[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 139 ] =
UG(ATD[320,197]).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {274, 275}, {105, 107}, {268, 270}, {201, 203}, {120, 122}, {148,
150}, {1, 2}, {20, 23}, {1, 5}, {3, 7}, {2, 6}, {219, 222}, {313, 316}, {264,
269}, {57, 63}, {81, 87}, {147, 149}, {171, 173}, {258, 261}, {306, 309}, {257,
265}, {51, 58}, {311, 318}, {53, 60}, {134, 143}, {144, 153}, {19, 25}, {145,
155}, {177, 187}, {274, 281}, {304, 315}, {2, 14}, {4, 8}, {3, 15}, {130, 142},
{161, 173}, {22, 27}, {7, 9}, {311, 313}, {161, 175}, {21, 26}, {241, 254},
{229, 234}, {52, 59}, {256, 272}, {3, 18}, {231, 246}, {193, 208}, {133, 151},
{264, 282}, {163, 176}, {261, 278}, {1, 21}, {264, 284}, {257, 277}, {7, 19},
{6, 18}, {5, 17}, {4, 16}, {129, 149}, {13, 24}, {131, 150}, {236, 250}, {237,
251}, {39, 63}, {170, 179}, {268, 277}, {172, 181}, {32, 58}, {38, 60}, {36,
62}, {33, 59}, {12, 23}, {268, 279}, {8, 20}, {194, 222}, {171, 183}, {11, 22},
{271, 274}, {228, 249}, {226, 255}, {192, 221}, {173, 176}, {34, 60}, {235,
245}, {230, 248}, {206, 208}, {37, 59}, {35, 61}, {10, 21}, {267, 276}, {265,
278}, {76, 83}, {165, 186}, {171, 180}, {172, 179}, {5, 37}, {192, 224}, {17,
49}, {16, 48}, {15, 47}, {14, 46}, {13, 45}, {12, 44}, {11, 43}, {10, 42}, {9,
41}, {8, 40}, {7, 39}, {6, 38}, {19, 50}, {22, 52}, {286, 316}, {69, 103}, {140,
174}, {66, 97}, {266, 297}, {75, 104}, {266, 302}, {272, 308}, {81, 116}, {30,
56}, {78, 104}, {31, 57}, {150, 176}, {20, 51}, {273, 310}, {286, 310}, {28,
54}, {281, 307}, {213, 255}, {29, 55}, {95, 115}, {267, 295}, {24, 53}, {279,
314}, {87, 122}, {263, 296}, {266, 293}, {72, 120}, {149, 165}, {287, 302},
{156, 174}, {266, 312}, {211, 225}, {4, 55}, {71, 115}, {267, 319}, {198, 240},
{1, 54}, {9, 49}, {265, 305}, {11, 51}, {10, 50}, {70, 127}, {196, 253}, {69,
126}, {136, 182}, {284, 290}, {274, 300}, {192, 254}, {285, 290}, {154, 218},
{61, 124}, {184, 249}, {56, 122}, {186, 248}, {57, 123}, {137, 203}, {30, 93},
{185, 250}, {62, 125}, {157, 222}, {36, 96}, {168, 237}, {145, 215}, {170, 236},
{40, 111}, {48, 119}, {32, 104}, {189, 245}, {35, 107}, {34, 106}, {33, 105},
{16, 89}, {39, 110}, {37, 108}, {22, 95}, {20, 93}, {18, 91}, {144, 217}, {188,
246}, {17, 90}, {38, 109}, {21, 94}, {176, 251}, {52, 120}, {53, 121}, {151,
219}, {33, 111}, {19, 92}, {155, 212}, {178, 253}, {18, 66}, {41, 121}, {152,
200}, {167, 247}, {168, 248}, {162, 243}, {187, 234}, {164, 245}, {165, 246},
{275, 320}, {166, 245}, {153, 204}, {175, 250}, {15, 88}, {163, 244}, {174,
249}, {172, 244}, {183, 239}, {14, 87}, {47, 118}, {45, 116}, {43, 114}, {41,
112}, {157, 199}, {42, 113}, {283, 320}, {46, 117}, {179, 232}, {141, 209}, {35,
126}, {180, 233}, {147, 205}, {44, 115}, {169, 246}, {181, 234}, {140, 236},
{141, 237}, {175, 204}, {29, 120}, {31, 121}, {156, 251}, {166, 193}, {62, 86},
{154, 240}, {131, 232}, {25, 117}, {27, 119}, {26, 118}, {161, 205}, {132, 233},
{134, 235}, {159, 242}, {133, 234}, {158, 241}, {163, 210}, {28, 110}, {50, 64},
{170, 216}, {157, 238}, {183, 196}, {172, 223}, {55, 67}, {164, 209}, {152,
238}, {153, 239}, {23, 96}, {54, 65}, {141, 250}, {171, 220}, {24, 97}, {30,
103}, {28, 101}, {26, 99}, {25, 98}, {29, 102}, {2, 126}, {56, 68}, {3, 127},
{177, 205}, {31, 98}, {40, 86}, {177, 207}, {27, 100}, {34, 162}, {74, 202},
{64, 194}, {11, 136}, {72, 203}, {68, 199}, {100, 231}, {4, 128}, {65, 197},
{67, 198}, {85, 208}, {74, 204}, {87, 209}, {81, 215}, {99, 229}, {78, 201},
{89, 209}, {94, 214}, {50, 187}, {92, 213}, {77, 196}, {76, 197}, {54, 191},
{52, 189}, {82, 216}, {89, 211}, {88, 210}, {45, 166}, {65, 202}, {58, 177},
{53, 190}, {49, 186}, {108, 224}, {109, 225}, {12, 129}, {71, 202}, {69, 200},
{112, 254}, {13, 130}, {91, 212}, {70, 201}, {51, 188}, {64, 208}, {70, 214},
{69, 213}, {115, 227}, {116, 228}, {79, 221}, {39, 180}, {97, 242}, {113, 226},
{79, 219}, {38, 179}, {46, 184}, {90, 204}, {47, 185}, {100, 252}, {124, 230},
{125, 231}, {10, 145}, {84, 207}, {44, 183}, {42, 182}, {82, 206}, {40, 181},
{80, 205}, {102, 248}, {123, 229}, {66, 226}, {35, 130}, {64, 225}, {12, 174},
{85, 241}, {41, 140}, {70, 227}, {49, 148}, {68, 227}, {77, 231}, {61, 150},
{48, 156}, {73, 229}, {90, 244}, {101, 212}, {43, 152}, {105, 221}, {106, 222},
{96, 215}, {107, 211}, {112, 200}, {97, 216}, {112, 202}, {98, 217}, {85, 233},
{102, 218}, {103, 219}, {98, 220}, {96, 223}, {99, 162}, {127, 190}, {17, 211},
{45, 239}, {99, 165}, {71, 128}, {79, 136}, {104, 160}, {72, 129}, {78, 135},
{76, 133}, {74, 131}, {106, 160}, {73, 130}, {77, 134}, {113, 186}, {75, 132},
{94, 142}, {95, 143}, {90, 139}, {33, 243}, {91, 137}, {84, 135}, {89, 138},
{81, 133}, {36, 241}, {114, 167}, {92, 138}, {83, 132}, {82, 138}, {88, 128},
{85, 141}, {83, 139}, {119, 175}, {80, 137}, {79, 149}, {93, 135}, {63, 228},
{63, 224}, {75, 148}, {8, 233}, {66, 160}, {13, 238}, {67, 167}, {107, 143},
{47, 200}, {6, 239}, {30, 247}, {15, 230}, {118, 159}, {118, 156}, {5, 238},
{37, 206}, {126, 146}, {127, 147}, {119, 154}, {121, 137}, {48, 193}, {123,
138}, {76, 190}, {109, 159}, {61, 206}, {29, 232}, {73, 191}, {75, 189}, {74,
188}, {100, 146}, {55, 192}, {124, 139}, {9, 240}, {58, 195}, {56, 193}, {31,
230}, {32, 218}, {125, 135}, {57, 194}, {62, 195}, {110, 144}, {59, 196}, {27,
282}, {60, 317}, {44, 301}, {25, 284}, {46, 294}, {23, 280}, {42, 307}, {36,
312}, {28, 257}, {43, 308}, {14, 296}, {102, 320}, {16, 312}, {24, 296}, {26,
299}, {34, 278}, {32, 277}, {86, 276}, {92, 280}, {94, 282}, {93, 281}, {68,
269}, {84, 286}, {101, 303}, {67, 271}, {114, 291}, {91, 271}, {95, 263}, {103,
318}, {84, 270}, {123, 288}, {125, 289}, {80, 269}, {108, 305}, {82, 268}, {65,
289}, {83, 304}, {122, 287}, {80, 311}, {111, 259}, {78, 288}, {111, 257}, {110,
286}, {108, 285}, {116, 261}, {106, 280}, {114, 262}, {105, 284}, {117, 256},
{117, 258}, {113, 265}, {124, 260}, {77, 308}, {73, 307}, {109, 279}, {86, 301},
{88, 292}, {72, 309}, {71, 313}, {101, 283}, {131, 259}, {189, 317}, {166, 294},
{161, 288}, {170, 299}, {163, 289}, {129, 258}, {173, 296}, {159, 281}, {164,
300}, {151, 285}, {154, 272}, {169, 295}, {182, 295}, {187, 298}, {169, 315},
{181, 294}, {188, 303}, {144, 263}, {134, 287}, {164, 318}, {180, 297}, {142,
273}, {142, 303}, {128, 290}, {167, 261}, {139, 302}, {190, 283}, {162, 260},
{168, 270}, {178, 276}, {132, 291}, {140, 292}, {136, 289}, {178, 280}, {155,
304}, {184, 275}, {147, 319}, {158, 306}, {185, 276}, {191, 272}, {145, 288},
{146, 291}, {148, 293}, {152, 297}, {151, 293}, {191, 269}, {182, 260}, {168,
282}, {153, 298}, {169, 285}, {178, 263}, {146, 292}, {157, 292}, {185, 258},
{158, 290}, {155, 294}, {143, 305}, {184, 262}, {160, 287}, {244, 309}, {255,
317}, {254, 314}, {243, 310}, {242, 309}, {253, 314}, {198, 270}, {220, 277},
{197, 271}, {253, 311}, {220, 273}, {251, 298}, {255, 301}, {197, 273}, {235,
319}, {215, 259}, {252, 297}, {214, 256}, {232, 319}, {235, 306}, {237, 308},
{247, 299}, {225, 316}, {158, 320}, {236, 307}, {224, 256}, {207, 302}, {217,
312}, {216, 313}, {201, 298}, {226, 262}, {218, 316}, {195, 299}, {214, 318},
{210, 314}, {223, 310}, {252, 278}, {199, 300}, {203, 295}, {247, 283}, {228,
264}, {221, 304}, {213, 315}, {223, 305}, {194, 301}, {252, 275}, {195, 300},
{212, 293}, {242, 259}, {207, 317}, {249, 267}, {198, 306}, {240, 260}, {227,
279}, {243, 262}, {217, 291}, {199, 315}, {210, 303} }>;
(II) A more general form is to represent the graph as the orbit of {274, 275}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(4, 12)(6, 17)(8, 23)(10, 28)(11, 30)(13, 35)(14, 37)(15, 41)(16,
44)(18, 49)(19, 39)(21, 54)(22, 56)(24, 61)(25, 63)(26, 65)(27, 68)(29, 72)(32,
78)(33, 81)(34, 83)(36, 86)(38, 90)(40, 96)(42, 101)(43, 103)(45, 107)(46,
108)(47, 112)(48, 115)(50, 110)(51, 93)(52, 122)(53, 124)(55, 129)(57, 98)(58,
135)(59, 87)(60, 139)(64, 144)(66, 148)(67, 149)(69, 152)(70, 154)(71, 156)(73,
142)(74, 159)(75, 160)(76, 162)(77, 164)(79, 167)(80, 168)(82, 173)(84, 177)(85,
178)(88, 140)(89, 183)(91, 186)(92, 180)(94, 191)(95, 193)(97, 150)(99,
197)(100, 199)(102, 203)(105, 116)(106, 132)(109, 204)(111, 215)(113, 212)(114,
219)(117, 224)(118, 202)(119, 227)(121, 230)(123, 220)(125, 195)(126, 238)(127,
240)(128, 174)(131, 242)(133, 243)(134, 245)(136, 247)(137, 248)(138, 171)(141,
253)(143, 166)(145, 257)(146, 157)(147, 198)(151, 262)(153, 225)(155, 265)(158,
267)(161, 268)(163, 170)(165, 271)(169, 275)(175, 279)(176, 216)(179, 244)(181,
223)(182, 283)(184, 285)(185, 254)(187, 286)(188, 281)(189, 287)(190, 260)(192,
258)(194, 217)(196, 209)(201, 218)(205, 270)(206, 296)(208, 263)(210, 236)(211,
239)(213, 297)(214, 272)(221, 261)(222, 291)(226, 293)(228, 284)(229, 273)(231,
300)(232, 309)(233, 280)(234, 310)(237, 311)(241, 276)(246, 274)(249, 290)(250,
314)(251, 313)(252, 315)(255, 266)(269, 282)(277, 288)(278, 304)(289, 299)(294,
305)(295, 320)(298, 316)(301, 312)(302, 317)(303, 307)(306, 319)(308, 318) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 54)(3, 39)(4, 267)(5, 21)(6, 28)(8, 319)(9, 19)(10, 17)(11, 164)(12,
158)(13, 142)(14, 65)(15, 63)(16, 295)(18, 110)(20, 235)(22, 300)(23, 306)(24,
273)(25, 41)(26, 37)(27, 199)(29, 86)(30, 77)(32, 317)(33, 170)(34, 268)(35,
73)(36, 72)(38, 257)(40, 232)(42, 211)(43, 318)(44, 320)(45, 303)(46, 202)(47,
224)(48, 169)(49, 50)(51, 245)(52, 195)(53, 220)(55, 276)(56, 231)(57, 230)(58,
189)(59, 299)(60, 277)(61, 229)(62, 120)(64, 186)(66, 286)(67, 178)(68, 100)(69,
272)(70, 297)(71, 184)(74, 294)(75, 177)(76, 173)(78, 302)(79, 141)(80, 291)(81,
163)(82, 162)(83, 161)(84, 160)(85, 149)(87, 289)(88, 228)(89, 182)(90, 145)(91,
144)(92, 240)(93, 134)(94, 238)(95, 274)(96, 309)(97, 310)(98, 121)(99,
206)(101, 239)(102, 301)(103, 308)(104, 207)(105, 236)(106, 270)(107, 307)(108,
118)(109, 265)(111, 179)(112, 117)(113, 225)(114, 311)(115, 275)(116, 210)(119,
315)(122, 125)(123, 124)(126, 191)(127, 180)(128, 249)(129, 241)(131, 181)(132,
205)(133, 176)(135, 287)(136, 209)(137, 217)(138, 260)(139, 288)(140, 284)(143,
281)(146, 269)(147, 233)(148, 187)(150, 234)(151, 251)(152, 214)(153, 212)(154,
213)(155, 204)(156, 285)(157, 282)(159, 305)(165, 208)(166, 188)(167, 253)(168,
222)(171, 190)(172, 259)(174, 290)(175, 304)(183, 283)(185, 192)(193, 246)(194,
248)(196, 247)(197, 296)(198, 280)(200, 256)(201, 266)(203, 312)(215, 244)(216,
243)(218, 255)(219, 237)(221, 250)(223, 242)(226, 316)(227, 252)(254, 258)(261,
314)(262, 313)(263, 271)(264, 292)(278, 279)(293, 298)
c: (1, 2, 6, 18, 3, 7, 19, 50, 10, 21)(4, 8, 20, 51, 11, 22, 52, 120, 29, 55)(5,
14, 38, 91, 15, 39, 92, 187, 42, 94)(9, 25, 64, 145, 26, 54, 126, 239, 66,
127)(12, 32, 79, 119, 33, 56, 131, 167, 71, 132)(13, 24, 53, 121, 31, 57, 123,
229, 73, 130)(16, 40, 93, 188, 43, 95, 189, 72, 102, 192)(17, 46, 109, 212, 47,
110, 213, 298, 113, 214)(23, 58, 136, 27, 59, 122, 232, 67, 128, 233)(28, 69,
153, 226, 70, 49, 117, 225, 155, 118)(30, 74, 114, 115, 75, 129, 218, 221, 48,
111)(34, 80, 124, 228, 82, 133, 236, 273, 157, 173)(35, 45, 97, 190, 41, 98,
194, 288, 99, 191)(36, 62, 125, 231, 77, 134, 235, 306, 158, 241)(37, 87, 179,
271, 88, 180, 280, 177, 182, 282)(44, 104, 149, 154, 105, 193, 259, 247, 202,
291)(60, 137, 230, 63, 138, 234, 307, 142, 238, 296)(61, 116, 216, 76, 140, 220,
222, 161, 162, 269)(65, 146, 183, 160, 147, 240, 284, 208, 215, 299)(68, 150,
261, 313, 83, 174, 277, 219, 175, 243)(78, 165, 272, 107, 166, 242, 283, 112,
217, 301)(81, 170, 197, 292, 171, 106, 205, 260, 264, 206)(84, 169, 237, 305,
164, 244, 275, 314, 266, 276)(85, 96, 195, 289, 100, 196, 287, 319, 198,
290)(86, 135, 246, 308, 143, 245, 309, 320, 254, 312)(89, 181, 281, 303, 152,
263, 317, 203, 248, 224)(90, 184, 279, 293, 185, 286, 315, 251, 265, 318)(101,
200, 144, 255, 201, 186, 256, 211, 294, 159)(103, 204, 262, 227, 148, 258, 316,
304, 156, 257)(108, 209, 172, 274, 210, 297, 178, 207, 295, 168)(139, 249, 268,
151, 250, 310, 199, 176, 278, 311)(141, 223, 300, 163, 252, 253, 302, 267, 270,
285)
C4[ 320, 139 ]
320
-1 2 5 21 54
-2 1 14 126 6
-3 15 127 7 18
-4 55 16 128 8
-5 1 37 17 238
-6 2 38 18 239
-7 3 39 19 9
-8 233 4 40 20
-9 49 7 41 240
-10 145 50 42 21
-11 22 136 51 43
-12 44 23 129 174
-13 45 24 238 130
-14 2 46 87 296
-15 88 3 47 230
-16 89 4 48 312
-17 90 211 5 49
-18 66 3 91 6
-19 25 92 50 7
-20 23 93 51 8
-21 1 26 94 10
-22 11 27 95 52
-23 12 280 96 20
-24 13 53 97 296
-25 117 19 284 98
-26 99 299 118 21
-27 22 100 282 119
-28 110 101 257 54
-29 55 232 102 120
-30 56 103 93 247
-31 121 57 98 230
-32 277 58 104 218
-33 111 243 59 105
-34 278 60 106 162
-35 126 61 107 130
-36 312 62 96 241
-37 59 5 206 108
-38 179 60 6 109
-39 110 180 7 63
-40 111 181 8 86
-41 121 112 140 9
-42 113 182 10 307
-43 11 308 114 152
-44 12 301 115 183
-45 166 13 116 239
-46 14 117 184 294
-47 200 15 118 185
-48 156 16 193 119
-49 148 17 9 186
-50 187 19 64 10
-51 11 188 58 20
-52 22 189 59 120
-53 121 24 190 60
-54 1 191 28 65
-55 67 4 192 29
-56 122 68 193 30
-57 123 194 63 31
-58 177 51 195 32
-59 33 37 52 196
-60 34 38 53 317
-61 35 124 150 206
-62 36 125 195 86
-63 57 224 39 228
-64 225 50 194 208
-65 289 202 54 197
-66 160 226 18 97
-67 55 198 167 271
-68 56 199 269 227
-69 200 103 213 126
-70 201 214 127 227
-71 202 115 313 128
-72 309 203 129 120
-73 191 130 229 307
-74 188 202 204 131
-75 132 189 104 148
-76 133 190 83 197
-77 231 308 134 196
-78 288 135 201 104
-79 221 136 149 219
-80 311 137 269 205
-81 133 116 215 87
-82 268 138 216 206
-83 132 139 304 76
-84 286 135 270 207
-85 233 141 208 241
-86 276 301 40 62
-87 209 122 14 81
-88 210 15 292 128
-89 209 211 16 138
-90 244 17 204 139
-91 212 137 18 271
-92 213 280 138 19
-93 135 281 30 20
-94 214 282 21 142
-95 22 143 115 263
-96 23 36 223 215
-97 66 242 24 216
-98 220 25 217 31
-99 165 26 162 229
-100 231 146 27 252
-101 212 28 303 283
-102 320 248 29 218
-103 69 30 219 318
-104 78 160 75 32
-105 33 221 107 284
-106 34 222 280 160
-107 143 35 211 105
-108 37 224 305 285
-109 279 38 159 225
-110 286 144 28 39
-111 33 257 259 40
-112 254 200 202 41
-113 265 226 42 186
-114 167 291 262 43
-115 44 71 95 227
-116 45 81 228 261
-117 46 25 256 258
-118 156 47 26 159
-119 154 48 27 175
-120 122 72 29 52
-121 137 41 31 53
-122 56 287 87 120
-123 57 288 138 229
-124 61 139 260 230
-125 231 135 289 62
-126 2 35 69 146
-127 3 190 70 147
-128 88 4 290 71
-129 12 258 72 149
-130 13 35 73 142
-131 232 259 150 74
-132 233 291 83 75
-133 234 81 151 76
-134 77 143 287 235
-135 78 125 93 84
-136 11 79 289 182
-137 121 80 91 203
-138 89 123 92 82
-139 90 124 302 83
-140 236 292 41 174
-141 209 237 85 250
-142 94 303 130 273
-143 134 95 107 305
-144 110 217 153 263
-145 155 288 215 10
-146 100 126 291 292
-147 319 127 149 205
-148 49 150 293 75
-149 165 79 147 129
-150 176 148 61 131
-151 133 293 219 285
-152 297 200 238 43
-153 144 298 204 239
-154 272 119 218 240
-155 145 212 304 294
-156 48 118 174 251
-157 199 222 292 238
-158 320 290 306 241
-159 242 281 118 109
-160 66 287 104 106
-161 288 205 173 175
-162 99 34 243 260
-163 176 210 244 289
-164 209 245 300 318
-165 99 246 149 186
-166 45 245 193 294
-167 67 114 247 261
-168 237 248 270 282
-169 246 315 295 285
-170 299 179 236 216
-171 220 180 183 173
-172 244 179 223 181
-173 176 171 161 296
-174 12 156 249 140
-175 204 161 250 119
-176 150 173 163 251
-177 187 58 205 207
-178 253 276 280 263
-179 232 38 170 172
-180 297 233 39 171
-181 234 40 172 294
-182 136 260 42 295
-183 44 171 239 196
-184 275 46 249 262
-185 276 47 258 250
-186 165 113 49 248
-187 177 298 234 50
-188 246 303 51 74
-189 245 52 75 317
-190 127 283 53 76
-191 269 73 272 54
-192 55 221 254 224
-193 56 166 48 208
-194 57 222 301 64
-195 299 58 300 62
-196 77 253 59 183
-197 271 273 65 76
-198 67 270 240 306
-199 68 157 300 315
-200 112 47 69 152
-201 78 298 70 203
-202 112 71 74 65
-203 201 137 72 295
-204 90 74 153 175
-205 177 80 147 161
-206 37 82 61 208
-207 177 302 84 317
-208 193 85 206 64
-209 89 141 87 164
-210 88 303 314 163
-211 89 225 17 107
-212 155 101 91 293
-213 255 69 92 315
-214 256 70 94 318
-215 145 81 259 96
-216 82 170 313 97
-217 144 312 291 98
-218 154 102 316 32
-219 79 222 103 151
-220 277 171 273 98
-221 79 192 105 304
-222 157 106 194 219
-223 310 172 96 305
-224 256 192 63 108
-225 211 316 64 109
-226 66 255 113 262
-227 68 70 279 115
-228 264 116 249 63
-229 99 123 234 73
-230 124 15 248 31
-231 77 100 125 246
-232 319 179 29 131
-233 132 180 8 85
-234 187 133 181 229
-235 319 134 245 306
-236 170 140 250 307
-237 308 168 141 251
-238 13 157 5 152
-239 45 6 183 153
-240 154 198 260 9
-241 254 36 158 85
-242 309 159 259 97
-243 33 310 162 262
-244 309 90 172 163
-245 166 189 235 164
-246 165 231 188 169
-247 167 299 30 283
-248 102 168 186 230
-249 267 184 228 174
-250 236 141 185 175
-251 176 298 156 237
-252 275 297 100 278
-253 178 311 314 196
-254 112 192 314 241
-255 213 301 226 317
-256 224 214 117 272
-257 111 265 277 28
-258 117 129 261 185
-259 242 111 215 131
-260 124 182 162 240
-261 167 278 258 116
-262 243 114 226 184
-263 144 178 95 296
-264 269 282 228 284
-265 113 278 257 305
-266 297 312 302 293
-267 319 276 249 295
-268 277 279 82 270
-269 264 68 80 191
-270 198 168 268 84
-271 67 91 197 274
-272 154 308 256 191
-273 220 310 142 197
-274 275 300 281 271
-275 320 184 252 274
-276 178 267 86 185
-277 220 257 268 32
-278 34 265 261 252
-279 268 314 227 109
-280 23 178 92 106
-281 93 159 274 307
-282 264 168 27 94
-283 320 101 190 247
-284 264 25 290 105
-285 169 290 151 108
-286 110 310 84 316
-287 122 134 302 160
-288 78 123 145 161
-289 125 136 163 65
-290 158 128 284 285
-291 132 146 114 217
-292 88 146 157 140
-293 266 212 148 151
-294 155 166 46 181
-295 267 169 203 182
-296 24 14 173 263
-297 266 180 152 252
-298 187 201 251 153
-299 26 170 247 195
-300 199 195 164 274
-301 44 255 194 86
-302 287 266 139 207
-303 188 210 101 142
-304 155 221 83 315
-305 143 265 223 108
-306 198 309 158 235
-307 236 281 73 42
-308 77 237 272 43
-309 242 244 72 306
-310 286 243 223 273
-311 253 80 313 318
-312 266 36 16 217
-313 311 71 216 316
-314 253 210 254 279
-315 199 169 213 304
-316 286 225 313 218
-317 189 255 60 207
-318 311 103 214 164
-319 232 267 147 235
-320 275 102 158 283
0