[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 183 ] =
BGCG(KE_40(1,19,12,23,9);K1;{10,11}).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {136, 168}, {136, 169}, {141, 169}, {141, 168}, {140, 164}, {134,
175}, {138, 163}, {143, 163}, {132, 169}, {129, 175}, {134, 180}, {145, 164},
{130, 180}, {150, 174}, {128, 185}, {135, 188}, {133, 185}, {130, 188}, {139,
180}, {145, 174}, {148, 214}, {145, 210}, {150, 210}, {132, 194}, {141, 197},
{154, 210}, {129, 202}, {157, 214}, {139, 198}, {159, 210}, {152, 214}, {148,
198}, {150, 197}, {160, 243}, {153, 204}, {156, 201}, {139, 221}, {144, 198},
{146, 197}, {137, 209}, {148, 204}, {143, 214}, {134, 221}, {151, 201}, {155,
197}, {142, 209}, {155, 196}, {153, 198}, {148, 244}, {150, 247}, {140, 238},
{146, 240}, {160, 196}, {136, 238}, {137, 239}, {151, 240}, {155, 243}, {159,
246}, {160, 201}, {132, 239}, {155, 247}, {131, 238}, {128, 239}, {156, 236},
{129, 243}, {133, 246}, {136, 252}, {152, 236}, {128, 246}, {131, 249}, {143,
244}, {156, 231}, {131, 252}, {147, 236}, {145, 238}, {50, 178}, {47, 174},
{103, 230}, {52, 182}, {65, 195}, {64, 194}, {76, 206}, {79, 205}, {94, 221},
{42, 174}, {115, 247}, {92, 216}, {53, 176}, {69, 194}, {126, 249}, {89, 222},
{108, 235}, {80, 216}, {87, 223}, {37, 172}, {71, 206}, {43, 162}, {58, 176},
{124, 246}, {84, 222}, {108, 230}, {54, 189}, {87, 220}, {32, 172}, {109, 225},
{49, 189}, {82, 223}, {82, 220}, {91, 212}, {124, 243}, {52, 165}, {94, 207},
{48, 162}, {77, 222}, {116, 231}, {114, 225}, {89, 202}, {44, 184}, {123, 239},
{75, 223}, {56, 173}, {121, 236}, {94, 203}, {106, 255}, {58, 172}, {72, 222},
{89, 207}, {40, 191}, {98, 245}, {47, 182}, {110, 247}, {70, 223}, {53, 172},
{64, 218}, {113, 235}, {101, 255}, {106, 240}, {74, 209}, {33, 189}, {57, 165},
{51, 173}, {121, 231}, {79, 209}, {84, 202}, {100, 250}, {45, 178}, {111, 240},
{108, 204}, {121, 217}, {28, 189}, {19, 177}, {68, 230}, {91, 249}, {127, 220},
{78, 234}, {80, 244}, {20, 177}, {95, 250}, {110, 200}, {122, 220}, {28, 187},
{126, 217}, {18, 186}, {74, 226}, {93, 245}, {99, 203}, {24, 178}, {81, 251},
{17, 186}, {23, 187}, {79, 226}, {86, 251}, {17, 190}, {29, 178}, {86, 249},
{85, 229}, {90, 234}, {22, 167}, {88, 233}, {12, 190}, {21, 167}, {97, 211},
{104, 218}, {4, 183}, {112, 195}, {86, 226}, {125, 201}, {96, 212}, {6, 179},
{73, 252}, {95, 234}, {102, 211}, {12, 186}, {124, 202}, {117, 195}, {17, 167},
{81, 231}, {13, 186}, {16, 167}, {11, 179}, {111, 215}, {68, 252}, {64, 248},
{6, 191}, {89, 224}, {91, 226}, {97, 216}, {99, 218}, {5, 191}, {83, 233}, {17,
170}, {115, 200}, {22, 170}, {77, 241}, {66, 255}, {127, 194}, {113, 204}, {106,
215}, {1, 191}, {15, 177}, {9, 183}, {94, 224}, {99, 221}, {14, 177}, {90, 229},
{7, 199}, {100, 164}, {6, 199}, {43, 234}, {15, 206}, {98, 163}, {61, 255},
{126, 188}, {105, 171}, {22, 213}, {59, 248}, {34, 225}, {10, 206}, {16, 212},
{103, 163}, {110, 171}, {121, 188}, {56, 254}, {60, 250}, {45, 229}, {109, 165},
{96, 168}, {111, 166}, {125, 180}, {12, 199}, {97, 170}, {11, 199}, {102, 170},
{51, 254}, {120, 181}, {55, 250}, {96, 173}, {101, 168}, {104, 165}, {105, 164},
{27, 213}, {119, 184}, {9, 219}, {116, 166}, {41, 251}, {98, 176}, {8, 219},
{56, 235}, {14, 219}, {116, 161}, {46, 251}, {13, 219}, {127, 169}, {61, 235},
{36, 242}, {37, 242}, {50, 229}, {108, 187}, {45, 244}, {63, 230}, {23, 205},
{42, 241}, {103, 187}, {35, 254}, {30, 192}, {38, 248}, {11, 212}, {31, 192},
{18, 205}, {30, 254}, {85, 181}, {8, 233}, {71, 166}, {64, 161}, {59, 218}, {54,
215}, {44, 205}, {42, 203}, {16, 241}, {87, 182}, {88, 185}, {34, 193}, {58,
217}, {35, 192}, {21, 241}, {69, 161}, {47, 203}, {36, 192}, {93, 185}, {48,
213}, {39, 193}, {63, 217}, {18, 245}, {71, 175}, {9, 224}, {3, 233}, {65, 171},
{57, 211}, {76, 166}, {92, 182}, {15, 228}, {59, 215}, {84, 184}, {62, 211},
{70, 171}, {66, 175}, {93, 176}, {10, 228}, {14, 224}, {11, 228}, {2, 242}, {67,
179}, {52, 196}, {24, 232}, {78, 190}, {81, 161}, {68, 181}, {70, 183}, {83,
162}, {34, 208}, {58, 200}, {1, 242}, {35, 208}, {16, 228}, {25, 237}, {23,
227}, {8, 253}, {45, 216}, {22, 227}, {55, 193}, {65, 183}, {91, 173}, {26,
237}, {73, 190}, {63, 200}, {39, 208}, {79, 184}, {13, 245}, {40, 208}, {27,
227}, {21, 237}, {20, 237}, {54, 207}, {7, 253}, {18, 232}, {88, 162}, {3, 248},
{72, 179}, {19, 232}, {29, 225}, {73, 181}, {57, 196}, {60, 193}, {3, 253}, {49,
207}, {43, 213}, {2, 253}, {60, 195}, {28, 227}, {23, 232}, {55, 310}, {27,
281}, {8, 267}, {39, 292}, {50, 310}, {41, 300}, {59, 318}, {13, 267}, {63,
313}, {41, 302}, {42, 301}, {54, 318}, {72, 320}, {27, 273}, {26, 273}, {36,
296}, {51, 319}, {46, 290}, {77, 320}, {31, 273}, {30, 270}, {25, 264}, {57,
296}, {51, 290}, {48, 289}, {46, 319}, {29, 270}, {43, 312}, {33, 309}, {53,
289}, {24, 270}, {62, 296}, {25, 270}, {34, 309}, {5, 287}, {26, 256}, {3, 280},
{62, 293}, {4, 280}, {20, 264}, {2, 284}, {31, 257}, {31, 256}, {4, 292}, {14,
303}, {41, 264}, {32, 258}, {61, 287}, {33, 258}, {38, 258}, {36, 257}, {46,
264}, {37, 258}, {49, 278}, {29, 309}, {1, 296}, {28, 309}, {25, 304}, {44,
262}, {56, 275}, {30, 304}, {61, 275}, {20, 315}, {47, 256}, {60, 268}, {12,
317}, {32, 273}, {24, 298}, {38, 277}, {48, 259}, {5, 305}, {52, 256}, {33,
277}, {15, 315}, {4, 305}, {10, 316}, {53, 259}, {40, 286}, {21, 291}, {40,
287}, {49, 262}, {9, 305}, {55, 271}, {5, 316}, {62, 263}, {37, 284}, {32, 281},
{26, 291}, {19, 298}, {7, 317}, {44, 278}, {1, 314}, {10, 305}, {2, 313}, {6,
314}, {19, 303}, {35, 286}, {50, 271}, {7, 313}, {38, 280}, {39, 280}, {98,
290}, {115, 307}, {74, 267}, {97, 288}, {104, 298}, {112, 306}, {67, 263}, {122,
318}, {109, 297}, {72, 269}, {100, 289}, {103, 290}, {101, 291}, {117, 306},
{105, 289}, {127, 311}, {99, 298}, {106, 291}, {120, 307}, {65, 268}, {122,
311}, {67, 269}, {69, 267}, {82, 284}, {123, 308}, {102, 310}, {118, 295}, {119,
292}, {75, 285}, {83, 261}, {117, 301}, {126, 294}, {125, 293}, {105, 304}, {78,
276}, {70, 285}, {114, 297}, {85, 265}, {122, 294}, {66, 287}, {73, 276}, {107,
310}, {110, 304}, {100, 315}, {71, 295}, {76, 300}, {77, 301}, {92, 317}, {76,
302}, {118, 276}, {74, 297}, {118, 277}, {80, 307}, {101, 262}, {75, 303}, {113,
277}, {95, 315}, {66, 295}, {113, 276}, {67, 293}, {120, 286}, {90, 316}, {96,
262}, {107, 269}, {114, 282}, {85, 316}, {117, 284}, {112, 281}, {87, 317}, {81,
314}, {69, 297}, {86, 314}, {115, 286}, {119, 282}, {111, 257}, {124, 275}, {84,
292}, {119, 263}, {90, 299}, {120, 265}, {93, 300}, {102, 279}, {107, 281},
{118, 261}, {83, 295}, {125, 265}, {88, 300}, {95, 299}, {114, 263}, {116, 257},
{78, 312}, {123, 268}, {75, 307}, {104, 272}, {92, 288}, {107, 279}, {68, 313},
{112, 269}, {109, 272}, {123, 261}, {80, 303}, {82, 301}, {144, 272}, {154,
282}, {146, 274}, {134, 260}, {147, 279}, {129, 260}, {159, 282}, {151, 274},
{149, 272}, {147, 278}, {140, 266}, {147, 283}, {143, 260}, {128, 268}, {159,
275}, {135, 266}, {138, 260}, {152, 278}, {138, 283}, {158, 271}, {151, 259},
{142, 283}, {153, 271}, {138, 285}, {133, 285}, {142, 279}, {144, 266}, {137,
274}, {158, 261}, {142, 274}, {133, 283}, {149, 266}, {156, 259}, {149, 308},
{157, 318}, {132, 288}, {131, 294}, {154, 319}, {139, 302}, {130, 293}, {130,
299}, {160, 265}, {158, 311}, {137, 288}, {146, 312}, {158, 308}, {152, 306},
{149, 319}, {135, 299}, {153, 311}, {154, 308}, {157, 306}, {141, 312}, {157,
294}, {144, 302}, {135, 320}, {140, 320} }>;
(II) A more general form is to represent the graph as the orbit of {136, 168}
under the group generated by the following permutations:
a: (2, 81, 62, 40)(3, 121, 114, 120)(4, 58, 74, 160)(5, 37, 86, 57)(6, 36)(7,
116, 67, 35)(8, 156, 119, 115)(9, 53, 79, 155)(10, 32, 91, 52)(11, 31)(12, 111,
72, 30)(13, 151, 84, 110)(14, 48, 44, 150)(15, 27, 96, 47)(16, 26)(17, 106, 77,
25)(18, 146, 89, 105)(19, 43, 49, 145)(20, 22, 101, 42)(23, 141, 94, 100)(24,
78, 54, 140)(28, 136, 99, 95)(29, 73, 59, 135)(33, 131, 104, 90)(34, 68, 64,
130)(38, 126, 109, 85)(39, 63, 69, 125)(41, 102, 61, 82)(45, 118, 157, 149)(46,
97, 66, 117)(50, 113, 122, 144)(51, 92, 71, 112)(55, 108, 127, 139)(56, 87, 76,
107)(60, 103, 132, 134)(65, 98, 137, 129)(70, 93, 142, 124)(75, 88, 147,
159)(80, 83, 152, 154)(123, 143)(128, 138)(148, 158)(161, 293, 208, 313)(162,
278, 210, 303)(163, 239, 260, 268)(164, 232, 312, 207)(165, 316, 258, 249)(166,
269, 254, 317)(167, 291, 241, 237)(168, 203, 315, 227)(169, 221, 250, 187)(170,
255, 301, 264)(171, 245, 274, 202)(172, 226, 196, 305)(173, 182, 206, 281)(174,
177, 213, 262)(175, 195, 290, 288)(176, 209, 243, 183)(178, 276, 318, 266)(179,
192, 199, 257)(180, 193, 230, 194)(181, 248, 188, 225)(184, 247, 219, 259)(185,
283, 246, 285)(186, 240, 222, 304)(189, 238, 298, 234)(190, 215, 320, 270)(191,
242, 314, 296)(197, 224, 289, 205)(198, 271, 204, 311)(200, 267, 201, 292)(211,
287, 284, 251)(212, 256, 228, 273)(214, 308, 244, 261)(216, 295, 306, 319)(217,
297, 265, 280)(218, 299, 309, 252)(220, 302, 310, 235)(223, 300, 279, 275)(229,
277, 294, 272)(231, 263, 286, 253)(233, 236, 282, 307) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 64, 127, 158, 149, 140, 100, 20, 21, 22, 23, 44, 147, 138, 129,
160, 120, 40)(4, 116, 87, 118, 109, 131, 60, 41, 42, 43, 24, 96, 107, 98, 89,
151, 80, 61, 62, 63)(5, 36, 7, 38, 69, 122, 123, 144, 145, 95, 25, 16, 27, 18,
49, 142, 143, 124, 125, 115)(6, 37, 8, 59, 132, 153, 154, 135, 105, 15, 26, 17,
28, 79, 152, 133, 134, 155, 85, 35)(9, 111, 92, 113, 114, 126, 65, 76, 47, 78,
29, 91, 112, 93, 94, 146, 45, 56, 67, 58)(10, 31, 12, 33, 74, 157, 128, 139,
150, 90, 30, 11, 32, 13, 54, 137, 148, 159, 130, 110)(14, 106, 97, 108, 119,
121, 70, 71, 52, 73, 34, 86, 117, 88, 99, 141, 50, 51, 72, 53)(19, 101, 102,
103, 84, 156, 75, 66, 57, 68, 39, 81, 82, 83, 104, 136, 55, 46, 77, 48)(161,
220, 261, 272, 238, 250, 264, 241, 213, 232, 262, 279, 163, 202, 201, 307, 287,
296, 313, 280)(162, 298, 168, 310, 290, 222, 259, 303, 255, 211, 230, 292, 231,
223, 295, 165, 252, 193, 251, 301)(164, 315, 237, 167, 227, 205, 278, 283, 260,
243, 265, 286, 191, 242, 253, 248, 194, 311, 308, 266)(166, 182, 276, 225, 249,
195, 300, 203, 312, 178, 173, 269, 176, 224, 240, 216, 235, 263, 217, 183)(169,
271, 319, 320, 289, 177, 291, 170, 187, 184, 236, 285, 175, 196, 181, 208, 314,
284, 233, 218)(171, 206, 256, 190, 309, 226, 306, 185, 221, 197, 229, 254, 179,
172, 219, 215, 288, 204, 282, 188)(174, 234, 270, 212, 281, 245, 207, 274, 244,
275, 293, 200, 305, 257, 317, 277, 297, 294, 268, 302)(180, 247, 316, 192, 199,
258, 267, 318, 239, 198, 210, 299, 304, 228, 273, 186, 189, 209, 214, 246)
c: (3, 63)(4, 126)(5, 86)(8, 68)(9, 131)(10, 91)(13, 73)(14, 136)(15, 96)(18,
78)(19, 141)(20, 101)(23, 43)(24, 146)(25, 106)(28, 48)(29, 151)(30, 111)(33,
53)(34, 156)(35, 116)(38, 58)(39, 121)(40, 81)(41, 61)(44, 95)(45, 137)(46,
66)(49, 100)(50, 142)(51, 71)(54, 105)(55, 147)(56, 76)(59, 110)(60, 152)(64,
115)(65, 157)(69, 120)(70, 122)(74, 85)(75, 127)(79, 90)(80, 132)(83, 103)(84,
135)(88, 108)(89, 140)(93, 113)(94, 145)(98, 118)(99, 150)(104, 155)(109,
160)(114, 125)(119, 130)(123, 143)(124, 144)(128, 148)(129, 149)(133, 153)(134,
154)(138, 158)(139, 159)(161, 286)(162, 187)(163, 261)(164, 207)(165, 196)(166,
254)(168, 177)(169, 303)(171, 318)(172, 258)(173, 206)(174, 203)(175, 319)(176,
277)(178, 274)(180, 282)(181, 267)(183, 294)(184, 299)(185, 204)(186, 190)(188,
292)(189, 289)(191, 314)(192, 257)(193, 236)(194, 307)(195, 306)(197, 298)(198,
246)(200, 248)(201, 225)(202, 266)(205, 234)(208, 231)(209, 229)(210, 221)(212,
228)(213, 227)(214, 268)(215, 304)(216, 288)(217, 280)(218, 247)(219, 252)(220,
223)(222, 320)(224, 238)(226, 316)(230, 233)(232, 312)(235, 300)(237, 291)(239,
244)(240, 270)(243, 272)(245, 276)(249, 305)(250, 278)(251, 287)(253, 313)(255,
264)(259, 309)(260, 308)(262, 315)(263, 293)(265, 297)(271, 283)(275, 302)(279,
310)(285, 311)(290, 295)
C4[ 320, 183 ]
320
-1 242 191 314 296
-2 242 253 313 284
-3 253 233 280 248
-4 280 292 183 305
-5 287 191 305 316
-6 199 179 191 314
-7 253 199 313 317
-8 253 233 267 219
-9 224 183 305 219
-10 206 228 316 305
-11 199 179 212 228
-12 199 190 317 186
-13 245 267 186 219
-14 177 224 303 219
-15 177 315 206 228
-16 167 212 228 241
-17 167 190 170 186
-18 232 245 205 186
-19 177 232 298 303
-20 264 177 237 315
-21 167 291 237 241
-22 167 213 170 227
-23 187 232 205 227
-24 232 298 178 270
-25 264 237 270 304
-26 256 291 237 273
-27 213 281 227 273
-28 187 309 189 227
-29 309 178 225 270
-30 254 192 270 304
-31 256 257 192 273
-32 258 281 172 273
-33 309 189 277 258
-34 309 225 193 208
-35 286 254 192 208
-36 242 257 192 296
-37 242 258 172 284
-38 277 258 280 248
-39 280 193 292 208
-40 286 287 191 208
-41 264 300 302 251
-42 301 203 174 241
-43 234 213 312 162
-44 278 205 184 262
-45 178 244 216 229
-46 264 319 290 251
-47 256 203 182 174
-48 289 213 259 162
-49 189 278 207 262
-50 178 310 271 229
-51 319 254 290 173
-52 165 256 182 196
-53 176 289 259 172
-54 189 215 207 318
-55 310 193 271 250
-56 275 254 235 173
-57 165 211 196 296
-58 176 200 172 217
-59 215 248 218 318
-60 268 193 195 250
-61 275 287 255 235
-62 211 293 263 296
-63 200 313 217 230
-64 248 161 194 218
-65 268 171 183 195
-66 287 255 295 175
-67 179 269 293 263
-68 181 313 230 252
-69 297 267 161 194
-70 223 171 183 285
-71 166 206 295 175
-72 320 222 179 269
-73 276 190 181 252
-74 209 297 267 226
-75 223 303 285 307
-76 166 300 302 206
-77 320 222 301 241
-78 276 190 234 312
-79 209 226 205 184
-80 244 303 216 307
-81 231 314 161 251
-82 220 223 301 284
-83 233 162 261 295
-84 222 202 292 184
-85 265 181 316 229
-86 226 314 249 251
-87 220 223 182 317
-88 233 300 162 185
-89 222 202 224 207
-90 299 234 316 229
-91 212 226 249 173
-92 288 182 216 317
-93 176 245 300 185
-94 221 224 203 207
-95 299 234 315 250
-96 168 212 173 262
-97 211 288 170 216
-98 176 245 290 163
-99 221 298 203 218
-100 289 315 250 164
-101 255 168 291 262
-102 211 310 279 170
-103 187 290 163 230
-104 165 298 272 218
-105 289 171 304 164
-106 255 291 215 240
-107 310 279 269 281
-108 187 235 204 230
-109 165 297 225 272
-110 200 247 171 304
-111 166 257 215 240
-112 269 281 195 306
-113 276 277 235 204
-114 297 225 282 263
-115 286 200 247 307
-116 231 166 257 161
-117 301 195 284 306
-118 276 277 261 295
-119 292 282 184 263
-120 286 265 181 307
-121 231 188 236 217
-122 220 311 294 318
-123 308 268 239 261
-124 275 243 202 246
-125 265 201 180 293
-126 188 249 217 294
-127 220 311 169 194
-128 246 268 239 185
-129 243 202 260 175
-130 188 299 180 293
-131 238 249 294 252
-132 288 169 194 239
-133 246 283 185 285
-134 221 180 260 175
-135 188 320 266 299
-136 168 169 238 252
-137 209 288 239 274
-138 260 283 163 285
-139 198 221 180 302
-140 320 266 238 164
-141 168 169 312 197
-142 209 279 283 274
-143 244 214 260 163
-144 198 266 302 272
-145 210 238 174 164
-146 312 240 197 274
-147 278 279 236 283
-148 198 244 214 204
-149 308 319 266 272
-150 210 247 174 197
-151 201 259 240 274
-152 278 214 236 306
-153 198 311 204 271
-154 308 319 210 282
-155 243 247 196 197
-156 231 201 236 259
-157 214 294 306 318
-158 308 311 271 261
-159 275 210 246 282
-160 243 265 201 196
-161 69 81 116 64
-162 88 48 83 43
-163 143 103 138 98
-164 100 145 105 140
-165 57 104 52 109
-166 111 71 116 76
-167 22 16 17 21
-168 101 136 96 141
-169 132 136 127 141
-170 22 102 17 97
-171 110 70 105 65
-172 58 37 53 32
-173 56 91 51 96
-174 145 47 150 42
-175 66 134 71 129
-176 58 93 53 98
-177 14 15 19 20
-178 45 24 50 29
-179 11 67 6 72
-180 134 125 139 130
-181 68 73 85 120
-182 47 92 52 87
-183 4 70 9 65
-184 44 79 84 119
-185 88 133 93 128
-186 12 13 17 18
-187 23 103 28 108
-188 121 135 126 130
-189 33 49 28 54
-190 12 78 17 73
-191 1 5 6 40
-192 35 36 30 31
-193 55 34 60 39
-194 132 69 127 64
-195 112 60 117 65
-196 155 57 160 52
-197 155 146 150 141
-198 144 148 139 153
-199 11 12 6 7
-200 110 58 115 63
-201 156 125 160 151
-202 89 124 84 129
-203 99 47 94 42
-204 113 148 108 153
-205 44 23 79 18
-206 15 71 10 76
-207 89 49 94 54
-208 34 35 39 40
-209 79 137 74 142
-210 154 145 159 150
-211 57 102 62 97
-212 11 91 16 96
-213 22 48 27 43
-214 143 157 148 152
-215 111 59 106 54
-216 45 80 92 97
-217 121 58 126 63
-218 99 59 104 64
-219 13 14 8 9
-220 122 82 127 87
-221 99 134 94 139
-222 77 89 72 84
-223 70 82 75 87
-224 89 14 94 9
-225 34 114 29 109
-226 79 91 74 86
-227 22 23 27 28
-228 11 15 16 10
-229 45 90 50 85
-230 68 103 63 108
-231 121 156 81 116
-232 23 24 18 19
-233 88 3 83 8
-234 78 90 95 43
-235 56 113 61 108
-236 121 156 147 152
-237 25 26 20 21
-238 145 136 140 131
-239 132 123 137 128
-240 111 146 106 151
-241 77 16 42 21
-242 1 2 36 37
-243 155 124 160 129
-244 143 45 80 148
-245 13 93 18 98
-246 133 124 159 128
-247 110 155 115 150
-248 3 59 38 64
-249 91 126 86 131
-250 55 100 60 95
-251 46 81 41 86
-252 68 136 73 131
-253 2 3 7 8
-254 56 35 51 30
-255 66 101 61 106
-256 47 26 52 31
-257 111 36 116 31
-258 33 37 38 32
-259 156 48 151 53
-260 143 134 138 129
-261 123 158 83 118
-262 44 101 49 96
-263 67 114 62 119
-264 46 25 41 20
-265 125 160 85 120
-266 144 135 149 140
-267 13 69 8 74
-268 123 60 128 65
-269 67 112 72 107
-270 24 25 29 30
-271 55 158 50 153
-272 144 104 149 109
-273 26 27 31 32
-274 146 137 151 142
-275 56 124 159 61
-276 78 113 73 118
-277 33 113 38 118
-278 44 147 49 152
-279 102 147 107 142
-280 3 4 38 39
-281 112 27 107 32
-282 154 114 159 119
-283 133 147 138 142
-284 2 37 82 117
-285 133 70 138 75
-286 35 115 40 120
-287 66 5 61 40
-288 132 92 137 97
-289 100 48 105 53
-290 46 103 51 98
-291 101 26 106 21
-292 4 39 84 119
-293 67 125 62 130
-294 122 157 126 131
-295 66 71 83 118
-296 1 57 36 62
-297 69 114 74 109
-298 99 24 104 19
-299 90 135 95 130
-300 88 93 41 76
-301 77 82 117 42
-302 144 139 41 76
-303 14 80 19 75
-304 110 25 105 30
-305 4 5 9 10
-306 112 157 117 152
-307 80 115 75 120
-308 154 123 158 149
-309 33 34 28 29
-310 55 102 50 107
-311 122 158 127 153
-312 78 146 141 43
-313 2 68 7 63
-314 1 81 6 86
-315 100 15 95 20
-316 90 5 85 10
-317 12 92 7 87
-318 122 157 59 54
-319 154 46 149 51
-320 77 135 72 140
0