C4graphGraph forms for C4 [ 320, 184 ] = BGCG(KE_40(1,19,12,23,9);K1;{12,13})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 320, 184 ] = BGCG(KE_40(1,19,12,23,9);K1;{12,13}).

(I) Following is a form readable by MAGMA:

g:=Graph<320|{ {139, 170}, {152, 187}, {140, 170}, {142, 168}, {139, 162}, {156, 183}, {155, 183}, {133, 168}, {128, 175}, {131, 179}, {159, 175}, {130, 179}, {148, 166}, {143, 187}, {152, 172}, {147, 166}, {131, 181}, {148, 162}, {140, 181}, {157, 167}, {151, 172}, {156, 167}, {152, 163}, {141, 176}, {142, 176}, {155, 219}, {132, 197}, {154, 219}, {150, 215}, {138, 203}, {159, 221}, {132, 199}, {158, 221}, {131, 199}, {145, 212}, {130, 204}, {154, 212}, {143, 192}, {131, 211}, {144, 192}, {147, 194}, {159, 205}, {147, 203}, {138, 208}, {141, 215}, {139, 208}, {150, 205}, {158, 195}, {156, 194}, {159, 193}, {128, 223}, {135, 231}, {134, 231}, {160, 193}, {138, 235}, {136, 234}, {137, 234}, {158, 253}, {148, 247}, {129, 229}, {132, 226}, {142, 232}, {130, 229}, {137, 238}, {146, 250}, {153, 241}, {149, 253}, {129, 235}, {157, 247}, {154, 241}, {128, 238}, {143, 225}, {141, 226}, {142, 225}, {137, 250}, {135, 243}, {135, 240}, {156, 230}, {136, 243}, {157, 224}, {151, 232}, {62, 190}, {113, 241}, {77, 205}, {84, 212}, {96, 224}, {46, 175}, {69, 196}, {43, 169}, {63, 189}, {53, 183}, {69, 199}, {111, 236}, {41, 173}, {122, 254}, {74, 206}, {76, 200}, {95, 218}, {107, 238}, {39, 161}, {62, 184}, {60, 186}, {107, 237}, {51, 180}, {121, 254}, {56, 191}, {102, 225}, {108, 235}, {38, 174}, {52, 188}, {74, 194}, {87, 223}, {79, 198}, {125, 244}, {65, 203}, {126, 244}, {96, 234}, {37, 174}, {58, 177}, {45, 166}, {67, 207}, {82, 222}, {85, 217}, {40, 165}, {118, 251}, {111, 226}, {105, 228}, {116, 250}, {126, 240}, {58, 181}, {83, 220}, {49, 161}, {111, 255}, {72, 216}, {54, 167}, {103, 246}, {110, 252}, {68, 215}, {107, 248}, {34, 182}, {60, 168}, {37, 177}, {86, 194}, {89, 205}, {44, 185}, {62, 171}, {95, 202}, {33, 182}, {32, 184}, {61, 165}, {75, 210}, {96, 249}, {105, 240}, {83, 201}, {65, 218}, {125, 230}, {78, 213}, {72, 212}, {76, 208}, {91, 199}, {49, 172}, {65, 223}, {126, 224}, {74, 234}, {127, 223}, {124, 220}, {77, 237}, {87, 247}, {85, 244}, {115, 210}, {97, 195}, {106, 200}, {102, 197}, {13, 169}, {122, 222}, {117, 209}, {30, 186}, {12, 169}, {123, 222}, {65, 228}, {26, 191}, {88, 253}, {2, 164}, {67, 229}, {25, 191}, {11, 173}, {3, 164}, {123, 220}, {113, 214}, {31, 184}, {29, 186}, {10, 173}, {103, 192}, {100, 204}, {21, 188}, {122, 211}, {114, 219}, {109, 196}, {22, 188}, {30, 180}, {25, 178}, {118, 221}, {109, 198}, {80, 252}, {95, 243}, {69, 232}, {11, 165}, {97, 207}, {72, 231}, {120, 215}, {81, 254}, {90, 245}, {93, 242}, {13, 189}, {76, 253}, {80, 225}, {12, 190}, {98, 208}, {13, 185}, {87, 227}, {1, 180}, {121, 204}, {89, 239}, {119, 193}, {101, 211}, {14, 185}, {71, 255}, {8, 177}, {81, 232}, {94, 231}, {95, 230}, {108, 213}, {64, 250}, {73, 243}, {66, 249}, {67, 248}, {82, 233}, {14, 178}, {127, 195}, {114, 206}, {75, 247}, {89, 229}, {28, 161}, {102, 216}, {123, 197}, {117, 203}, {1, 190}, {2, 189}, {73, 246}, {22, 214}, {51, 241}, {108, 174}, {111, 172}, {17, 213}, {115, 183}, {41, 236}, {59, 254}, {53, 240}, {34, 228}, {15, 200}, {53, 242}, {36, 227}, {35, 228}, {6, 207}, {60, 245}, {28, 213}, {99, 170}, {3, 201}, {4, 206}, {26, 209}, {63, 244}, {48, 251}, {44, 224}, {3, 206}, {43, 230}, {98, 175}, {107, 166}, {22, 216}, {24, 202}, {39, 245}, {26, 200}, {11, 216}, {116, 167}, {56, 235}, {25, 202}, {18, 198}, {118, 162}, {15, 218}, {113, 164}, {101, 176}, {4, 210}, {125, 171}, {119, 161}, {5, 210}, {124, 171}, {40, 255}, {112, 168}, {55, 238}, {59, 226}, {57, 227}, {121, 163}, {29, 198}, {110, 181}, {105, 178}, {5, 217}, {36, 248}, {37, 248}, {52, 233}, {38, 251}, {4, 218}, {49, 239}, {17, 207}, {100, 186}, {102, 184}, {104, 182}, {96, 191}, {27, 251}, {66, 162}, {92, 188}, {93, 189}, {23, 246}, {61, 220}, {30, 252}, {60, 222}, {49, 211}, {38, 196}, {92, 190}, {39, 196}, {7, 227}, {22, 242}, {23, 242}, {56, 221}, {81, 180}, {77, 170}, {16, 249}, {41, 192}, {32, 201}, {82, 187}, {88, 177}, {90, 179}, {68, 174}, {2, 233}, {79, 163}, {73, 164}, {84, 185}, {45, 195}, {55, 217}, {19, 252}, {52, 219}, {31, 236}, {37, 209}, {27, 237}, {64, 182}, {31, 233}, {33, 214}, {68, 179}, {50, 197}, {20, 236}, {57, 193}, {91, 163}, {75, 178}, {12, 246}, {83, 169}, {34, 217}, {5, 249}, {53, 201}, {48, 204}, {19, 239}, {81, 173}, {16, 237}, {55, 202}, {43, 214}, {18, 239}, {70, 187}, {1, 255}, {47, 209}, {91, 165}, {10, 245}, {79, 176}, {84, 171}, {35, 291}, {61, 317}, {23, 276}, {50, 305}, {42, 302}, {8, 269}, {19, 278}, {10, 268}, {17, 279}, {14, 264}, {15, 264}, {46, 297}, {34, 293}, {16, 279}, {16, 280}, {56, 304}, {44, 293}, {61, 308}, {7, 269}, {42, 288}, {57, 306}, {24, 276}, {18, 287}, {54, 315}, {36, 297}, {4, 266}, {59, 309}, {45, 291}, {46, 316}, {57, 299}, {51, 289}, {19, 256}, {38, 309}, {35, 304}, {29, 270}, {14, 282}, {42, 318}, {20, 256}, {63, 298}, {48, 294}, {15, 280}, {7, 287}, {27, 259}, {3, 282}, {21, 268}, {8, 278}, {32, 318}, {28, 258}, {28, 259}, {29, 258}, {8, 296}, {47, 271}, {9, 296}, {52, 277}, {12, 302}, {54, 276}, {41, 267}, {31, 317}, {30, 317}, {63, 284}, {9, 300}, {45, 264}, {11, 302}, {10, 300}, {40, 270}, {20, 307}, {5, 301}, {13, 295}, {6, 301}, {33, 266}, {21, 318}, {25, 297}, {35, 275}, {27, 299}, {26, 299}, {23, 293}, {114, 320}, {50, 256}, {58, 265}, {18, 294}, {21, 289}, {2, 311}, {44, 281}, {43, 286}, {20, 289}, {1, 311}, {55, 257}, {46, 280}, {6, 304}, {17, 294}, {51, 260}, {48, 263}, {42, 285}, {39, 272}, {36, 275}, {7, 319}, {47, 279}, {40, 272}, {6, 319}, {59, 258}, {58, 259}, {9, 307}, {24, 291}, {9, 309}, {54, 266}, {50, 270}, {32, 284}, {33, 284}, {47, 273}, {24, 295}, {87, 279}, {112, 305}, {78, 269}, {94, 282}, {127, 315}, {113, 308}, {64, 262}, {112, 311}, {90, 274}, {94, 276}, {117, 319}, {97, 299}, {71, 268}, {85, 283}, {112, 318}, {86, 280}, {104, 295}, {86, 262}, {115, 291}, {108, 316}, {66, 275}, {106, 315}, {73, 283}, {69, 278}, {120, 300}, {80, 261}, {119, 290}, {70, 272}, {93, 267}, {97, 310}, {114, 293}, {100, 307}, {101, 317}, {92, 261}, {116, 301}, {115, 298}, {64, 282}, {90, 256}, {68, 287}, {78, 274}, {124, 288}, {85, 264}, {116, 297}, {84, 266}, {100, 314}, {109, 306}, {119, 296}, {67, 290}, {76, 301}, {98, 259}, {99, 258}, {103, 260}, {93, 312}, {66, 292}, {86, 304}, {79, 296}, {125, 277}, {70, 303}, {110, 263}, {101, 268}, {83, 313}, {89, 309}, {99, 271}, {74, 295}, {121, 265}, {123, 267}, {120, 265}, {77, 319}, {92, 303}, {106, 281}, {78, 314}, {117, 257}, {70, 307}, {99, 278}, {104, 285}, {120, 270}, {105, 286}, {124, 260}, {126, 262}, {106, 275}, {127, 262}, {91, 289}, {103, 284}, {118, 269}, {80, 300}, {109, 273}, {82, 302}, {88, 292}, {75, 310}, {98, 287}, {104, 277}, {62, 320}, {110, 272}, {71, 313}, {88, 294}, {94, 288}, {71, 312}, {122, 261}, {72, 311}, {155, 283}, {133, 260}, {149, 273}, {151, 274}, {150, 273}, {146, 283}, {147, 281}, {146, 281}, {145, 285}, {146, 286}, {144, 285}, {129, 271}, {145, 286}, {151, 263}, {150, 263}, {154, 267}, {134, 277}, {153, 261}, {157, 257}, {158, 257}, {153, 313}, {136, 298}, {128, 292}, {129, 292}, {148, 316}, {153, 305}, {144, 313}, {160, 265}, {152, 305}, {149, 316}, {133, 303}, {132, 303}, {140, 290}, {160, 271}, {130, 306}, {134, 308}, {160, 274}, {136, 315}, {140, 314}, {141, 314}, {149, 290}, {139, 306}, {143, 308}, {155, 288}, {145, 298}, {138, 310}, {133, 312}, {134, 312}, {137, 310}, {135, 320}, {144, 320} }>;

(II) A more general form is to represent the graph as the orbit of {139, 170} under the group generated by the following permutations:

a: (2, 81)(3, 69)(4, 109)(5, 57)(6, 36)(7, 116)(8, 64)(9, 104)(10, 52)(11, 31)(12, 111)(13, 59)(14, 99)(15, 47)(16, 26)(17, 106)(18, 54)(19, 94)(20, 42)(22, 101)(23, 49)(24, 89)(25, 77)(27, 96)(28, 44)(29, 84)(30, 72)(32, 91)(33, 79)(34, 119)(35, 67)(37, 86)(38, 74)(39, 114)(40, 62)(41, 82)(43, 141)(45, 129)(46, 117)(48, 136)(50, 124)(51, 112)(53, 131)(55, 159)(56, 107)(58, 126)(60, 154)(61, 102)(63, 121)(65, 149)(66, 97)(68, 156)(70, 144)(71, 92)(73, 151)(75, 139)(76, 87)(78, 146)(80, 134)(83, 132)(85, 160)(88, 127)(90, 155)(93, 122)(95, 150)(98, 157)(100, 145)(103, 152)(105, 140)(108, 147)(110, 135)(113, 142)(115, 130)(118, 137)(120, 125)(128, 158)(133, 153)(138, 148)(161, 293)(162, 310)(163, 284)(164, 232)(165, 184)(166, 235)(167, 287)(168, 241)(169, 226)(170, 178)(171, 270)(172, 246)(173, 233)(174, 194)(175, 257)(176, 214)(177, 262)(179, 183)(180, 311)(181, 240)(182, 296)(185, 258)(186, 212)(187, 192)(188, 268)(189, 254)(190, 255)(191, 237)(193, 217)(195, 292)(196, 206)(197, 220)(198, 266)(199, 201)(200, 279)(202, 205)(203, 316)(204, 298)(207, 275)(208, 247)(209, 280)(210, 306)(211, 242)(213, 281)(215, 230)(216, 317)(218, 273)(219, 245)(221, 238)(222, 267)(223, 253)(224, 259)(225, 308)(227, 301)(228, 290)(229, 291)(231, 252)(234, 251)(236, 302)(239, 276)(243, 263)(244, 265)(248, 304)(249, 299)(250, 269)(256, 288)(260, 305)(261, 312)(264, 271)(272, 320)(274, 283)(277, 300)(278, 282)(285, 307)(286, 314)(289, 318)(294, 315)(295, 309)(297, 319)(303, 313)
b: (1, 2)(3, 81)(4, 121)(5, 58)(6, 37)(7, 36)(8, 116)(9, 156)(10, 53)(11, 32)(12, 31)(13, 111)(14, 151)(15, 48)(16, 27)(17, 26)(18, 106)(19, 146)(20, 43)(21, 22)(23, 101)(24, 141)(25, 78)(28, 96)(29, 136)(30, 73)(33, 91)(34, 131)(35, 68)(38, 86)(39, 126)(40, 63)(41, 83)(42, 102)(44, 49)(45, 150)(46, 118)(47, 97)(50, 145)(51, 113)(52, 92)(54, 79)(55, 140)(56, 108)(57, 87)(59, 74)(60, 135)(61, 103)(62, 82)(64, 69)(65, 130)(66, 98)(67, 117)(70, 125)(71, 93)(72, 112)(75, 160)(76, 88)(77, 107)(80, 155)(84, 152)(85, 110)(89, 147)(90, 105)(94, 142)(95, 100)(99, 137)(104, 132)(109, 127)(114, 122)(115, 120)(119, 157)(123, 144)(124, 143)(128, 139)(129, 138)(133, 134)(148, 159)(149, 158)(153, 154)(161, 224)(162, 175)(163, 266)(164, 180)(165, 284)(166, 205)(167, 296)(168, 231)(169, 236)(170, 238)(171, 187)(172, 185)(173, 201)(174, 304)(176, 276)(177, 301)(178, 274)(179, 228)(181, 217)(182, 199)(183, 300)(184, 302)(186, 243)(189, 255)(190, 233)(191, 213)(192, 220)(193, 247)(194, 309)(195, 273)(196, 262)(197, 285)(198, 315)(200, 294)(202, 314)(203, 229)(204, 218)(206, 254)(207, 209)(208, 292)(210, 265)(211, 293)(212, 305)(214, 289)(215, 291)(216, 318)(219, 261)(221, 316)(222, 320)(223, 306)(225, 288)(226, 295)(230, 307)(232, 282)(234, 258)(239, 281)(240, 245)(242, 268)(244, 272)(246, 317)(248, 319)(249, 259)(250, 278)(251, 280)(252, 283)(256, 286)(257, 290)(260, 308)(263, 264)(267, 313)(269, 297)(270, 298)(271, 310)(275, 287)(277, 303)(279, 299)
c: (2, 62)(3, 125)(4, 85)(7, 67)(8, 130)(9, 90)(12, 72)(13, 135)(14, 95)(17, 77)(18, 140)(19, 100)(22, 42)(23, 145)(24, 105)(27, 47)(28, 150)(29, 110)(32, 52)(33, 155)(34, 115)(37, 57)(38, 160)(39, 120)(43, 94)(44, 136)(45, 65)(48, 99)(49, 141)(50, 70)(53, 104)(54, 146)(55, 75)(58, 109)(59, 151)(60, 80)(63, 114)(64, 156)(68, 119)(69, 121)(73, 84)(74, 126)(78, 89)(79, 131)(82, 102)(83, 134)(87, 107)(88, 139)(92, 112)(93, 144)(97, 117)(98, 149)(103, 154)(108, 159)(113, 124)(118, 129)(122, 142)(123, 143)(127, 147)(128, 148)(132, 152)(133, 153)(137, 157)(138, 158)(161, 215)(162, 292)(163, 199)(164, 171)(166, 223)(167, 250)(168, 261)(169, 231)(170, 294)(172, 226)(174, 193)(175, 316)(176, 211)(177, 306)(178, 202)(179, 296)(181, 198)(182, 183)(184, 233)(185, 243)(186, 252)(187, 197)(188, 318)(189, 320)(190, 311)(192, 267)(194, 262)(195, 203)(196, 265)(201, 277)(204, 278)(205, 213)(206, 244)(207, 319)(208, 253)(209, 299)(210, 217)(212, 246)(214, 288)(216, 302)(218, 264)(219, 284)(220, 308)(221, 235)(222, 225)(224, 234)(227, 248)(228, 291)(229, 269)(230, 282)(232, 254)(237, 279)(238, 247)(239, 314)(240, 295)(241, 260)(242, 285)(245, 300)(251, 271)(256, 307)(257, 310)(258, 263)(259, 273)(266, 283)(270, 272)(274, 309)(276, 286)(281, 315)(287, 290)(293, 298)(303, 305)(312, 313)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 320, 184 ]
320
-1 255 190 311 180
-2 189 233 311 164
-3 201 282 206 164
-4 210 266 206 218
-5 210 301 249 217
-6 319 301 304 207
-7 319 287 269 227
-8 177 278 269 296
-9 309 300 296 307
-10 245 300 268 173
-11 165 302 216 173
-12 190 169 246 302
-13 189 169 185 295
-14 264 178 282 185
-15 264 200 280 218
-16 279 280 237 249
-17 213 279 294 207
-18 198 287 239 294
-19 256 278 239 252
-20 256 289 236 307
-21 188 289 268 318
-22 242 188 214 216
-23 242 276 246 293
-24 276 202 291 295
-25 297 178 191 202
-26 209 200 299 191
-27 299 237 259 251
-28 213 258 259 161
-29 198 258 270 186
-30 180 317 186 252
-31 233 236 184 317
-32 201 184 284 318
-33 266 214 182 284
-34 182 293 217 228
-35 275 291 304 228
-36 275 297 248 227
-37 209 177 248 174
-38 309 174 196 251
-39 245 161 272 196
-40 165 255 270 272
-41 267 192 236 173
-42 288 302 285 318
-43 286 169 214 230
-44 224 281 293 185
-45 264 166 291 195
-46 297 280 316 175
-47 209 279 271 273
-48 204 294 251 263
-49 211 161 172 239
-50 256 270 305 197
-51 289 180 260 241
-52 188 233 277 219
-53 242 201 183 240
-54 276 167 266 315
-55 202 257 238 217
-56 221 191 235 304
-57 299 193 227 306
-58 177 265 181 259
-59 254 309 258 226
-60 222 168 245 186
-61 165 220 308 317
-62 320 190 171 184
-63 298 189 244 284
-64 182 282 250 262
-65 223 203 228 218
-66 275 292 249 162
-67 290 248 207 229
-68 287 179 215 174
-69 199 232 278 196
-70 187 303 272 307
-71 255 268 312 313
-72 231 212 311 216
-73 243 246 283 164
-74 234 194 206 295
-75 210 178 310 247
-76 253 200 301 208
-77 319 170 237 205
-78 213 269 314 274
-79 176 198 163 296
-80 300 225 261 252
-81 232 254 180 173
-82 187 222 233 302
-83 220 201 169 313
-84 266 212 171 185
-85 264 244 217 283
-86 280 194 304 262
-87 223 279 247 227
-88 253 177 292 294
-89 309 205 239 229
-90 179 245 256 274
-91 165 199 289 163
-92 188 190 303 261
-93 242 189 267 312
-94 231 276 288 282
-95 243 202 218 230
-96 234 191 224 249
-97 299 310 195 207
-98 287 259 175 208
-99 278 170 258 271
-100 204 314 186 307
-101 176 211 268 317
-102 225 216 184 197
-103 246 192 260 284
-104 277 182 295 285
-105 286 178 228 240
-106 275 200 281 315
-107 166 237 248 238
-108 213 235 316 174
-109 198 196 273 306
-110 181 272 252 263
-111 255 236 226 172
-112 168 311 305 318
-113 308 214 164 241
-114 320 293 206 219
-115 210 298 291 183
-116 297 167 301 250
-117 209 319 257 203
-118 221 269 162 251
-119 290 193 161 296
-120 265 300 215 270
-121 254 265 204 163
-122 254 211 222 261
-123 220 222 267 197
-124 220 288 171 260
-125 244 277 171 230
-126 244 224 240 262
-127 223 315 195 262
-128 223 292 238 175
-129 235 292 271 229
-130 179 204 229 306
-131 199 211 179 181
-132 199 226 303 197
-133 168 312 303 260
-134 231 308 277 312
-135 231 243 320 240
-136 243 298 234 315
-137 310 234 238 250
-138 310 235 203 208
-139 170 162 306 208
-140 290 170 181 314
-141 176 215 226 314
-142 176 232 168 225
-143 187 308 192 225
-144 320 192 313 285
-145 286 298 212 285
-146 286 281 250 283
-147 166 203 281 194
-148 166 247 162 316
-149 253 290 316 273
-150 215 205 273 263
-151 232 172 263 274
-152 187 172 305 163
-153 313 261 305 241
-154 212 267 219 241
-155 288 183 283 219
-156 167 183 194 230
-157 167 224 257 247
-158 253 221 257 195
-159 221 193 205 175
-160 265 193 271 274
-161 49 28 39 119
-162 66 148 139 118
-163 121 79 91 152
-164 2 3 113 73
-165 11 91 61 40
-166 45 147 148 107
-167 156 157 116 54
-168 133 112 60 142
-169 12 13 83 43
-170 77 99 139 140
-171 124 125 62 84
-172 111 49 151 152
-173 11 81 41 10
-174 68 37 38 108
-175 46 159 128 98
-176 79 101 141 142
-177 88 58 37 8
-178 14 25 105 75
-179 68 90 130 131
-180 1 81 51 30
-181 110 58 140 131
-182 33 34 104 64
-183 155 156 115 53
-184 102 62 31 32
-185 44 13 14 84
-186 100 60 29 30
-187 143 70 82 152
-188 22 92 52 21
-189 2 13 93 63
-190 1 12 92 62
-191 56 25 26 96
-192 143 144 103 41
-193 57 159 160 119
-194 156 147 74 86
-195 45 158 127 97
-196 69 38 39 109
-197 132 123 102 50
-198 79 18 29 109
-199 132 69 91 131
-200 15 26 106 76
-201 3 83 53 32
-202 55 24 25 95
-203 147 138 117 65
-204 121 100 48 130
-205 77 89 159 150
-206 3 4 114 74
-207 67 6 17 97
-208 138 139 76 98
-209 47 26 37 117
-210 4 5 115 75
-211 122 101 49 131
-212 154 145 72 84
-213 78 17 28 108
-214 22 33 113 43
-215 68 150 141 120
-216 11 22 102 72
-217 55 34 5 85
-218 4 15 95 65
-219 154 155 114 52
-220 123 124 61 83
-221 56 158 159 118
-222 122 123 60 82
-223 127 128 65 87
-224 44 157 126 96
-225 143 80 102 142
-226 132 111 59 141
-227 57 36 7 87
-228 34 35 105 65
-229 67 89 129 130
-230 156 125 95 43
-231 134 135 72 94
-232 69 81 151 142
-233 2 82 52 31
-234 136 137 74 96
-235 56 138 129 108
-236 111 41 20 31
-237 77 16 27 107
-238 55 137 128 107
-239 89 49 18 19
-240 135 126 105 53
-241 154 113 51 153
-242 22 23 93 53
-243 135 136 73 95
-244 125 126 63 85
-245 90 60 39 10
-246 12 23 103 73
-247 157 148 75 87
-248 67 36 37 107
-249 66 5 16 96
-250 146 137 116 64
-251 48 27 38 118
-252 110 80 19 30
-253 88 158 149 76
-254 121 122 59 81
-255 1 111 71 40
-256 90 50 19 20
-257 55 157 158 117
-258 99 59 28 29
-259 58 27 28 98
-260 133 124 103 51
-261 122 80 92 153
-262 126 127 64 86
-263 110 48 150 151
-264 45 14 15 85
-265 121 58 160 120
-266 33 4 84 54
-267 154 123 93 41
-268 101 71 10 21
-269 78 7 8 118
-270 50 29 40 120
-271 99 47 160 129
-272 110 70 39 40
-273 47 149 150 109
-274 78 90 160 151
-275 66 35 36 106
-276 23 24 94 54
-277 134 125 104 52
-278 99 69 8 19
-279 47 16 17 87
-280 46 15 16 86
-281 44 146 147 106
-282 3 14 94 64
-283 155 146 73 85
-284 33 103 63 32
-285 144 145 104 42
-286 145 146 105 43
-287 68 7 18 98
-288 155 124 94 42
-289 91 51 20 21
-290 67 149 140 119
-291 45 24 35 115
-292 66 88 128 129
-293 44 23 34 114
-294 88 48 17 18
-295 13 24 104 74
-296 79 8 9 119
-297 46 25 36 116
-298 145 136 115 63
-299 57 26 27 97
-300 80 9 10 120
-301 5 6 116 76
-302 11 12 82 42
-303 132 133 70 92
-304 56 35 6 86
-305 112 50 152 153
-306 57 139 130 109
-307 100 70 9 20
-308 143 134 113 61
-309 89 59 38 9
-310 137 138 75 97
-311 1 2 112 72
-312 133 134 71 93
-313 144 71 83 153
-314 78 100 140 141
-315 136 127 106 54
-316 46 148 149 108
-317 101 61 30 31
-318 112 42 21 32
-319 77 6 7 117
-320 144 135 114 62
0

**************