C4graphGraph forms for C4 [ 320, 152 ] = SDD(C_80(1,31))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 320, 152 ] = SDD(C_80(1,31)).

(I) Following is a form readable by MAGMA:

g:=Graph<320|{ {160, 172}, {160, 187}, {132, 164}, {142, 175}, {156, 189}, {155, 186}, {147, 178}, {138, 169}, {147, 182}, {158, 187}, {150, 179}, {142, 168}, {154, 188}, {143, 168}, {157, 186}, {153, 190}, {150, 191}, {128, 170}, {156, 182}, {132, 174}, {128, 171}, {142, 165}, {140, 167}, {152, 180}, {138, 167}, {138, 164}, {145, 191}, {142, 161}, {159, 176}, {146, 189}, {133, 181}, {140, 188}, {137, 185}, {128, 177}, {132, 181}, {148, 166}, {130, 177}, {150, 162}, {148, 161}, {156, 169}, {152, 173}, {148, 162}, {155, 173}, {148, 163}, {147, 171}, {158, 166}, {151, 175}, {136, 178}, {150, 172}, {138, 176}, {152, 163}, {143, 179}, {146, 174}, {137, 180}, {128, 190}, {155, 165}, {136, 183}, {133, 199}, {145, 210}, {149, 214}, {132, 193}, {144, 213}, {160, 230}, {143, 200}, {151, 208}, {139, 195}, {158, 214}, {156, 212}, {151, 221}, {136, 195}, {154, 209}, {140, 199}, {137, 197}, {141, 193}, {153, 212}, {157, 208}, {157, 211}, {159, 209}, {137, 198}, {130, 210}, {144, 192}, {135, 215}, {147, 194}, {153, 205}, {154, 206}, {155, 206}, {143, 216}, {152, 192}, {158, 198}, {131, 217}, {149, 207}, {133, 223}, {129, 218}, {140, 215}, {136, 211}, {130, 222}, {146, 207}, {159, 194}, {134, 216}, {139, 234}, {134, 226}, {141, 233}, {145, 244}, {133, 238}, {135, 235}, {160, 205}, {130, 237}, {144, 255}, {153, 232}, {134, 244}, {146, 230}, {131, 246}, {134, 241}, {144, 231}, {135, 255}, {157, 229}, {141, 245}, {145, 232}, {149, 236}, {159, 229}, {149, 233}, {139, 246}, {154, 231}, {151, 234}, {117, 245}, {124, 252}, {98, 227}, {123, 248}, {116, 240}, {98, 228}, {117, 243}, {113, 247}, {102, 225}, {125, 250}, {119, 240}, {125, 241}, {108, 226}, {120, 247}, {98, 242}, {125, 237}, {112, 224}, {106, 251}, {117, 228}, {113, 224}, {124, 238}, {126, 236}, {107, 248}, {120, 235}, {110, 250}, {107, 254}, {116, 225}, {100, 242}, {121, 239}, {106, 243}, {98, 252}, {103, 249}, {102, 249}, {112, 239}, {1, 161}, {108, 204}, {31, 191}, {30, 190}, {24, 184}, {29, 188}, {1, 163}, {127, 221}, {23, 181}, {6, 164}, {1, 162}, {127, 220}, {122, 217}, {118, 213}, {8, 171}, {2, 161}, {3, 167}, {126, 218}, {14, 170}, {13, 169}, {12, 168}, {9, 173}, {17, 180}, {123, 222}, {21, 176}, {88, 253}, {4, 162}, {28, 186}, {5, 163}, {88, 254}, {1, 166}, {108, 203}, {22, 177}, {3, 164}, {2, 165}, {92, 251}, {4, 172}, {116, 220}, {17, 185}, {16, 184}, {6, 174}, {5, 173}, {16, 185}, {18, 187}, {2, 168}, {117, 223}, {3, 169}, {7, 171}, {11, 167}, {10, 166}, {9, 165}, {2, 175}, {102, 203}, {7, 170}, {19, 189}, {82, 253}, {13, 189}, {5, 180}, {10, 187}, {118, 196}, {123, 201}, {3, 176}, {127, 204}, {122, 201}, {9, 186}, {6, 181}, {126, 202}, {110, 219}, {7, 177}, {4, 179}, {127, 200}, {108, 219}, {11, 188}, {15, 183}, {7, 190}, {14, 183}, {8, 178}, {112, 202}, {4, 191}, {126, 197}, {20, 175}, {13, 182}, {120, 196}, {15, 178}, {19, 174}, {8, 182}, {18, 172}, {12, 179}, {92, 227}, {43, 235}, {49, 241}, {57, 249}, {26, 219}, {50, 243}, {25, 218}, {42, 233}, {12, 200}, {37, 225}, {22, 210}, {21, 209}, {20, 208}, {5, 192}, {39, 226}, {16, 213}, {27, 221}, {42, 236}, {6, 193}, {55, 240}, {38, 225}, {32, 231}, {27, 220}, {14, 201}, {9, 206}, {58, 253}, {22, 222}, {112, 184}, {35, 235}, {34, 234}, {33, 233}, {23, 223}, {20, 221}, {52, 253}, {50, 251}, {8, 194}, {56, 242}, {52, 254}, {30, 212}, {40, 227}, {53, 254}, {49, 250}, {48, 251}, {10, 198}, {40, 228}, {29, 209}, {28, 208}, {15, 195}, {11, 199}, {31, 210}, {122, 183}, {53, 248}, {41, 228}, {118, 184}, {28, 211}, {118, 185}, {51, 252}, {47, 224}, {23, 199}, {122, 170}, {26, 203}, {24, 202}, {25, 202}, {48, 227}, {39, 244}, {30, 205}, {29, 206}, {27, 200}, {12, 216}, {46, 250}, {43, 255}, {40, 252}, {35, 247}, {34, 246}, {33, 245}, {17, 197}, {16, 196}, {26, 204}, {39, 241}, {38, 240}, {14, 217}, {27, 204}, {21, 194}, {17, 198}, {47, 247}, {13, 212}, {54, 239}, {40, 242}, {44, 246}, {41, 243}, {10, 214}, {49, 237}, {41, 245}, {37, 249}, {36, 248}, {25, 197}, {19, 207}, {15, 211}, {11, 215}, {51, 238}, {18, 205}, {32, 255}, {32, 192}, {33, 193}, {34, 195}, {42, 207}, {35, 196}, {31, 244}, {36, 201}, {37, 203}, {21, 229}, {18, 230}, {19, 230}, {46, 219}, {44, 217}, {32, 213}, {25, 236}, {30, 232}, {41, 223}, {24, 239}, {45, 218}, {31, 232}, {24, 224}, {26, 226}, {23, 238}, {28, 229}, {29, 231}, {38, 220}, {36, 222}, {22, 237}, {42, 214}, {43, 215}, {20, 234}, {39, 216}, {75, 320}, {76, 320}, {80, 320}, {55, 293}, {56, 298}, {57, 299}, {58, 300}, {55, 288}, {56, 289}, {58, 291}, {60, 293}, {62, 295}, {57, 290}, {54, 297}, {63, 287}, {33, 256}, {47, 270}, {45, 268}, {43, 266}, {37, 260}, {35, 258}, {59, 282}, {61, 284}, {63, 286}, {55, 277}, {34, 257}, {99, 320}, {46, 269}, {62, 285}, {50, 278}, {52, 274}, {36, 259}, {44, 267}, {38, 257}, {60, 283}, {56, 272}, {48, 281}, {54, 287}, {62, 276}, {58, 273}, {59, 272}, {63, 276}, {45, 256}, {60, 273}, {62, 275}, {61, 274}, {63, 270}, {49, 261}, {51, 263}, {50, 262}, {57, 269}, {60, 265}, {47, 280}, {61, 261}, {44, 277}, {51, 266}, {46, 279}, {59, 258}, {54, 268}, {45, 278}, {52, 264}, {53, 265}, {59, 263}, {53, 267}, {61, 259}, {48, 271}, {82, 273}, {64, 260}, {109, 297}, {105, 301}, {92, 281}, {103, 290}, {100, 289}, {96, 293}, {65, 262}, {104, 303}, {86, 286}, {66, 264}, {88, 274}, {67, 271}, {103, 299}, {80, 285}, {105, 292}, {100, 298}, {104, 295}, {111, 288}, {75, 283}, {121, 297}, {88, 264}, {76, 285}, {69, 279}, {119, 293}, {90, 264}, {93, 271}, {74, 281}, {78, 285}, {92, 271}, {99, 309}, {68, 275}, {119, 288}, {101, 306}, {70, 286}, {101, 317}, {69, 284}, {78, 276}, {111, 309}, {109, 311}, {101, 319}, {72, 275}, {71, 282}, {99, 318}, {78, 275}, {111, 305}, {71, 280}, {109, 306}, {64, 288}, {114, 274}, {107, 267}, {70, 294}, {71, 295}, {72, 296}, {79, 303}, {80, 304}, {83, 307}, {89, 313}, {91, 315}, {69, 292}, {73, 296}, {86, 311}, {91, 314}, {67, 289}, {119, 277}, {107, 265}, {102, 260}, {68, 294}, {94, 316}, {90, 313}, {115, 272}, {110, 269}, {95, 315}, {79, 298}, {89, 316}, {91, 318}, {66, 292}, {121, 287}, {80, 310}, {87, 305}, {89, 319}, {94, 312}, {83, 308}, {87, 304}, {93, 314}, {65, 297}, {69, 301}, {70, 302}, {71, 303}, {78, 295}, {115, 282}, {113, 280}, {81, 312}, {85, 316}, {90, 307}, {93, 308}, {95, 310}, {96, 265}, {84, 318}, {103, 269}, {85, 319}, {73, 290}, {111, 260}, {109, 262}, {68, 296}, {106, 262}, {85, 313}, {81, 316}, {72, 294}, {114, 284}, {77, 291}, {83, 317}, {84, 314}, {84, 315}, {97, 270}, {72, 312}, {104, 280}, {77, 317}, {83, 291}, {86, 294}, {95, 303}, {64, 305}, {115, 258}, {114, 259}, {66, 307}, {70, 311}, {82, 291}, {96, 273}, {104, 282}, {65, 306}, {94, 301}, {79, 315}, {115, 263}, {100, 272}, {64, 309}, {121, 268}, {116, 257}, {105, 284}, {97, 276}, {74, 319}, {75, 318}, {87, 290}, {94, 299}, {95, 298}, {65, 311}, {124, 266}, {67, 308}, {114, 261}, {74, 317}, {89, 302}, {91, 300}, {73, 305}, {125, 261}, {123, 259}, {99, 283}, {74, 306}, {84, 300}, {86, 302}, {67, 314}, {110, 279}, {73, 304}, {77, 308}, {79, 310}, {76, 310}, {120, 258}, {81, 299}, {66, 313}, {124, 263}, {85, 302}, {96, 283}, {68, 312}, {106, 278}, {101, 281}, {76, 304}, {81, 301}, {93, 289}, {75, 309}, {105, 279}, {97, 287}, {77, 307}, {82, 300}, {90, 292}, {87, 296}, {113, 270}, {97, 286}, {129, 256}, {131, 267}, {139, 257}, {129, 268}, {141, 256}, {135, 266}, {131, 277}, {129, 278} }>;

(II) A more general form is to represent the graph as the orbit of {160, 172} under the group generated by the following permutations:

a: (55, 119)
b: (53, 107)
c: (56, 100)
d: (25, 126)
e: (71, 104)
f: (46, 110)
g: (85, 89)
h: (76, 80)
m: (26, 108)
n1: (10, 158)
a1: (69, 105)
b1: (44, 131)
c1: (50, 106)
d1: (47, 113)
e1: (18, 160)
f1: (33, 141)
g1: (57, 103)
h1: (77, 83)
m1: (11, 140)
n2: (36, 123)
a2: (23, 133)
b2: (54, 121)
c2: (75, 99)
d2: (7, 128)
e2: (84, 91)
f2: (9, 155)
g2: (48, 92)
h2: (61, 114)
m2: (67, 93)
n3: (6, 132)
a3: (59, 115)
b3: (73, 87)
c3: (15, 136)
d3: (74, 101)
e3: (30, 153)
f3: (22, 130)
g3: (19, 146)
h3: (35, 120)
m3: (2, 4)(5, 10)(6, 11)(7, 15)(9, 18)(13, 21)(16, 25)(19, 29)(20, 31)(22, 34)(27, 39)(28, 30)(32, 42)(33, 43)(35, 45)(36, 44)(37, 46)(38, 49)(41, 51)(47, 54)(48, 56)(50, 59)(52, 60)(55, 61)(62, 70)(64, 69)(65, 71)(66, 75)(73, 81)(74, 79)(76, 85)(77, 84)(78, 86)(80, 89)(83, 91)(87, 94)(88, 96)(90, 99)(92, 100)(95, 101)(102, 110)(104, 109)(105, 111)(106, 115)(113, 121)(114, 119)(116, 125)(117, 124)(118, 126)(120, 129)(123, 131)(127, 134)(128, 136)(130, 139)(132, 140)(135, 141)(142, 150)(144, 149)(145, 151)(146, 154)(152, 158)(153, 157)(155, 160)(156, 159)(161, 162)(163, 166)(164, 167)(165, 172)(168, 179)(169, 176)(170, 183)(171, 178)(173, 187)(174, 188)(175, 191)(177, 195)(180, 198)(181, 199)(182, 194)(184, 202)(185, 197)(186, 205)(189, 209)(190, 211)(192, 214)(193, 215)(196, 218)(200, 216)(201, 217)(203, 219)(204, 226)(206, 230)(207, 231)(208, 232)(210, 234)(212, 229)(213, 236)(220, 241)(221, 244)(222, 246)(223, 238)(224, 239)(225, 250)(227, 242)(228, 252)(233, 255)(235, 256)(237, 257)(240, 261)(243, 263)(245, 266)(247, 268)(248, 267)(249, 269)(251, 272)(253, 273)(254, 265)(258, 278)(259, 277)(260, 279)(262, 282)(264, 283)(270, 287)(271, 289)(274, 293)(275, 294)(276, 286)(280, 297)(281, 298)(284, 288)(285, 302)(290, 299)(291, 300)(292, 309)(295, 311)(296, 312)(301, 305)(303, 306)(304, 316)(307, 318)(308, 314)(310, 319)(313, 320)(315, 317)
n4: (21, 159)
a4: (63, 97)
b4: (24, 112)
c4: (51, 124)
d4: (70, 86)
e4: (52, 88)
f4: (68, 72)
g4: (39, 134)
h4: (31, 145)
m4: (66, 90)
n5: (37, 102)
a5: (1, 2, 12, 27, 26, 37, 57, 73, 68, 62, 63, 47, 24, 16, 17, 5)(3, 13, 8, 7, 14, 36, 53, 52, 58, 77, 67, 48, 40, 41, 23, 6)(4, 20, 39, 38, 46, 64, 81, 76, 70, 71, 54, 35, 25, 32, 10, 9)(11, 19, 21, 30, 15, 22, 44, 61, 60, 66, 84, 74, 56, 50, 51, 33)(18, 28, 31, 34, 49, 55, 69, 75, 85, 79, 65, 59, 45, 43, 42, 29)(72, 78, 97, 113, 112, 118, 137, 152, 148, 142, 143, 127, 108, 102, 103, 87)(80, 86, 104, 121, 120, 126, 144, 158, 155, 150, 151, 134, 116, 110, 111, 94)(82, 83, 93, 92, 98, 117, 133, 132, 138, 156, 147, 128, 122, 123, 107, 88)(89, 95, 109, 115, 129, 135, 149, 154, 160, 157, 145, 139, 125, 119, 105, 99)(90, 91, 101, 100, 106, 124, 141, 140, 146, 159, 153, 136, 130, 131, 114, 96)(161, 168, 200, 204, 203, 249, 290, 296, 275, 276, 270, 224, 184, 185, 180, 163)(162, 175, 216, 220, 219, 260, 299, 304, 294, 295, 287, 247, 202, 213, 198, 173)(164, 169, 182, 171, 170, 201, 248, 254, 253, 291, 308, 271, 227, 228, 223, 181)(165, 179, 221, 226, 225, 269, 305, 312, 285, 286, 280, 239, 196, 197, 192, 166)(167, 189, 194, 190, 183, 222, 267, 274, 273, 307, 314, 281, 242, 243, 238, 193)(172, 208, 244, 257, 250, 288, 301, 320, 302, 303, 297, 258, 218, 255, 214, 206)(174, 176, 212, 178, 177, 217, 259, 265, 264, 300, 317, 289, 251, 252, 245, 199)(186, 191, 234, 241, 240, 279, 309, 316, 310, 311, 282, 268, 235, 236, 231, 187)(188, 230, 229, 232, 195, 237, 277, 284, 283, 313, 315, 306, 272, 278, 266, 233)(205, 211, 210, 246, 261, 293, 292, 318, 319, 298, 262, 263, 256, 215, 207, 209)
b5: (4, 150)
c5: (65, 109)
d5: (32, 144)
e5: (64, 111)
f5: (3, 138)
g5: (16, 118)
h5: (43, 135)
m5: (40, 98)
n6: (42, 149)
a6: (17, 137)
b6: (49, 125)
c6: (45, 129)
d6: (29, 154)
e6: (2, 5)(3, 8)(4, 10)(6, 7)(11, 15)(12, 17)(14, 23)(16, 27)(19, 30)(20, 32)(22, 33)(24, 26)(25, 39)(28, 29)(31, 42)(34, 43)(35, 38)(36, 41)(37, 47)(40, 53)(44, 51)(45, 49)(46, 54)(48, 52)(50, 61)(55, 59)(56, 60)(57, 63)(58, 67)(62, 73)(64, 71)(65, 69)(66, 74)(70, 81)(75, 79)(78, 87)(82, 93)(86, 94)(88, 92)(90, 101)(95, 99)(96, 100)(97, 103)(98, 107)(102, 113)(104, 111)(105, 109)(106, 114)(108, 112)(110, 121)(115, 119)(116, 120)(117, 123)(118, 127)(122, 133)(124, 131)(125, 129)(126, 134)(128, 132)(130, 141)(135, 139)(136, 140)(137, 143)(138, 147)(142, 152)(144, 151)(145, 149)(146, 153)(150, 158)(154, 157)(161, 163)(162, 166)(164, 171)(165, 173)(167, 178)(168, 180)(169, 182)(170, 181)(172, 187)(174, 190)(175, 192)(176, 194)(177, 193)(179, 198)(183, 199)(184, 204)(185, 200)(186, 206)(188, 211)(189, 212)(191, 214)(195, 215)(196, 220)(197, 216)(201, 223)(202, 226)(203, 224)(205, 230)(207, 232)(208, 231)(209, 229)(210, 233)(213, 221)(217, 238)(218, 241)(219, 239)(222, 245)(225, 247)(227, 254)(228, 248)(234, 255)(235, 257)(236, 244)(237, 256)(240, 258)(242, 265)(243, 259)(246, 266)(249, 270)(250, 268)(251, 274)(252, 267)(253, 271)(260, 280)(261, 278)(262, 284)(263, 277)(264, 281)(269, 287)(272, 293)(273, 289)(275, 296)(276, 290)(279, 297)(282, 288)(283, 298)(285, 304)(286, 299)(291, 308)(292, 306)(294, 312)(295, 305)(300, 314)(301, 311)(302, 316)(303, 309)(307, 317)(310, 320)(313, 319)(315, 318)
f6: (41, 117)
g6: (2, 142)
h6: (27, 127)
m6: (60, 96)
n7: (5, 152)
a7: (38, 116)
b7: (58, 82)
c7: (14, 122)
d7: (81, 94)
e7: (79, 95)
f7: (28, 157)
g7: (13, 156)
h7: (20, 151)
m7: (8, 147)
n8: (12, 143)
a8: (34, 139)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 320, 152 ]
320
-1 166 161 162 163
-2 165 168 161 175
-3 176 167 169 164
-4 179 191 172 162
-5 180 192 173 163
-6 181 193 174 164
-7 177 190 170 171
-8 178 171 182 194
-9 165 173 206 186
-10 187 198 166 214
-11 188 199 167 215
-12 200 168 179 216
-13 189 212 169 182
-14 201 170 183 217
-15 178 211 183 195
-16 213 184 185 196
-17 198 180 185 197
-18 187 172 205 230
-19 189 174 207 230
-20 221 234 175 208
-21 176 209 194 229
-22 177 210 222 237
-23 199 223 181 238
-24 202 224 184 239
-25 202 236 218 197
-26 203 204 226 219
-27 220 221 200 204
-28 211 229 186 208
-29 209 231 188 206
-30 232 190 212 205
-31 210 232 244 191
-32 231 255 213 192
-33 233 245 256 193
-34 234 246 257 195
-35 235 247 258 196
-36 222 201 248 259
-37 203 225 249 260
-38 220 257 225 240
-39 244 226 216 241
-40 242 227 228 252
-41 243 223 245 228
-42 233 214 236 207
-43 255 266 235 215
-44 277 267 246 217
-45 256 278 268 218
-46 279 269 250 219
-47 224 247 280 270
-48 281 227 271 251
-49 237 250 261 241
-50 243 278 251 262
-51 266 238 252 263
-52 253 264 254 274
-53 254 265 267 248
-54 297 287 268 239
-55 277 288 293 240
-56 242 298 289 272
-57 299 290 269 249
-58 253 300 291 273
-59 258 282 272 263
-60 265 293 283 273
-61 259 261 284 274
-62 275 276 295 285
-63 286 276 287 270
-64 309 288 260 305
-65 297 311 262 306
-66 264 313 292 307
-67 308 289 314 271
-68 275 312 294 296
-69 279 301 292 284
-70 286 311 302 294
-71 280 303 282 295
-72 275 312 294 296
-73 290 304 305 296
-74 319 281 306 317
-75 309 320 283 318
-76 320 310 304 285
-77 308 291 317 307
-78 275 276 295 285
-79 298 310 303 315
-80 320 310 304 285
-81 299 301 312 316
-82 253 300 291 273
-83 308 291 317 307
-84 300 314 315 318
-85 319 302 313 316
-86 286 311 302 294
-87 290 304 305 296
-88 253 264 254 274
-89 319 302 313 316
-90 264 313 292 307
-91 300 314 315 318
-92 281 227 271 251
-93 308 289 314 271
-94 299 301 312 316
-95 298 310 303 315
-96 265 293 283 273
-97 286 276 287 270
-98 242 227 228 252
-99 309 320 283 318
-100 242 298 289 272
-101 319 281 306 317
-102 203 225 249 260
-103 299 290 269 249
-104 280 303 282 295
-105 279 301 292 284
-106 243 278 251 262
-107 254 265 267 248
-108 203 204 226 219
-109 297 311 262 306
-110 279 269 250 219
-111 309 288 260 305
-112 202 224 184 239
-113 224 247 280 270
-114 259 261 284 274
-115 258 282 272 263
-116 220 257 225 240
-117 243 223 245 228
-118 213 184 185 196
-119 277 288 293 240
-120 235 247 258 196
-121 297 287 268 239
-122 201 170 183 217
-123 222 201 248 259
-124 266 238 252 263
-125 237 250 261 241
-126 202 236 218 197
-127 220 221 200 204
-128 177 190 170 171
-129 256 278 268 218
-130 177 210 222 237
-131 277 267 246 217
-132 181 193 174 164
-133 199 223 181 238
-134 244 226 216 241
-135 255 266 235 215
-136 178 211 183 195
-137 198 180 185 197
-138 176 167 169 164
-139 234 246 257 195
-140 188 199 167 215
-141 233 245 256 193
-142 165 168 161 175
-143 200 168 179 216
-144 231 255 213 192
-145 210 232 244 191
-146 189 174 207 230
-147 178 171 182 194
-148 166 161 162 163
-149 233 214 236 207
-150 179 191 172 162
-151 221 234 175 208
-152 180 192 173 163
-153 232 190 212 205
-154 209 231 188 206
-155 165 173 206 186
-156 189 212 169 182
-157 211 229 186 208
-158 187 198 166 214
-159 176 209 194 229
-160 187 172 205 230
-161 1 2 148 142
-162 1 4 148 150
-163 1 5 148 152
-164 132 3 6 138
-165 155 2 9 142
-166 1 158 148 10
-167 11 3 138 140
-168 143 12 2 142
-169 13 156 3 138
-170 122 14 7 128
-171 147 7 128 8
-172 4 160 18 150
-173 155 5 9 152
-174 132 146 6 19
-175 2 151 20 142
-176 3 159 138 21
-177 22 7 128 130
-178 15 136 147 8
-179 143 12 4 150
-180 5 137 17 152
-181 132 23 133 6
-182 13 156 147 8
-183 122 14 15 136
-184 24 112 16 118
-185 16 137 17 118
-186 155 157 28 9
-187 158 160 18 10
-188 11 154 29 140
-189 13 156 146 19
-190 7 128 30 153
-191 145 4 150 31
-192 144 5 152 32
-193 33 132 6 141
-194 147 159 8 21
-195 34 15 136 139
-196 35 16 118 120
-197 25 126 137 17
-198 158 137 17 10
-199 11 23 133 140
-200 143 12 27 127
-201 122 123 14 36
-202 24 112 25 126
-203 102 26 37 108
-204 26 27 127 108
-205 160 18 30 153
-206 154 155 29 9
-207 146 149 19 42
-208 157 28 151 20
-209 154 159 29 21
-210 22 145 31 130
-211 157 15 136 28
-212 13 156 30 153
-213 144 16 118 32
-214 158 149 42 10
-215 11 135 140 43
-216 143 12 134 39
-217 44 122 14 131
-218 45 25 126 129
-219 110 46 26 108
-220 27 38 116 127
-221 27 127 151 20
-222 22 123 36 130
-223 23 133 117 41
-224 24 112 47 113
-225 102 37 38 116
-226 134 26 39 108
-227 48 92 40 98
-228 40 117 41 98
-229 157 159 28 21
-230 146 160 18 19
-231 154 144 29 32
-232 145 30 31 153
-233 33 149 42 141
-234 34 139 151 20
-235 35 135 43 120
-236 25 126 149 42
-237 22 125 49 130
-238 23 133 124 51
-239 121 24 112 54
-240 55 38 116 119
-241 134 125 49 39
-242 56 100 40 98
-243 50 106 117 41
-244 134 145 39 31
-245 33 117 41 141
-246 44 34 139 131
-247 35 47 113 120
-248 123 36 107 53
-249 57 102 37 103
-250 110 46 125 49
-251 48 92 50 106
-252 124 40 51 98
-253 88 58 82 52
-254 88 52 107 53
-255 144 135 32 43
-256 33 45 129 141
-257 34 38 116 139
-258 35 59 115 120
-259 123 36 114 61
-260 111 102 37 64
-261 114 125 49 61
-262 50 106 65 109
-263 124 59 115 51
-264 66 88 90 52
-265 60 96 107 53
-266 124 135 51 43
-267 44 107 53 131
-268 121 45 129 54
-269 110 46 57 103
-270 47 113 63 97
-271 67 48 92 93
-272 56 100 59 115
-273 58 60 82 96
-274 88 114 61 52
-275 78 68 72 62
-276 78 62 63 97
-277 44 55 119 131
-278 45 50 106 129
-279 110 46 69 105
-280 47 113 71 104
-281 101 48 92 74
-282 59 71 104 115
-283 99 60 96 75
-284 69 114 61 105
-285 78 80 62 76
-286 70 63 86 97
-287 121 63 97 54
-288 55 111 64 119
-289 56 67 100 93
-290 57 103 73 87
-291 77 58 82 83
-292 66 90 69 105
-293 55 60 96 119
-294 68 70 72 86
-295 78 71 104 62
-296 68 72 73 87
-297 121 54 65 109
-298 56 100 79 95
-299 57 81 103 94
-300 58 91 82 84
-301 69 81 94 105
-302 89 70 85 86
-303 79 71 104 95
-304 80 73 76 87
-305 111 73 64 87
-306 101 74 65 109
-307 66 77 90 83
-308 77 67 93 83
-309 99 111 64 75
-310 79 80 95 76
-311 70 86 65 109
-312 68 81 72 94
-313 66 89 90 85
-314 67 91 93 84
-315 79 91 84 95
-316 89 81 94 85
-317 77 101 83 74
-318 99 91 84 75
-319 89 101 74 85
-320 99 80 75 76
0

**************