
-247 80 157 234 227
-248 137 313 83 118
-249 246 236 84 294
-250 300 213 130 87
-251 89 310 202 290
-252 36 92 204 272
-253 146 126 302 95
-254 24 102 212 238
-255 314 106 260 239
-256 55 144 117 108
-257 145 6 118 306
-258 79 124 315 294
-259 319 267 127 43
-260 255 299 169 128
-261 135 159 293 41
-262 136 160 172 87
-263 67 233 138 284
-264 143 232 190 238
-265 144 320 266 191
-266 265 146 193 230
-267 309 168 259 151
-268 155 200 19 206
-269 156 222 190 311
-270 298 157 191 314
-271 22 235 160 229
-272 132 161 304 252
-273 298 170 184 316
-274 4 280 171 205
-275 286 5 172 318
-276 51 195 9 174
-277 320 25 180 206
-278 201 290 84 129
-279 121 220 206 228
-280 122 207 274 318
-281 211 213 291 292
-282 201 214 217 240
-283 221 239 316 218
-284 55 222 129 263
-285 223 301 32 318
-286 275 224 301 109
-287 90 37 205 230
-288 231 166 225 315
-289 166 211 317 307
-290 278 236 251 186
-291 297 300 281 197
-292 281 139 317 142
-293 57 125 237 261
-294 77 165 258 249
-295 181 128 140 239
-296 244 312 203 106
-297 59 291 304 185
-298 50 270 273 219
-299 300 147 170 260
-300 299 148 291 250
-301 286 302 306 285
-302 253 145 301 241
-303 309 57 167 226
-304 297 12 272 305
-305 308 233 304 197
-306 242 156 257 301
-307 231 177 167 289
-308 217 305 207 175
-309 177 267 303 162
-310 319 17 182 251
-311 199 58 269 238
-312 103 314 229 296
-313 100 248 238 130
-314 320 255 312 270
-315 288 258 50 116
-316 25 61 283 273
-317 242 289 246 292
-318 275 135 280 285
-319 44 310 104 259
-320 265 200 277 314
0