C4graphGraph forms for C4 [ 320, 176 ] = SDD(UG(Cmap(160,9){8,4|5}_10))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 320, 176 ] = SDD(UG(Cmap(160,9){8,4|5}_10)).

(I) Following is a form readable by MAGMA:

g:=Graph<320|{ {144, 218}, {149, 223}, {148, 222}, {160, 235}, {145, 220}, {146, 220}, {147, 221}, {134, 214}, {160, 240}, {136, 216}, {135, 215}, {132, 213}, {137, 216}, {128, 210}, {139, 217}, {138, 216}, {129, 211}, {133, 214}, {141, 217}, {142, 218}, {140, 217}, {143, 218}, {142, 219}, {130, 212}, {139, 221}, {136, 222}, {131, 213}, {131, 227}, {130, 227}, {135, 229}, {134, 239}, {132, 238}, {154, 240}, {143, 229}, {141, 231}, {133, 238}, {128, 236}, {140, 224}, {138, 230}, {137, 228}, {157, 237}, {158, 238}, {129, 240}, {145, 227}, {156, 239}, {146, 230}, {159, 235}, {157, 233}, {156, 232}, {153, 237}, {149, 225}, {152, 237}, {159, 234}, {155, 238}, {150, 224}, {151, 225}, {158, 233}, {144, 232}, {148, 236}, {147, 239}, {155, 231}, {154, 230}, {153, 229}, {152, 228}, {151, 234}, {150, 232}, {48, 176}, {101, 229}, {102, 230}, {46, 175}, {64, 193}, {49, 176}, {67, 194}, {45, 175}, {51, 177}, {44, 175}, {50, 177}, {82, 209}, {42, 174}, {65, 197}, {56, 188}, {54, 178}, {74, 206}, {96, 228}, {40, 173}, {55, 178}, {52, 177}, {43, 174}, {59, 189}, {41, 174}, {53, 178}, {83, 212}, {36, 172}, {61, 181}, {60, 180}, {48, 184}, {98, 234}, {34, 171}, {58, 179}, {37, 172}, {33, 171}, {63, 181}, {57, 179}, {50, 184}, {39, 173}, {32, 171}, {106, 225}, {62, 181}, {56, 179}, {38, 173}, {72, 195}, {78, 197}, {53, 185}, {80, 220}, {73, 196}, {100, 234}, {35, 172}, {59, 180}, {75, 196}, {94, 209}, {32, 176}, {68, 212}, {77, 221}, {35, 178}, {124, 237}, {38, 180}, {84, 199}, {119, 228}, {79, 219}, {126, 235}, {90, 204}, {91, 205}, {76, 219}, {123, 236}, {117, 226}, {81, 198}, {47, 183}, {104, 240}, {44, 182}, {115, 233}, {69, 223}, {85, 207}, {41, 181}, {66, 222}, {87, 203}, {93, 192}, {127, 226}, {125, 224}, {95, 193}, {47, 176}, {94, 193}, {1, 161}, {98, 194}, {99, 195}, {96, 193}, {118, 215}, {101, 196}, {103, 198}, {3, 161}, {113, 211}, {102, 196}, {103, 197}, {1, 162}, {2, 161}, {97, 194}, {3, 167}, {116, 208}, {114, 214}, {110, 202}, {6, 162}, {4, 161}, {122, 223}, {7, 162}, {2, 164}, {121, 223}, {120, 222}, {110, 200}, {14, 168}, {5, 163}, {5, 162}, {112, 215}, {111, 200}, {100, 195}, {12, 164}, {71, 239}, {10, 163}, {13, 164}, {6, 172}, {109, 199}, {15, 165}, {9, 163}, {8, 163}, {108, 199}, {14, 165}, {106, 198}, {107, 199}, {8, 165}, {127, 210}, {125, 208}, {18, 191}, {11, 166}, {70, 235}, {104, 197}, {4, 170}, {126, 208}, {97, 207}, {11, 164}, {105, 198}, {10, 186}, {24, 168}, {99, 211}, {15, 190}, {25, 168}, {22, 167}, {86, 231}, {21, 167}, {29, 175}, {27, 169}, {20, 167}, {124, 207}, {26, 169}, {18, 166}, {122, 206}, {121, 205}, {30, 170}, {26, 174}, {92, 232}, {16, 165}, {123, 206}, {120, 205}, {31, 170}, {28, 169}, {19, 166}, {89, 236}, {7, 177}, {13, 187}, {17, 166}, {29, 170}, {12, 180}, {113, 201}, {112, 200}, {108, 212}, {17, 169}, {107, 210}, {115, 202}, {9, 179}, {118, 204}, {111, 213}, {23, 173}, {109, 214}, {119, 204}, {114, 201}, {105, 213}, {95, 226}, {93, 227}, {117, 203}, {20, 171}, {116, 203}, {23, 168}, {88, 231}, {25, 217}, {31, 219}, {28, 218}, {46, 233}, {45, 225}, {30, 207}, {46, 255}, {45, 255}, {44, 255}, {42, 254}, {21, 192}, {43, 254}, {40, 253}, {27, 206}, {24, 205}, {41, 254}, {16, 200}, {58, 226}, {36, 252}, {34, 251}, {37, 252}, {19, 201}, {39, 253}, {33, 251}, {32, 251}, {38, 253}, {22, 202}, {35, 252}, {63, 224}, {24, 248}, {43, 203}, {22, 247}, {25, 248}, {21, 247}, {29, 255}, {27, 249}, {20, 247}, {49, 210}, {26, 249}, {92, 191}, {18, 246}, {40, 204}, {30, 250}, {26, 254}, {91, 191}, {16, 245}, {39, 194}, {31, 250}, {28, 249}, {19, 246}, {90, 191}, {88, 190}, {17, 246}, {29, 250}, {89, 190}, {17, 249}, {85, 189}, {42, 195}, {84, 189}, {87, 190}, {23, 253}, {80, 187}, {86, 189}, {81, 188}, {57, 215}, {82, 188}, {20, 251}, {62, 209}, {60, 211}, {55, 216}, {23, 248}, {83, 188}, {1, 241}, {73, 185}, {33, 208}, {72, 185}, {75, 186}, {3, 241}, {69, 183}, {1, 242}, {2, 241}, {68, 183}, {74, 185}, {3, 247}, {67, 183}, {66, 182}, {6, 242}, {79, 187}, {4, 241}, {36, 209}, {7, 242}, {78, 187}, {2, 244}, {64, 182}, {54, 192}, {14, 248}, {5, 243}, {76, 186}, {5, 242}, {65, 182}, {77, 186}, {12, 244}, {37, 221}, {10, 243}, {13, 244}, {6, 252}, {51, 201}, {15, 245}, {9, 243}, {8, 243}, {14, 245}, {8, 245}, {61, 192}, {11, 246}, {4, 250}, {52, 202}, {34, 220}, {70, 184}, {11, 244}, {71, 184}, {10, 266}, {15, 270}, {33, 288}, {30, 287}, {21, 272}, {36, 289}, {27, 286}, {24, 285}, {7, 257}, {13, 267}, {12, 260}, {58, 306}, {37, 301}, {16, 280}, {9, 259}, {19, 281}, {22, 282}, {34, 300}, {63, 304}, {49, 290}, {46, 313}, {45, 305}, {18, 271}, {57, 295}, {55, 296}, {62, 289}, {60, 291}, {32, 256}, {35, 258}, {38, 260}, {54, 272}, {47, 263}, {104, 320}, {44, 262}, {51, 281}, {41, 261}, {61, 272}, {52, 282}, {47, 256}, {25, 297}, {48, 256}, {43, 283}, {49, 256}, {51, 257}, {50, 257}, {31, 299}, {56, 268}, {54, 258}, {40, 284}, {39, 274}, {55, 258}, {52, 257}, {28, 298}, {59, 269}, {53, 258}, {48, 264}, {61, 261}, {60, 260}, {42, 275}, {58, 259}, {50, 264}, {63, 261}, {57, 259}, {56, 259}, {62, 261}, {53, 265}, {59, 260}, {73, 265}, {99, 291}, {72, 265}, {124, 317}, {75, 266}, {69, 263}, {68, 263}, {119, 308}, {74, 265}, {84, 279}, {66, 262}, {67, 263}, {79, 267}, {78, 267}, {126, 315}, {64, 262}, {76, 266}, {90, 284}, {91, 285}, {65, 262}, {123, 316}, {117, 306}, {77, 266}, {81, 278}, {108, 292}, {107, 290}, {85, 287}, {115, 313}, {111, 293}, {109, 294}, {87, 283}, {105, 293}, {93, 272}, {127, 306}, {125, 304}, {70, 264}, {95, 273}, {71, 264}, {94, 273}, {101, 309}, {102, 310}, {64, 273}, {118, 295}, {67, 274}, {113, 291}, {92, 271}, {65, 277}, {116, 288}, {114, 294}, {74, 286}, {91, 271}, {96, 308}, {90, 271}, {122, 303}, {88, 270}, {121, 303}, {120, 302}, {89, 270}, {112, 295}, {85, 269}, {98, 314}, {84, 269}, {87, 270}, {72, 275}, {106, 305}, {78, 277}, {80, 267}, {86, 269}, {73, 276}, {127, 290}, {125, 288}, {81, 268}, {82, 268}, {126, 288}, {100, 314}, {75, 276}, {83, 268}, {68, 292}, {77, 301}, {86, 311}, {124, 287}, {79, 299}, {122, 286}, {121, 285}, {92, 312}, {89, 316}, {123, 286}, {120, 285}, {76, 299}, {112, 280}, {113, 281}, {115, 282}, {69, 303}, {118, 284}, {114, 281}, {119, 284}, {66, 302}, {95, 306}, {93, 307}, {117, 283}, {88, 311}, {116, 283}, {98, 274}, {99, 275}, {96, 273}, {101, 276}, {103, 278}, {102, 276}, {103, 277}, {82, 289}, {97, 274}, {110, 282}, {110, 280}, {83, 292}, {111, 280}, {100, 275}, {71, 319}, {109, 279}, {108, 279}, {80, 300}, {107, 279}, {106, 278}, {70, 315}, {104, 277}, {97, 287}, {94, 289}, {105, 278}, {160, 315}, {134, 294}, {158, 318}, {157, 317}, {136, 296}, {135, 295}, {132, 293}, {137, 296}, {128, 290}, {145, 307}, {139, 297}, {138, 296}, {129, 291}, {133, 294}, {156, 319}, {141, 297}, {159, 315}, {157, 313}, {156, 312}, {153, 317}, {149, 305}, {146, 310}, {142, 298}, {140, 297}, {159, 314}, {155, 318}, {152, 317}, {143, 298}, {142, 299}, {130, 292}, {151, 305}, {150, 304}, {139, 301}, {136, 302}, {131, 293}, {158, 313}, {144, 312}, {148, 316}, {147, 319}, {155, 311}, {154, 310}, {153, 309}, {152, 308}, {151, 314}, {150, 312}, {131, 307}, {130, 307}, {135, 309}, {134, 319}, {132, 318}, {149, 303}, {148, 302}, {144, 298}, {143, 309}, {141, 311}, {133, 318}, {128, 316}, {140, 304}, {138, 310}, {137, 308}, {145, 300}, {146, 300}, {147, 301}, {129, 320}, {154, 320}, {160, 320} }>;

(II) A more general form is to represent the graph as the orbit of {144, 218} under the group generated by the following permutations:

a: (170, 250)
b: (192, 272)
c: (233, 313)
d: (202, 282)
e: (178, 258)
f: (197, 277)
g: (220, 300)
h: (230, 310)
m: (179, 259)
n1: (194, 274)
a1: (191, 271)
b1: (225, 305)
c1: (166, 246)
d1: (187, 267)
e1: (184, 264)
f1: (221, 301)
g1: (189, 269)
h1: (168, 248)
m1: (167, 247)
n2: (165, 245)
a2: (223, 303)
b2: (229, 309)
c2: (198, 278)
d2: (203, 283)
e2: (236, 316)
f2: (163, 243)
g2: (186, 266)
h2: (162, 242)
m2: (175, 255)
n3: (222, 302)
a3: (232, 312)
b3: (199, 279)
c3: (227, 307)
d3: (196, 276)
e3: (212, 292)
f3: (214, 294)
g3: (172, 252)
h3: (188, 268)
m3: (237, 317)
n4: (185, 265)
a4: (206, 286)
b4: (2, 6)(3, 7)(4, 5)(8, 29)(9, 30)(10, 31)(11, 35)(12, 36)(13, 37)(14, 44)(15, 45)(16, 46)(17, 53)(18, 55)(19, 54)(20, 50)(21, 51)(22, 52)(23, 64)(24, 66)(25, 65)(26, 72)(27, 74)(28, 73)(32, 48)(33, 70)(34, 71)(38, 94)(39, 95)(40, 96)(41, 99)(43, 100)(47, 49)(56, 85)(57, 124)(58, 97)(59, 82)(60, 62)(61, 113)(63, 129)(67, 127)(68, 107)(69, 128)(75, 142)(77, 79)(78, 139)(80, 147)(81, 86)(83, 84)(87, 151)(88, 106)(89, 149)(90, 137)(91, 136)(92, 138)(93, 114)(98, 117)(101, 143)(102, 144)(103, 141)(104, 140)(105, 155)(109, 130)(110, 115)(111, 158)(112, 157)(116, 159)(118, 152)(121, 148)(122, 123)(125, 160)(131, 133)(134, 145)(135, 153)(146, 156)(150, 154)(161, 162)(163, 170)(164, 172)(165, 175)(166, 178)(167, 177)(168, 182)(169, 185)(171, 184)(173, 193)(174, 195)(179, 207)(180, 209)(181, 211)(183, 210)(186, 219)(187, 221)(188, 189)(190, 225)(191, 216)(192, 201)(194, 226)(196, 218)(197, 217)(198, 231)(199, 212)(200, 233)(203, 234)(204, 228)(205, 222)(208, 235)(213, 238)(214, 227)(215, 237)(220, 239)(223, 236)(224, 240)(230, 232)(241, 242)(243, 250)(244, 252)(245, 255)(246, 258)(247, 257)(248, 262)(249, 265)(251, 264)(253, 273)(254, 275)(259, 287)(260, 289)(261, 291)(263, 290)(266, 299)(267, 301)(268, 269)(270, 305)(271, 296)(272, 281)(274, 306)(276, 298)(277, 297)(278, 311)(279, 292)(280, 313)(283, 314)(284, 308)(285, 302)(288, 315)(293, 318)(294, 307)(295, 317)(300, 319)(303, 316)(304, 320)(310, 312)
c4: (209, 289)
d4: (1, 2, 3, 4)(5, 11, 20, 29)(6, 12, 21, 30)(7, 13, 22, 31)(8, 17, 32, 44)(9, 18, 33, 45)(10, 19, 34, 46)(14, 26, 47, 64)(15, 27, 49, 66)(16, 28, 48, 65)(23, 41, 67, 94)(24, 43, 69, 95)(25, 42, 68, 96)(35, 59, 54, 85)(36, 38, 61, 97)(37, 60, 93, 124)(39, 62)(40, 63, 98, 82)(50, 78, 110, 142)(51, 80, 115, 76)(52, 79)(53, 84, 55, 86)(56, 90, 125, 151)(57, 92, 126, 106)(58, 91, 116, 149)(70, 103, 112, 144)(71, 104, 111, 143)(72, 108, 137, 141)(73, 109, 138, 155)(74, 107, 136, 88)(75, 114, 146, 158)(77, 113, 145, 157)(81, 118, 150, 159)(83, 119, 140, 100)(87, 122, 127, 120)(89, 123, 128, 148)(99, 130, 152, 139)(101, 134, 154, 132)(102, 133)(105, 135, 156, 160)(117, 121)(129, 131, 153, 147)(162, 164, 167, 170)(163, 166, 171, 175)(165, 169, 176, 182)(168, 174, 183, 193)(172, 180, 192, 207)(173, 181, 194, 209)(177, 187, 202, 219)(178, 189)(179, 191, 208, 225)(184, 197, 200, 218)(185, 199, 216, 231)(186, 201, 220, 233)(188, 204, 224, 234)(190, 206, 210, 222)(195, 212, 228, 217)(196, 214, 230, 238)(198, 215, 232, 235)(203, 223, 226, 205)(211, 227, 237, 221)(213, 229, 239, 240)(242, 244, 247, 250)(243, 246, 251, 255)(245, 249, 256, 262)(248, 254, 263, 273)(252, 260, 272, 287)(253, 261, 274, 289)(257, 267, 282, 299)(258, 269)(259, 271, 288, 305)(264, 277, 280, 298)(265, 279, 296, 311)(266, 281, 300, 313)(268, 284, 304, 314)(270, 286, 290, 302)(275, 292, 308, 297)(276, 294, 310, 318)(278, 295, 312, 315)(283, 303, 306, 285)(291, 307, 317, 301)(293, 309, 319, 320)
e4: (182, 262)
f4: (176, 256)
g4: (219, 299)
h4: (207, 287)
m4: (240, 320)
n5: (239, 319)
a5: (208, 288)
b5: (180, 260)
c5: (200, 280)
d5: (231, 311)
e5: (174, 254)
f5: (211, 291)
g5: (190, 270)
h5: (171, 251)
m5: (215, 295)
n6: (161, 241)
a6: (177, 257)
b6: (228, 308)
c6: (195, 275)
d6: (201, 281)
e6: (234, 314)
f6: (205, 285)
g6: (238, 318)
h6: (210, 290)
m6: (181, 261)
n7: (218, 298)
a7: (235, 315)
b7: (173, 253)
c7: (204, 284)
d7: (169, 249)
e7: (224, 304)
f7: (216, 296)
g7: (164, 244)
h7: (226, 306)
m7: (193, 273)
n8: (213, 293)
a8: (217, 297)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 320, 176 ]
320
-1 242 161 162 241
-2 244 161 164 241
-3 167 247 161 241
-4 170 161 250 241
-5 242 243 162 163
-6 242 172 162 252
-7 242 177 257 162
-8 165 243 245 163
-9 243 179 259 163
-10 243 266 163 186
-11 166 244 246 164
-12 244 180 260 164
-13 187 244 267 164
-14 165 168 245 248
-15 165 190 245 270
-16 165 200 245 280
-17 166 169 246 249
-18 166 191 246 271
-19 166 201 246 281
-20 167 247 171 251
-21 167 192 247 272
-22 167 202 247 282
-23 253 168 248 173
-24 168 248 205 285
-25 297 168 248 217
-26 254 169 249 174
-27 286 169 249 206
-28 298 169 249 218
-29 255 170 250 175
-30 287 170 250 207
-31 299 170 250 219
-32 176 256 171 251
-33 288 171 251 208
-34 220 300 171 251
-35 178 258 172 252
-36 209 289 172 252
-37 221 301 172 252
-38 253 180 260 173
-39 253 194 173 274
-40 253 204 173 284
-41 254 181 261 174
-42 275 254 195 174
-43 254 203 283 174
-44 255 182 262 175
-45 255 225 305 175
-46 233 255 313 175
-47 176 256 183 263
-48 176 264 256 184
-49 176 210 256 290
-50 264 177 257 184
-51 177 201 257 281
-52 177 202 257 282
-53 265 178 258 185
-54 178 192 258 272
-55 178 258 216 296
-56 188 179 268 259
-57 179 215 259 295
-58 179 226 259 306
-59 189 180 269 260
-60 211 180 291 260
-61 181 192 261 272
-62 209 289 181 261
-63 224 181 304 261
-64 182 193 262 273
-65 277 182 262 197
-66 222 302 182 262
-67 183 194 263 274
-68 212 292 183 263
-69 223 303 183 263
-70 264 235 315 184
-71 264 319 184 239
-72 275 265 195 185
-73 265 276 185 196
-74 286 265 206 185
-75 276 266 196 186
-76 266 299 186 219
-77 221 266 301 186
-78 187 277 267 197
-79 187 299 267 219
-80 187 220 267 300
-81 198 188 278 268
-82 209 188 289 268
-83 188 212 268 292
-84 199 189 279 269
-85 287 189 269 207
-86 231 189 311 269
-87 190 203 270 283
-88 231 190 311 270
-89 190 236 270 316
-90 191 204 271 284
-91 191 205 271 285
-92 232 191 312 271
-93 192 227 272 307
-94 209 289 193 273
-95 193 226 273 306
-96 308 193 228 273
-97 287 194 207 274
-98 234 314 194 274
-99 275 211 291 195
-100 275 234 314 195
-101 276 309 196 229
-102 276 310 196 230
-103 198 277 278 197
-104 320 277 240 197
-105 198 278 213 293
-106 198 278 225 305
-107 199 210 279 290
-108 199 212 279 292
-109 199 279 214 294
-110 200 202 280 282
-111 200 213 280 293
-112 200 280 215 295
-113 211 201 291 281
-114 201 214 281 294
-115 233 202 313 282
-116 288 203 283 208
-117 203 226 283 306
-118 204 215 284 295
-119 308 204 228 284
-120 222 302 205 285
-121 223 303 205 285
-122 286 223 303 206
-123 286 236 206 316
-124 287 237 207 317
-125 288 224 304 208
-126 288 235 315 208
-127 210 290 226 306
-128 210 290 236 316
-129 320 211 291 240
-130 212 292 227 307
-131 213 227 293 307
-132 213 238 293 318
-133 214 238 294 318
-134 319 214 239 294
-135 309 215 229 295
-136 222 302 216 296
-137 308 216 228 296
-138 310 216 230 296
-139 297 221 301 217
-140 297 224 304 217
-141 231 297 311 217
-142 298 299 218 219
-143 298 309 218 229
-144 232 298 312 218
-145 220 300 227 307
-146 220 310 300 230
-147 319 221 301 239
-148 222 236 302 316
-149 223 225 303 305
-150 232 224 312 304
-151 234 225 314 305
-152 308 237 228 317
-153 309 237 229 317
-154 320 310 240 230
-155 231 311 238 318
-156 319 232 312 239
-157 233 313 237 317
-158 233 313 238 318
-159 234 235 314 315
-160 320 235 315 240
-161 1 2 3 4
-162 1 5 6 7
-163 5 8 9 10
-164 11 12 2 13
-165 14 15 16 8
-166 11 17 18 19
-167 22 3 20 21
-168 23 24 14 25
-169 26 27 17 28
-170 4 29 30 31
-171 33 34 20 32
-172 35 36 37 6
-173 23 38 39 40
-174 26 41 42 43
-175 44 45 46 29
-176 47 48 49 32
-177 50 7 51 52
-178 55 35 53 54
-179 56 57 58 9
-180 12 59 38 60
-181 61 62 41 63
-182 44 66 64 65
-183 67 68 47 69
-184 48 70 71 50
-185 72 73 74 53
-186 77 75 10 76
-187 78 13 79 80
-188 56 81 82 83
-189 59 84 85 86
-190 88 89 15 87
-191 90 91 92 18
-192 93 61 21 54
-193 94 95 96 64
-194 67 39 97 98
-195 99 100 72 42
-196 101 102 73 75
-197 78 103 104 65
-198 81 103 105 106
-199 84 107 108 109
-200 110 111 112 16
-201 113 114 51 19
-202 22 110 115 52
-203 116 117 43 87
-204 90 40 118 119
-205 121 24 91 120
-206 122 123 27 74
-207 124 30 85 97
-208 33 125 126 116
-209 36 82 94 62
-210 49 127 128 107
-211 99 113 60 129
-212 68 83 108 130
-213 132 111 105 131
-214 133 134 114 109
-215 57 112 135 118
-216 55 136 137 138
-217 25 139 140 141
-218 143 144 28 142
-219 79 31 76 142
-220 34 145 80 146
-221 77 37 147 139
-222 66 136 148 120
-223 121 122 69 149
-224 125 150 63 140
-225 45 149 106 151
-226 58 127 95 117
-227 145 93 130 131
-228 137 96 119 152
-229 143 101 135 153
-230 154 102 146 138
-231 88 155 86 141
-232 144 156 92 150
-233 46 157 158 115
-234 100 159 151 98
-235 70 126 159 160
-236 89 123 148 128
-237 124 157 152 153
-238 132 133 155 158
-239 134 156 147 71
-240 154 104 160 129
-241 1 2 3 4
-242 1 5 6 7
-243 5 8 9 10
-244 11 12 2 13
-245 14 15 16 8
-246 11 17 18 19
-247 22 3 20 21
-248 23 24 14 25
-249 26 27 17 28
-250 4 29 30 31
-251 33 34 20 32
-252 35 36 37 6
-253 23 38 39 40
-254 26 41 42 43
-255 44 45 46 29
-256 47 48 49 32
-257 50 7 51 52
-258 55 35 53 54
-259 56 57 58 9
-260 12 59 38 60
-261 61 62 41 63
-262 44 66 64 65
-263 67 68 47 69
-264 48 70 71 50
-265 72 73 74 53
-266 77 75 10 76
-267 78 13 79 80
-268 56 81 82 83
-269 59 84 85 86
-270 88 89 15 87
-271 90 91 92 18
-272 93 61 21 54
-273 94 95 96 64
-274 67 39 97 98
-275 99 100 72 42
-276 101 102 73 75
-277 78 103 104 65
-278 81 103 105 106
-279 84 107 108 109
-280 110 111 112 16
-281 113 114 51 19
-282 22 110 115 52
-283 116 117 43 87
-284 90 40 118 119
-285 121 24 91 120
-286 122 123 27 74
-287 124 30 85 97
-288 33 125 126 116
-289 36 82 94 62
-290 49 127 128 107
-291 99 113 60 129
-292 68 83 108 130
-293 132 111 105 131
-294 133 134 114 109
-295 57 112 135 118
-296 55 136 137 138
-297 25 139 140 141
-298 143 144 28 142
-299 79 31 76 142
-300 34 145 80 146
-301 77 37 147 139
-302 66 136 148 120
-303 121 122 69 149
-304 125 150 63 140
-305 45 149 106 151
-306 58 127 95 117
-307 145 93 130 131
-308 137 96 119 152
-309 143 101 135 153
-310 154 102 146 138
-311 88 155 86 141
-312 144 156 92 150
-313 46 157 158 115
-314 100 159 151 98
-315 70 126 159 160
-316 89 123 148 128
-317 124 157 152 153
-318 132 133 155 158
-319 134 156 147 71
-320 154 104 160 129
0

**************