[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 182 ] =
BGCG(KE_40(1,19,12,23,9);K1;{8,9}).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {144, 177}, {145, 176}, {142, 169}, {154, 189}, {153, 177}, {154,
176}, {132, 168}, {150, 186}, {159, 177}, {128, 177}, {138, 187}, {130, 176},
{157, 168}, {139, 189}, {141, 186}, {152, 161}, {139, 176}, {148, 168}, {135,
186}, {148, 171}, {143, 207}, {146, 211}, {135, 196}, {144, 212}, {156, 216},
{149, 209}, {146, 214}, {136, 206}, {151, 208}, {133, 204}, {140, 195}, {131,
211}, {137, 217}, {141, 220}, {158, 207}, {135, 212}, {129, 212}, {141, 216},
{152, 206}, {148, 204}, {137, 211}, {138, 235}, {135, 229}, {144, 244}, {160,
196}, {149, 241}, {142, 232}, {134, 237}, {150, 253}, {130, 238}, {154, 247},
{132, 234}, {145, 254}, {154, 245}, {153, 235}, {159, 237}, {150, 229}, {129,
245}, {160, 212}, {129, 244}, {157, 232}, {155, 238}, {129, 247}, {134, 241},
{157, 234}, {147, 235}, {150, 237}, {130, 254}, {138, 247}, {57, 185}, {125,
253}, {72, 201}, {62, 188}, {53, 182}, {98, 225}, {49, 181}, {50, 183}, {58,
191}, {84, 209}, {88, 221}, {45, 171}, {86, 208}, {117, 242}, {38, 174}, {112,
248}, {67, 203}, {82, 218}, {100, 236}, {36, 173}, {75, 194}, {91, 210}, {37,
174}, {46, 165}, {110, 229}, {72, 196}, {123, 247}, {112, 252}, {89, 213}, {40,
165}, {69, 200}, {46, 163}, {35, 173}, {41, 167}, {78, 192}, {41, 166}, {74,
197}, {84, 219}, {49, 161}, {125, 237}, {113, 225}, {93, 204}, {122, 235}, {78,
220}, {117, 231}, {105, 251}, {42, 185}, {74, 217}, {86, 197}, {43, 191}, {102,
242}, {49, 164}, {118, 227}, {115, 230}, {83, 198}, {99, 246}, {85, 195}, {60,
171}, {92, 203}, {61, 165}, {81, 200}, {53, 175}, {104, 244}, {36, 185}, {115,
238}, {46, 179}, {84, 201}, {61, 163}, {97, 255}, {39, 184}, {117, 234}, {85,
202}, {102, 249}, {20, 180}, {24, 184}, {107, 203}, {108, 204}, {21, 180}, {90,
251}, {5, 167}, {126, 220}, {12, 174}, {84, 246}, {13, 174}, {122, 217}, {76,
239}, {8, 172}, {109, 201}, {110, 202}, {73, 236}, {98, 199}, {11, 173}, {116,
210}, {65, 231}, {12, 170}, {10, 173}, {114, 213}, {79, 232}, {100, 195}, {73,
225}, {78, 230}, {96, 200}, {103, 207}, {122, 211}, {29, 183}, {108, 198}, {111,
197}, {7, 172}, {87, 252}, {14, 162}, {116, 216}, {21, 185}, {16, 188}, {82,
255}, {124, 209}, {89, 244}, {16, 190}, {126, 208}, {87, 249}, {17, 190}, {121,
214}, {87, 248}, {67, 243}, {72, 248}, {80, 224}, {5, 180}, {127, 206}, {27,
170}, {6, 180}, {75, 249}, {4, 183}, {73, 250}, {20, 167}, {90, 238}, {71, 241},
{113, 199}, {92, 234}, {66, 245}, {121, 206}, {80, 231}, {99, 219}, {85, 236},
{118, 207}, {22, 172}, {65, 251}, {95, 229}, {103, 221}, {23, 172}, {92, 231},
{97, 218}, {2, 190}, {25, 165}, {90, 230}, {109, 209}, {1, 188}, {67, 254},
{101, 216}, {93, 227}, {125, 195}, {1, 190}, {29, 162}, {111, 208}, {31, 223},
{123, 187}, {118, 182}, {58, 250}, {101, 164}, {107, 170}, {34, 224}, {62, 253},
{9, 205}, {126, 186}, {3, 198}, {119, 178}, {38, 227}, {27, 222}, {51, 245},
{101, 163}, {105, 175}, {10, 205}, {114, 181}, {52, 243}, {19, 219}, {50, 251},
{23, 221}, {28, 215}, {50, 249}, {14, 194}, {27, 215}, {106, 166}, {59, 246},
{15, 193}, {5, 202}, {119, 184}, {114, 189}, {102, 169}, {109, 162}, {104, 184},
{123, 171}, {116, 164}, {16, 193}, {17, 192}, {98, 179}, {110, 191}, {47, 253},
{123, 168}, {3, 215}, {42, 254}, {30, 202}, {25, 205}, {2, 215}, {24, 205}, {18,
199}, {8, 221}, {127, 169}, {37, 242}, {120, 175}, {55, 224}, {47, 248}, {7,
223}, {6, 223}, {63, 230}, {11, 210}, {98, 187}, {28, 198}, {44, 246}, {104,
178}, {58, 225}, {2, 222}, {51, 239}, {48, 236}, {32, 252}, {9, 213}, {31, 193},
{127, 161}, {54, 232}, {99, 189}, {4, 219}, {46, 241}, {37, 250}, {30, 193}, {4,
228}, {32, 192}, {15, 239}, {83, 179}, {95, 191}, {5, 228}, {64, 161}, {63,
222}, {11, 233}, {59, 217}, {18, 240}, {19, 240}, {63, 220}, {57, 218}, {22,
242}, {66, 166}, {64, 164}, {44, 200}, {12, 233}, {66, 167}, {39, 194}, {33,
199}, {83, 187}, {68, 175}, {93, 182}, {14, 226}, {58, 214}, {31, 243}, {89,
181}, {13, 227}, {48, 222}, {17, 255}, {13, 226}, {42, 218}, {57, 201}, {30,
239}, {77, 188}, {27, 233}, {64, 178}, {3, 240}, {26, 233}, {19, 224}, {4, 240},
{71, 179}, {6, 243}, {53, 192}, {86, 163}, {12, 250}, {65, 183}, {36, 210}, {92,
170}, {34, 213}, {81, 166}, {78, 182}, {29, 228}, {30, 228}, {7, 252}, {94,
162}, {2, 255}, {57, 196}, {43, 214}, {79, 178}, {28, 226}, {60, 194}, {59,
197}, {87, 169}, {29, 226}, {74, 181}, {52, 203}, {32, 223}, {17, 272}, {45,
300}, {35, 290}, {18, 272}, {37, 295}, {10, 265}, {36, 295}, {31, 284}, {44,
299}, {1, 264}, {55, 318}, {1, 267}, {74, 320}, {59, 305}, {15, 261}, {54, 317},
{16, 284}, {62, 306}, {53, 313}, {45, 289}, {26, 279}, {34, 303}, {33, 303},
{33, 302}, {51, 316}, {20, 260}, {61, 301}, {56, 296}, {25, 265}, {26, 267},
{25, 267}, {26, 264}, {52, 288}, {38, 305}, {52, 291}, {43, 307}, {54, 302},
{20, 269}, {14, 276}, {56, 290}, {51, 297}, {15, 276}, {11, 279}, {38, 314},
{39, 314}, {47, 306}, {44, 305}, {19, 269}, {6, 294}, {55, 278}, {24, 314}, {40,
267}, {22, 307}, {41, 268}, {8, 302}, {23, 305}, {9, 303}, {8, 303}, {35, 260},
{9, 289}, {10, 290}, {18, 312}, {43, 257}, {61, 273}, {23, 314}, {40, 261}, {35,
269}, {60, 274}, {48, 286}, {34, 269}, {55, 280}, {41, 262}, {32, 272}, {22,
295}, {63, 270}, {54, 263}, {50, 259}, {33, 272}, {21, 295}, {21, 294}, {39,
276}, {7, 307}, {56, 268}, {60, 266}, {47, 279}, {24, 289}, {3, 312}, {40, 276},
{48, 270}, {62, 256}, {56, 262}, {42, 277}, {45, 274}, {114, 306}, {75, 266},
{88, 282}, {110, 300}, {101, 294}, {120, 315}, {119, 308}, {82, 278}, {96, 292},
{68, 257}, {122, 319}, {120, 318}, {111, 296}, {75, 259}, {79, 263}, {91, 275},
{96, 296}, {104, 288}, {118, 316}, {94, 277}, {125, 310}, {121, 309}, {13, 320},
{77, 256}, {126, 304}, {70, 278}, {109, 317}, {93, 268}, {99, 306}, {83, 257},
{105, 315}, {90, 265}, {107, 319}, {67, 277}, {88, 270}, {73, 286}, {81, 264},
{95, 261}, {103, 316}, {28, 320}, {113, 301}, {91, 263}, {76, 273}, {121, 292},
{116, 297}, {70, 280}, {72, 279}, {100, 260}, {105, 265}, {108, 268}, {76, 301},
{124, 285}, {95, 318}, {106, 264}, {119, 277}, {112, 274}, {94, 317}, {65, 293},
{71, 290}, {76, 297}, {102, 256}, {127, 281}, {70, 289}, {103, 270}, {70, 300},
{94, 308}, {69, 302}, {113, 282}, {112, 283}, {77, 288}, {124, 273}, {82, 319},
{106, 263}, {108, 257}, {69, 299}, {77, 291}, {80, 318}, {100, 266}, {71, 296},
{86, 294}, {49, 320}, {91, 297}, {97, 274}, {124, 271}, {111, 284}, {80, 293},
{117, 256}, {81, 292}, {88, 301}, {68, 307}, {115, 260}, {79, 312}, {64, 312},
{69, 317}, {85, 300}, {115, 266}, {89, 288}, {106, 275}, {97, 283}, {96, 284},
{68, 313}, {120, 261}, {107, 278}, {66, 316}, {146, 275}, {158, 287}, {140,
271}, {153, 282}, {152, 283}, {132, 258}, {158, 280}, {158, 281}, {138, 259},
{151, 286}, {148, 285}, {149, 287}, {141, 258}, {131, 275}, {143, 287}, {147,
258}, {137, 283}, {155, 271}, {136, 286}, {144, 262}, {139, 285}, {142, 281},
{160, 311}, {133, 285}, {134, 287}, {159, 262}, {128, 282}, {153, 259}, {149,
271}, {139, 273}, {160, 315}, {133, 281}, {133, 280}, {156, 258}, {151, 311},
{137, 298}, {128, 293}, {156, 313}, {143, 298}, {145, 311}, {146, 309}, {151,
304}, {128, 298}, {156, 310}, {145, 315}, {143, 293}, {159, 308}, {136, 292},
{147, 319}, {157, 304}, {155, 309}, {132, 299}, {140, 291}, {134, 308}, {152,
298}, {131, 310}, {130, 309}, {147, 299}, {155, 291}, {131, 313}, {140, 310},
{142, 304}, {136, 311} }>;
(II) A more general form is to represent the graph as the orbit of {144, 177}
under the group generated by the following permutations:
a: (2, 62)(3, 125)(4, 85)(7, 67)(8, 130)(9, 90)(12, 72)(13, 135)(14, 95)(17,
77)(18, 140)(19, 100)(22, 42)(23, 145)(24, 105)(27, 47)(28, 150)(29, 110)(32,
52)(33, 155)(34, 115)(37, 57)(38, 160)(39, 120)(43, 94)(44, 136)(45, 65)(48,
99)(49, 141)(50, 70)(53, 104)(54, 146)(55, 75)(58, 109)(59, 151)(60, 80)(63,
114)(64, 156)(68, 119)(69, 121)(73, 84)(74, 126)(78, 89)(79, 131)(82, 102)(83,
134)(87, 107)(88, 139)(92, 112)(93, 144)(97, 117)(98, 149)(103, 154)(108,
159)(113, 124)(118, 129)(122, 142)(123, 143)(127, 147)(128, 148)(132, 152)(133,
153)(137, 157)(138, 158)(161, 258)(162, 191)(164, 216)(168, 298)(169, 319)(170,
248)(171, 293)(172, 254)(174, 196)(175, 184)(176, 221)(177, 204)(178, 313)(179,
241)(181, 220)(182, 244)(183, 300)(185, 295)(186, 320)(187, 287)(188, 190)(189,
270)(192, 288)(194, 318)(195, 240)(197, 208)(198, 237)(199, 271)(200, 292)(201,
250)(202, 228)(203, 252)(205, 265)(206, 299)(207, 247)(209, 225)(211, 232)(212,
227)(213, 230)(214, 317)(215, 253)(217, 304)(218, 242)(219, 236)(222, 306)(223,
243)(224, 266)(226, 229)(231, 274)(233, 279)(234, 283)(235, 281)(238, 303)(245,
316)(246, 286)(249, 278)(251, 289)(255, 256)(257, 308)(259, 280)(260, 269)(261,
276)(262, 268)(263, 275)(272, 291)(273, 301)(277, 307)(282, 285)(302, 309)(305,
311)(310, 312)(314, 315) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 40)(3, 39)(4, 38)(5, 37)(6, 36)(7, 35)(8, 34)(9, 33)(10, 32)(11, 31)(12,
30)(13, 29)(14, 28)(15, 27)(16, 26)(17, 25)(18, 24)(19, 23)(20, 22)(41, 102)(42,
101)(43, 100)(44, 99)(45, 98)(46, 97)(47, 96)(48, 95)(49, 94)(50, 93)(51,
92)(52, 91)(53, 90)(54, 89)(55, 88)(56, 87)(57, 86)(58, 85)(59, 84)(60, 83)(61,
82)(62, 81)(63, 120)(64, 119)(65, 118)(66, 117)(67, 116)(68, 115)(69, 114)(70,
113)(71, 112)(72, 111)(73, 110)(74, 109)(75, 108)(76, 107)(77, 106)(78, 105)(79,
104)(80, 103)(121, 125)(122, 124)(126, 160)(127, 159)(128, 158)(129, 157)(130,
156)(131, 155)(132, 154)(133, 153)(134, 152)(135, 151)(136, 150)(137, 149)(138,
148)(139, 147)(140, 146)(141, 145)(142, 144)(161, 308)(162, 320)(163, 218)(164,
277)(165, 255)(166, 256)(167, 242)(168, 247)(169, 262)(170, 239)(171, 187)(172,
269)(173, 223)(174, 228)(175, 230)(176, 258)(177, 281)(179, 274)(180, 295)(181,
317)(182, 251)(183, 227)(184, 312)(185, 294)(186, 311)(188, 264)(189, 299)(190,
267)(191, 236)(192, 265)(193, 233)(194, 198)(195, 214)(196, 208)(197, 201)(199,
289)(200, 306)(202, 250)(203, 297)(204, 259)(205, 272)(206, 237)(207, 293)(209,
217)(210, 243)(211, 271)(212, 304)(213, 302)(215, 276)(216, 254)(219, 305)(220,
315)(221, 224)(222, 261)(225, 300)(229, 286)(231, 316)(232, 244)(234, 245)(235,
285)(238, 313)(240, 314)(241, 283)(248, 296)(249, 268)(252, 290)(253, 292)(257,
266)(260, 307)(263, 288)(270, 318)(273, 319)(275, 291)(278, 301)(279, 284)(280,
282)(287, 298)(309, 310)
c: (3, 63)(4, 126)(5, 86)(8, 68)(9, 131)(10, 91)(13, 73)(14, 136)(15, 96)(18,
78)(19, 141)(20, 101)(23, 43)(24, 146)(25, 106)(28, 48)(29, 151)(30, 111)(33,
53)(34, 156)(35, 116)(38, 58)(39, 121)(40, 81)(41, 61)(44, 95)(45, 137)(46,
66)(49, 100)(50, 142)(51, 71)(54, 105)(55, 147)(56, 76)(59, 110)(60, 152)(64,
115)(65, 157)(69, 120)(70, 122)(74, 85)(75, 127)(79, 90)(80, 132)(83, 103)(84,
135)(88, 108)(89, 140)(93, 113)(94, 145)(98, 118)(99, 150)(104, 155)(109,
160)(114, 125)(119, 130)(123, 143)(124, 144)(128, 148)(129, 149)(133, 153)(134,
154)(138, 158)(139, 159)(161, 266)(162, 311)(163, 167)(164, 260)(165, 166)(168,
293)(169, 249)(171, 298)(172, 307)(173, 210)(174, 250)(175, 302)(176, 308)(177,
285)(178, 238)(179, 316)(180, 294)(181, 195)(182, 199)(183, 304)(184, 309)(186,
219)(187, 207)(189, 237)(191, 305)(192, 272)(193, 284)(194, 206)(196, 201)(197,
202)(198, 270)(200, 261)(204, 282)(205, 275)(208, 228)(209, 212)(211, 289)(213,
310)(214, 314)(215, 222)(216, 269)(217, 300)(220, 240)(221, 257)(224, 258)(225,
227)(226, 286)(229, 246)(230, 312)(231, 234)(232, 251)(235, 280)(236, 320)(239,
296)(241, 245)(244, 271)(247, 287)(253, 306)(254, 277)(259, 281)(262, 273)(263,
265)(264, 267)(268, 301)(274, 283)(276, 292)(278, 319)(288, 291)(290, 297)(299,
318)(303, 313)(315, 317)
d: (1, 2)(3, 81, 63, 40)(4, 69, 126, 120)(5, 8, 86, 68)(6, 7)(9, 74, 131,
85)(10, 13, 91, 73)(11, 12)(14, 79, 136, 90)(15, 18, 96, 78)(16, 17)(19, 44,
141, 95)(20, 23, 101, 43)(21, 22)(24, 49, 146, 100)(25, 28, 106, 48)(26, 27)(29,
54, 151, 105)(30, 33, 111, 53)(31, 32)(34, 59, 156, 110)(35, 38, 116, 58)(36,
37)(39, 64, 121, 115)(41, 103, 61, 83)(42, 102)(45, 89, 137, 140)(46, 108, 66,
88)(47, 107)(50, 94, 142, 145)(51, 113, 71, 93)(52, 112)(55, 99, 147, 150)(56,
118, 76, 98)(57, 117)(60, 104, 152, 155)(62, 82)(65, 109, 157, 160)(67, 87)(70,
114, 122, 125)(72, 92)(75, 119, 127, 130)(77, 97)(80, 84, 132, 135)(123, 144,
143, 124)(128, 149, 148, 129)(133, 154, 153, 134)(138, 159, 158, 139)(161, 309,
266, 184)(162, 232, 311, 251)(163, 257, 167, 221)(164, 214, 260, 314)(165, 198,
166, 270)(168, 212, 293, 209)(169, 254, 249, 277)(170, 279)(171, 244, 298,
271)(172, 294, 307, 180)(173, 174, 210, 250)(175, 228, 302, 208)(176, 259, 308,
281)(177, 287, 285, 247)(178, 206, 238, 194)(179, 268, 316, 301)(181, 211, 195,
289)(182, 239, 199, 296)(183, 317, 304, 315)(185, 242)(186, 318, 219, 299)(187,
262, 207, 273)(188, 255)(189, 235, 237, 280)(191, 269, 305, 216)(192, 193, 272,
284)(196, 231, 201, 234)(197, 313, 202, 303)(200, 220, 261, 240)(203, 248)(204,
245, 282, 241)(205, 320, 275, 236)(213, 217, 310, 300)(215, 264, 222, 267)(218,
256)(224, 246, 258, 229)(225, 290, 227, 297)(226, 263, 286, 265)(230, 276, 312,
292)(243, 252)(253, 278, 306, 319)(274, 288, 283, 291)
C4[ 320, 182 ]
320
-1 264 188 190 267
-2 222 255 190 215
-3 198 312 215 240
-4 183 228 240 219
-5 167 180 202 228
-6 243 223 180 294
-7 223 172 252 307
-8 221 302 303 172
-9 289 213 303 205
-10 265 290 205 173
-11 210 233 279 173
-12 233 170 250 174
-13 320 226 227 174
-14 276 226 194 162
-15 276 193 239 261
-16 188 190 193 284
-17 255 190 192 272
-18 199 312 272 240
-19 224 269 240 219
-20 167 180 269 260
-21 180 294 185 295
-22 242 172 295 307
-23 221 314 172 305
-24 289 314 205 184
-25 165 265 267 205
-26 264 233 267 279
-27 222 233 170 215
-28 198 320 215 226
-29 226 183 162 228
-30 202 193 228 239
-31 243 223 193 284
-32 223 192 272 252
-33 199 302 303 272
-34 213 224 269 303
-35 290 269 260 173
-36 210 173 185 295
-37 242 250 174 295
-38 314 227 305 174
-39 276 314 194 184
-40 165 276 267 261
-41 166 167 268 262
-42 254 277 185 218
-43 191 257 214 307
-44 200 299 246 305
-45 289 300 171 274
-46 165 179 163 241
-47 253 279 248 306
-48 286 222 236 270
-49 320 181 161 164
-50 259 183 249 251
-51 297 245 239 316
-52 243 288 203 291
-53 192 313 182 175
-54 232 302 317 263
-55 278 224 280 318
-56 268 290 262 296
-57 201 185 196 218
-58 191 214 225 250
-59 246 217 305 197
-60 266 171 194 274
-61 165 301 163 273
-62 253 188 256 306
-63 220 222 270 230
-64 178 312 161 164
-65 231 183 293 251
-66 166 167 245 316
-67 243 254 277 203
-68 257 313 175 307
-69 200 299 302 317
-70 278 289 300 280
-71 179 290 241 296
-72 201 279 248 196
-73 286 225 236 250
-74 320 181 217 197
-75 266 259 194 249
-76 297 301 239 273
-77 188 288 256 291
-78 220 192 182 230
-79 232 178 312 263
-80 231 224 293 318
-81 264 166 200 292
-82 319 255 278 218
-83 187 198 179 257
-84 209 201 246 219
-85 300 202 236 195
-86 294 163 197 208
-87 169 248 249 252
-88 221 301 270 282
-89 244 288 213 181
-90 265 238 251 230
-91 275 297 210 263
-92 231 234 170 203
-93 268 182 204 227
-94 308 277 162 317
-95 191 261 229 318
-96 200 292 284 296
-97 255 283 218 274
-98 187 199 179 225
-99 189 246 306 219
-100 266 236 260 195
-101 216 294 163 164
-102 242 256 169 249
-103 221 270 316 207
-104 178 244 288 184
-105 265 315 251 175
-106 264 275 166 263
-107 319 278 170 203
-108 198 257 268 204
-109 209 201 162 317
-110 300 191 202 229
-111 284 197 208 296
-112 248 283 252 274
-113 199 301 225 282
-114 189 213 181 306
-115 266 238 260 230
-116 297 210 216 164
-117 231 242 234 256
-118 182 227 316 207
-119 308 178 277 184
-120 315 261 175 318
-121 309 214 292 206
-122 319 211 235 217
-123 187 168 247 171
-124 209 271 273 285
-125 253 310 237 195
-126 220 304 186 208
-127 169 281 161 206
-128 177 298 282 293
-129 244 212 245 247
-130 176 254 309 238
-131 275 211 310 313
-132 299 168 234 258
-133 280 204 281 285
-134 308 287 237 241
-135 212 196 229 186
-136 286 311 292 206
-137 298 211 217 283
-138 187 235 247 259
-139 176 189 273 285
-140 310 291 271 195
-141 220 258 216 186
-142 232 169 281 304
-143 287 298 293 207
-144 177 244 212 262
-145 176 254 311 315
-146 275 309 211 214
-147 319 299 235 258
-148 168 171 204 285
-149 209 287 271 241
-150 253 237 229 186
-151 286 311 304 208
-152 298 161 206 283
-153 177 235 259 282
-154 176 189 245 247
-155 309 291 238 271
-156 310 258 313 216
-157 232 168 234 304
-158 287 280 281 207
-159 308 177 237 262
-160 212 311 315 196
-161 49 127 64 152
-162 14 94 29 109
-163 46 101 61 86
-164 101 49 116 64
-165 46 25 61 40
-166 66 81 106 41
-167 66 5 41 20
-168 132 123 157 148
-169 102 127 87 142
-170 12 92 27 107
-171 45 123 60 148
-172 22 23 7 8
-173 11 35 36 10
-174 12 13 37 38
-175 68 105 53 120
-176 154 145 139 130
-177 144 159 128 153
-178 79 104 64 119
-179 46 71 83 98
-180 5 6 20 21
-181 89 114 49 74
-182 78 93 118 53
-183 4 50 29 65
-184 24 104 39 119
-185 57 36 42 21
-186 135 126 150 141
-187 123 83 138 98
-188 77 1 16 62
-189 99 154 114 139
-190 1 2 16 17
-191 110 58 95 43
-192 78 17 53 32
-193 15 16 30 31
-194 14 60 39 75
-195 100 125 85 140
-196 57 135 72 160
-197 111 59 74 86
-198 3 28 83 108
-199 33 113 18 98
-200 44 69 81 96
-201 57 72 84 109
-202 110 5 30 85
-203 67 92 52 107
-204 133 93 148 108
-205 24 25 9 10
-206 121 136 127 152
-207 143 103 158 118
-208 111 126 151 86
-209 124 149 84 109
-210 11 36 91 116
-211 122 146 137 131
-212 144 135 160 129
-213 34 89 114 9
-214 121 58 146 43
-215 2 3 27 28
-216 101 156 116 141
-217 122 59 137 74
-218 57 82 42 97
-219 99 4 84 19
-220 78 126 63 141
-221 88 23 103 8
-222 2 48 27 63
-223 6 7 31 32
-224 55 34 80 19
-225 58 113 73 98
-226 13 14 28 29
-227 13 38 93 118
-228 4 5 29 30
-229 110 135 95 150
-230 78 90 115 63
-231 80 92 117 65
-232 79 157 54 142
-233 11 12 26 27
-234 132 157 92 117
-235 122 147 138 153
-236 100 48 73 85
-237 134 125 159 150
-238 155 90 115 130
-239 15 51 30 76
-240 3 4 18 19
-241 46 134 71 149
-242 22 102 37 117
-243 67 6 52 31
-244 89 144 104 129
-245 66 154 51 129
-246 44 99 59 84
-247 154 123 138 129
-248 112 47 72 87
-249 102 50 75 87
-250 12 58 37 73
-251 90 50 105 65
-252 112 7 32 87
-253 47 125 62 150
-254 67 145 42 130
-255 2 82 17 97
-256 77 102 62 117
-257 68 83 108 43
-258 132 156 147 141
-259 50 138 75 153
-260 100 35 115 20
-261 15 40 95 120
-262 56 144 159 41
-263 79 91 106 54
-264 1 26 81 106
-265 90 25 105 10
-266 100 60 115 75
-267 1 25 26 40
-268 56 93 41 108
-269 34 35 19 20
-270 88 48 103 63
-271 155 124 149 140
-272 33 17 18 32
-273 124 61 139 76
-274 45 112 60 97
-275 91 146 106 131
-276 14 15 39 40
-277 67 94 42 119
-278 55 70 82 107
-279 11 47 26 72
-280 55 133 70 158
-281 133 158 127 142
-282 88 113 128 153
-283 112 137 97 152
-284 111 16 96 31
-285 133 124 148 139
-286 48 136 73 151
-287 143 134 158 149
-288 77 89 104 52
-289 45 24 70 9
-290 56 35 71 10
-291 77 155 52 140
-292 121 81 136 96
-293 143 80 128 65
-294 101 6 86 21
-295 22 36 37 21
-296 56 111 71 96
-297 91 116 51 76
-298 143 137 128 152
-299 44 132 69 147
-300 110 45 70 85
-301 88 113 61 76
-302 33 69 8 54
-303 33 34 8 9
-304 157 126 151 142
-305 44 23 59 38
-306 99 47 114 62
-307 22 68 7 43
-308 134 159 94 119
-309 121 155 146 130
-310 156 125 140 131
-311 145 136 160 151
-312 79 3 18 64
-313 68 156 53 131
-314 23 24 38 39
-315 145 105 160 120
-316 66 103 51 118
-317 69 94 54 109
-318 55 80 95 120
-319 122 147 82 107
-320 13 49 28 74
0