[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 185 ] =
BGCG(KE_40(1,21,8,17,11);K1;{10,11}).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {160, 189}, {147, 179}, {140, 173}, {143, 174}, {128, 162}, {153,
187}, {148, 182}, {139, 169}, {146, 177}, {154, 185}, {133, 161}, {159, 187},
{136, 173}, {132, 162}, {158, 184}, {153, 191}, {149, 189}, {128, 169}, {153,
179}, {157, 177}, {141, 188}, {142, 191}, {152, 170}, {159, 172}, {156, 168},
{137, 190}, {148, 172}, {129, 184}, {145, 168}, {138, 176}, {148, 175}, {149,
174}, {131, 190}, {130, 188}, {137, 182}, {144, 175}, {134, 198}, {152, 217},
{129, 195}, {130, 198}, {144, 212}, {150, 211}, {134, 205}, {140, 194}, {135,
200}, {155, 212}, {140, 195}, {154, 203}, {131, 208}, {153, 202}, {141, 217},
{151, 194}, {158, 203}, {129, 215}, {139, 211}, {155, 193}, {156, 199}, {145,
205}, {142, 208}, {152, 199}, {137, 233}, {158, 255}, {142, 234}, {154, 254},
{132, 225}, {138, 236}, {158, 248}, {143, 233}, {150, 254}, {155, 241}, {147,
255}, {145, 252}, {143, 225}, {137, 249}, {160, 210}, {139, 252}, {146, 234},
{149, 236}, {46, 174}, {67, 195}, {50, 179}, {77, 204}, {79, 206}, {37, 167},
{122, 248}, {120, 250}, {113, 243}, {106, 232}, {43, 168}, {56, 187}, {54, 181},
{52, 183}, {112, 244}, {69, 192}, {99, 230}, {33, 167}, {68, 194}, {58, 188},
{43, 173}, {85, 211}, {91, 221}, {92, 218}, {98, 228}, {105, 239}, {103, 224},
{126, 249}, {35, 171}, {45, 164}, {40, 163}, {77, 198}, {84, 223}, {85, 222},
{40, 164}, {56, 180}, {102, 234}, {108, 225}, {118, 251}, {87, 217}, {118, 248},
{89, 215}, {103, 233}, {36, 171}, {126, 241}, {42, 186}, {81, 193}, {110, 254},
{37, 180}, {114, 227}, {67, 210}, {64, 209}, {56, 169}, {47, 189}, {86, 196},
{96, 242}, {101, 247}, {42, 185}, {52, 167}, {110, 253}, {50, 166}, {115, 231},
{101, 241}, {66, 215}, {69, 208}, {105, 252}, {46, 184}, {79, 217}, {98, 245},
{59, 163}, {60, 165}, {78, 213}, {51, 175}, {72, 212}, {83, 207}, {90, 198},
{77, 211}, {114, 236}, {87, 201}, {71, 216}, {102, 249}, {20, 181}, {93, 255},
{83, 240}, {118, 213}, {110, 205}, {18, 183}, {117, 208}, {17, 183}, {19, 181},
{109, 197}, {15, 166}, {99, 202}, {80, 250}, {120, 210}, {93, 246}, {75, 231},
{123, 215}, {120, 212}, {79, 227}, {100, 200}, {14, 163}, {109, 192}, {64, 238},
{124, 210}, {66, 236}, {65, 239}, {71, 232}, {115, 195}, {84, 229}, {90, 235},
{8, 186}, {68, 246}, {124, 200}, {1, 180}, {7, 178}, {16, 166}, {124, 202},
{116, 194}, {75, 253}, {89, 238}, {112, 199}, {111, 216}, {121, 193}, {11, 178},
{119, 206}, {117, 204}, {114, 203}, {65, 248}, {80, 233}, {104, 209}, {88, 226},
{76, 247}, {25, 165}, {72, 244}, {7, 186}, {97, 220}, {107, 214}, {26, 164},
{101, 219}, {26, 165}, {82, 237}, {12, 204}, {14, 206}, {13, 204}, {113, 176},
{34, 227}, {30, 223}, {23, 214}, {15, 206}, {100, 165}, {104, 169}, {6, 196},
{113, 179}, {47, 237}, {48, 243}, {109, 174}, {4, 192}, {125, 185}, {53, 241},
{34, 230}, {5, 192}, {35, 230}, {110, 171}, {27, 221}, {38, 224}, {26, 221},
{57, 254}, {40, 239}, {39, 224}, {104, 175}, {44, 229}, {118, 191}, {3, 201},
{63, 245}, {56, 242}, {20, 222}, {21, 222}, {3, 207}, {119, 187}, {29, 209},
{27, 214}, {96, 173}, {7, 201}, {30, 209}, {127, 176}, {54, 249}, {36, 235},
{43, 251}, {4, 213}, {123, 170}, {37, 244}, {33, 243}, {117, 167}, {48, 226},
{45, 255}, {38, 244}, {3, 213}, {42, 252}, {12, 218}, {106, 188}, {29, 197}, {4,
223}, {49, 234}, {43, 240}, {25, 197}, {120, 164}, {55, 235}, {38, 251}, {60,
225}, {59, 230}, {6, 216}, {127, 161}, {58, 228}, {7, 216}, {63, 224}, {97,
190}, {76, 172}, {10, 235}, {18, 240}, {21, 247}, {95, 189}, {19, 240}, {57,
218}, {30, 253}, {24, 251}, {82, 177}, {90, 185}, {12, 232}, {32, 196}, {22,
242}, {57, 220}, {81, 180}, {83, 182}, {17, 247}, {61, 219}, {94, 184}, {9,
238}, {70, 161}, {21, 242}, {18, 245}, {39, 207}, {82, 186}, {44, 197}, {75,
162}, {91, 178}, {5, 238}, {92, 183}, {94, 181}, {9, 229}, {14, 226}, {11, 231},
{10, 231}, {70, 171}, {16, 253}, {1, 239}, {51, 221}, {49, 223}, {29, 243}, {2,
237}, {13, 226}, {10, 229}, {66, 178}, {4, 245}, {65, 176}, {28, 237}, {26,
232}, {88, 170}, {23, 228}, {62, 205}, {45, 222}, {91, 168}, {74, 190}, {58,
207}, {61, 203}, {20, 227}, {62, 201}, {51, 196}, {84, 172}, {51, 202}, {70,
191}, {80, 170}, {88, 162}, {13, 246}, {58, 193}, {74, 177}, {6, 250}, {59,
199}, {52, 200}, {42, 214}, {38, 218}, {32, 220}, {24, 228}, {90, 166}, {93,
161}, {33, 220}, {75, 182}, {94, 163}, {37, 219}, {5, 250}, {36, 219}, {9, 246},
{24, 281}, {34, 291}, {33, 291}, {14, 269}, {60, 319}, {47, 300}, {50, 310},
{53, 305}, {17, 279}, {62, 312}, {6, 257}, {41, 302}, {35, 299}, {50, 314}, {47,
295}, {11, 258}, {19, 280}, {17, 285}, {39, 299}, {16, 285}, {12, 258}, {16,
286}, {23, 280}, {31, 271}, {28, 269}, {40, 313}, {31, 270}, {22, 260}, {10,
281}, {55, 292}, {34, 305}, {27, 271}, {60, 296}, {18, 263}, {20, 257}, {55,
289}, {55, 303}, {61, 293}, {15, 278}, {35, 314}, {13, 279}, {44, 311}, {2,
286}, {53, 297}, {49, 301}, {25, 261}, {11, 278}, {54, 299}, {24, 261}, {39,
313}, {45, 307}, {36, 260}, {46, 271}, {27, 312}, {61, 286}, {57, 282}, {28,
312}, {31, 314}, {53, 272}, {19, 308}, {52, 275}, {32, 263}, {25, 318}, {2,
298}, {8, 288}, {63, 277}, {1, 298}, {21, 318}, {46, 258}, {41, 260}, {8, 294},
{32, 270}, {9, 294}, {48, 256}, {29, 297}, {49, 261}, {41, 285}, {28, 297},
{117, 320}, {62, 267}, {41, 284}, {22, 288}, {63, 265}, {8, 305}, {5, 319}, {30,
292}, {22, 300}, {15, 308}, {31, 292}, {23, 300}, {48, 268}, {44, 273}, {59,
262}, {1, 319}, {3, 317}, {2, 317}, {65, 257}, {64, 259}, {73, 266}, {81, 274},
{100, 295}, {73, 269}, {89, 284}, {102, 288}, {79, 264}, {103, 303}, {127, 311},
{109, 293}, {95, 278}, {115, 314}, {77, 263}, {95, 276}, {114, 313}, {66, 270},
{122, 310}, {121, 309}, {119, 315}, {112, 316}, {81, 285}, {97, 301}, {82, 287},
{108, 289}, {124, 306}, {108, 291}, {70, 278}, {98, 307}, {99, 304}, {123, 296},
{86, 258}, {87, 259}, {92, 264}, {98, 310}, {78, 283}, {78, 280}, {107, 317},
{99, 308}, {122, 301}, {113, 294}, {105, 318}, {69, 287}, {73, 274}, {69, 281},
{119, 299}, {72, 276}, {86, 266}, {89, 261}, {85, 267}, {123, 293}, {116, 298},
{102, 312}, {72, 279}, {125, 290}, {96, 256}, {115, 275}, {111, 271}, {108,
269}, {126, 287}, {67, 288}, {111, 268}, {86, 309}, {106, 270}, {100, 257},
{122, 287}, {68, 290}, {76, 298}, {84, 306}, {68, 291}, {125, 277}, {88, 305},
{85, 319}, {92, 311}, {107, 262}, {80, 318}, {73, 294}, {94, 302}, {116, 260},
{104, 281}, {74, 313}, {105, 282}, {93, 297}, {126, 266}, {71, 306}, {54, 320},
{125, 267}, {97, 279}, {112, 263}, {91, 290}, {106, 272}, {121, 259}, {111,
277}, {107, 273}, {78, 309}, {83, 296}, {87, 300}, {95, 292}, {64, 316}, {127,
259}, {71, 315}, {76, 304}, {116, 265}, {67, 317}, {74, 308}, {96, 286}, {101,
283}, {103, 280}, {121, 262}, {136, 264}, {146, 274}, {132, 262}, {147, 273},
{146, 272}, {131, 256}, {159, 282}, {149, 275}, {154, 284}, {150, 272}, {130,
266}, {155, 275}, {132, 264}, {135, 276}, {143, 284}, {159, 267}, {129, 276},
{156, 265}, {135, 274}, {141, 283}, {130, 282}, {151, 268}, {135, 283}, {141,
273}, {136, 277}, {145, 268}, {160, 256}, {131, 290}, {134, 293}, {150, 309},
{138, 302}, {134, 302}, {160, 265}, {140, 295}, {156, 311}, {144, 315}, {128,
303}, {147, 316}, {128, 306}, {157, 303}, {133, 310}, {136, 316}, {133, 304},
{157, 296}, {148, 289}, {144, 295}, {138, 307}, {152, 289}, {151, 301}, {139,
304}, {142, 307}, {133, 315}, {151, 320}, {157, 320} }>;
(II) A more general form is to represent the graph as the orbit of {160, 189}
under the group generated by the following permutations:
a: (2, 81)(3, 121)(4, 64)(7, 86)(8, 126)(9, 69)(12, 91)(13, 131)(14, 74)(17,
96)(18, 136)(19, 79)(22, 101)(23, 141)(24, 44)(27, 106)(28, 146)(29, 49)(32,
111)(33, 151)(34, 54)(37, 116)(38, 156)(39, 59)(41, 61)(42, 130)(43, 92)(46,
66)(47, 135)(48, 97)(51, 71)(52, 140)(53, 102)(56, 76)(57, 145)(58, 107)(62,
150)(63, 112)(67, 155)(68, 117)(72, 160)(73, 82)(77, 125)(78, 87)(83, 132)(84,
104)(88, 137)(89, 109)(93, 142)(94, 114)(98, 147)(99, 119)(103, 152)(108,
157)(113, 122)(118, 127)(123, 143)(124, 144)(128, 148)(129, 149)(133, 153)(134,
154)(138, 158)(139, 159)(161, 191)(162, 182)(163, 313)(167, 194)(168, 218)(169,
172)(170, 233)(173, 183)(174, 215)(175, 306)(176, 248)(177, 269)(178, 258)(179,
310)(180, 298)(181, 227)(184, 236)(185, 198)(186, 266)(187, 304)(188, 214)(189,
276)(190, 226)(192, 238)(193, 317)(195, 275)(196, 216)(197, 261)(199, 224)(200,
295)(201, 309)(202, 315)(203, 302)(204, 290)(205, 254)(206, 308)(207, 262)(208,
246)(209, 223)(210, 212)(211, 267)(213, 259)(217, 280)(219, 260)(220, 268)(221,
232)(225, 296)(228, 273)(229, 281)(230, 299)(234, 297)(237, 274)(240, 264)(241,
288)(242, 247)(243, 301)(244, 265)(245, 316)(249, 305)(251, 311)(252, 282)(255,
307)(256, 279)(263, 277)(270, 271)(272, 312)(283, 300)(284, 293)(285, 286)(287,
294)(289, 303)(291, 320) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 40, 81, 60)(3, 59, 73, 157)(4, 156, 113, 117)(5, 116, 65, 37)(6, 36)(7,
35, 86, 55)(8, 54, 78, 152)(9, 151, 118, 112)(10, 111, 70, 32)(11, 31)(12, 30,
91, 50)(13, 49, 43, 147)(14, 146, 83, 107)(15, 106, 75, 27)(16, 26)(17, 25, 96,
45)(18, 44, 48, 142)(19, 141, 88, 102)(20, 101, 80, 22)(23, 79, 53, 137)(24,
136, 93, 97)(28, 74, 58, 132)(29, 131, 98, 92)(33, 69, 63, 127)(34, 126, 103,
87)(38, 64, 68, 122)(39, 121, 108, 82)(41, 100, 61, 120)(42, 119, 150, 148)(46,
95, 66, 115)(47, 114, 155, 143)(51, 90, 71, 110)(52, 109, 160, 138)(56, 85, 76,
105)(57, 104, 125, 133)(62, 99, 130, 128)(67, 94, 135, 123)(72, 89, 140,
158)(77, 84, 145, 153)(124, 134)(139, 159)(144, 154)(161, 220, 281, 277)(162,
312, 308, 188)(163, 274, 296, 317)(164, 285, 165, 286)(166, 232, 253, 221)(167,
192, 265, 176)(168, 179, 204, 223)(169, 267, 304, 282)(170, 288, 181, 283)(171,
196, 235, 216)(172, 252, 187, 211)(173, 255, 279, 261)(174, 189, 236, 275)(175,
185, 315, 254)(177, 207, 262, 269)(178, 314, 258, 292)(180, 319, 298, 239)(182,
214, 206, 272)(183, 197, 256, 307)(184, 276, 215, 195)(186, 299, 309, 289)(190,
228, 264, 297)(191, 263, 229, 268)(193, 225, 237, 313)(194, 248, 244, 238)(198,
306, 205, 202)(199, 294, 320, 213)(200, 293, 210, 302)(201, 230, 266, 303)(203,
212, 284, 295)(208, 245, 311, 243)(209, 290, 310, 218)(217, 305, 249, 280)(219,
250, 260, 257)(222, 247, 318, 242)(224, 259, 291, 287)(226, 234, 240, 273)(227,
241, 233, 300)(231, 271, 278, 270)(246, 301, 251, 316)
c: (1, 2)(3, 60, 82, 40)(4, 108, 122, 59)(5, 28, 65, 107)(6, 27)(7, 26)(8, 45,
87, 25)(9, 93, 127, 44)(10, 13, 70, 92)(11, 12)(14, 118, 132, 69)(15, 38, 75,
117)(16, 37)(17, 36)(18, 55, 97, 35)(19, 103, 137, 54)(20, 23, 80, 102)(21,
22)(24, 88, 142, 79)(29, 113, 147, 64)(30, 33, 50, 112)(31, 32)(34, 98, 152,
49)(39, 83, 157, 74)(41, 101)(42, 120, 62, 100)(43, 128, 131, 119)(46, 86)(47,
105, 67, 85)(48, 153, 136, 104)(51, 111)(52, 90, 72, 110)(53, 138, 141, 89)(56,
96)(57, 115, 77, 95)(58, 123, 146, 114)(61, 81)(63, 148, 151, 99)(66, 106)(68,
133, 156, 84)(71, 91)(73, 158, 121, 109)(76, 116)(78, 143, 126, 94)(124, 125,
144, 145)(129, 150, 149, 130)(134, 135, 154, 155)(139, 160, 159, 140)(161, 311,
229, 246)(162, 208, 206, 251)(163, 213, 225, 287)(164, 201, 165, 186)(166, 244,
253, 167)(168, 306, 290, 315)(169, 256, 187, 173)(170, 234, 227, 228)(171, 183,
235, 279)(172, 194, 304, 265)(174, 266, 184, 309)(175, 268, 202, 277)(176, 273,
238, 297)(177, 313, 207, 296)(178, 232)(179, 316, 209, 243)(180, 286)(181, 280,
233, 249)(182, 320, 308, 224)(185, 212, 205, 200)(188, 215, 272, 236)(189, 282,
195, 211)(190, 299, 240, 303)(191, 264, 281, 226)(192, 269, 248, 262)(193, 293,
274, 203)(196, 271)(197, 294, 255, 259)(198, 276, 254, 275)(199, 223, 291,
310)(204, 278, 218, 231)(210, 267, 295, 252)(214, 250, 312, 257)(216, 221)(217,
261, 305, 307)(219, 285)(220, 314, 263, 292)(222, 300, 318, 288)(230, 245, 289,
301)(237, 239, 317, 319)(241, 302, 283, 284)(247, 260)
C4[ 320, 185 ]
320
-1 319 298 180 239
-2 286 298 237 317
-3 201 213 207 317
-4 223 245 213 192
-5 319 192 238 250
-6 257 216 250 196
-7 178 201 216 186
-8 288 294 305 186
-9 246 238 294 229
-10 231 235 281 229
-11 231 178 278 258
-12 232 258 204 218
-13 246 279 204 226
-14 269 226 206 163
-15 308 166 278 206
-16 253 286 166 285
-17 279 247 183 285
-18 245 183 240 263
-19 308 181 280 240
-20 222 257 181 227
-21 242 222 247 318
-22 242 288 300 260
-23 300 214 280 228
-24 281 228 261 251
-25 165 261 197 318
-26 165 221 232 164
-27 221 312 214 271
-28 297 312 269 237
-29 209 297 243 197
-30 209 253 223 292
-31 270 292 314 271
-32 220 270 196 263
-33 220 243 167 291
-34 291 227 305 230
-35 299 171 314 230
-36 235 171 260 219
-37 167 244 180 219
-38 244 224 218 251
-39 299 224 313 207
-40 313 239 163 164
-41 302 260 284 285
-42 214 185 186 252
-43 168 173 240 251
-44 311 229 273 197
-45 222 255 164 307
-46 258 271 184 174
-47 189 300 237 295
-48 243 256 268 226
-49 223 234 301 261
-50 166 310 179 314
-51 221 202 196 175
-52 275 167 200 183
-53 297 272 305 241
-54 320 299 181 249
-55 289 235 292 303
-56 187 242 169 180
-57 220 254 282 218
-58 188 193 228 207
-59 199 163 262 230
-60 165 319 225 296
-61 286 203 293 219
-62 201 267 312 205
-63 265 277 245 224
-64 209 259 238 316
-65 176 257 248 239
-66 178 236 215 270
-67 210 288 195 317
-68 246 290 291 194
-69 287 192 281 208
-70 278 191 171 161
-71 232 216 315 306
-72 276 244 212 279
-73 266 269 294 274
-74 308 177 190 313
-75 231 253 182 162
-76 298 247 172 304
-77 198 211 204 263
-78 309 213 280 283
-79 264 227 206 217
-80 233 170 250 318
-81 180 193 274 285
-82 177 287 237 186
-83 182 207 240 296
-84 223 172 229 306
-85 319 211 222 267
-86 309 266 258 196
-87 201 300 259 217
-88 170 226 162 305
-89 215 238 261 284
-90 198 166 235 185
-91 221 178 168 290
-92 264 311 183 218
-93 297 255 246 161
-94 181 302 184 163
-95 276 189 278 292
-96 242 286 256 173
-97 220 190 279 301
-98 310 245 228 307
-99 308 202 304 230
-100 165 200 257 295
-101 247 283 219 241
-102 288 234 312 249
-103 233 224 280 303
-104 209 169 281 175
-105 282 239 252 318
-106 188 232 270 272
-107 214 262 273 317
-108 289 225 269 291
-109 192 293 174 197
-110 253 254 171 205
-111 277 268 216 271
-112 199 244 316 263
-113 176 243 179 294
-114 203 236 313 227
-115 231 275 314 195
-116 265 298 194 260
-117 320 167 204 208
-118 191 213 248 251
-119 187 299 315 206
-120 210 212 250 164
-121 309 193 259 262
-122 287 310 301 248
-123 170 215 293 296
-124 210 200 202 306
-125 277 267 290 185
-126 287 266 249 241
-127 176 311 259 161
-128 169 303 162 306
-129 276 215 184 195
-130 198 188 266 282
-131 190 256 290 208
-132 264 225 162 262
-133 310 161 304 315
-134 198 302 205 293
-135 276 200 283 274
-136 264 277 173 316
-137 233 190 182 249
-138 176 236 302 307
-139 211 169 304 252
-140 194 173 195 295
-141 188 217 283 273
-142 234 191 208 307
-143 233 225 174 284
-144 212 315 295 175
-145 168 268 205 252
-146 177 234 272 274
-147 255 179 316 273
-148 289 182 172 175
-149 275 189 236 174
-150 254 309 211 272
-151 320 268 301 194
-152 199 289 170 217
-153 187 179 191 202
-154 254 203 185 284
-155 275 212 193 241
-156 199 265 168 311
-157 177 320 303 296
-158 255 203 248 184
-159 187 267 172 282
-160 210 265 189 256
-161 133 70 93 127
-162 88 132 128 75
-163 14 59 94 40
-164 45 26 40 120
-165 100 25 26 60
-166 90 15 16 50
-167 33 37 117 52
-168 145 156 91 43
-169 56 104 128 139
-170 88 123 80 152
-171 110 35 36 70
-172 148 159 84 76
-173 136 96 140 43
-174 143 46 149 109
-175 144 104 148 51
-176 113 127 138 65
-177 146 157 82 74
-178 11 66 91 7
-179 113 147 50 153
-180 1 56 37 81
-181 94 19 20 54
-182 137 148 83 75
-183 92 17 18 52
-184 46 158 94 129
-185 154 90 125 42
-186 82 7 8 42
-187 56 159 119 153
-188 58 106 130 141
-189 47 149 160 95
-190 137 74 97 131
-191 70 118 142 153
-192 69 4 5 109
-193 121 155 58 81
-194 68 116 140 151
-195 67 115 129 140
-196 6 51 86 32
-197 44 25 29 109
-198 77 90 134 130
-199 112 156 59 152
-200 100 124 135 52
-201 3 7 62 87
-202 99 124 51 153
-203 154 114 158 61
-204 77 12 13 117
-205 110 134 145 62
-206 79 14 15 119
-207 3 58 39 83
-208 69 117 131 142
-209 104 29 30 64
-210 67 124 160 120
-211 77 139 150 85
-212 144 155 72 120
-213 78 3 4 118
-214 23 27 107 42
-215 66 89 123 129
-216 111 71 6 7
-217 79 141 152 87
-218 12 57 92 38
-219 101 36 37 61
-220 33 57 97 32
-221 91 26 27 51
-222 45 85 20 21
-223 4 49 84 30
-224 103 38 39 63
-225 132 143 60 108
-226 88 13 14 48
-227 34 79 114 20
-228 23 24 58 98
-229 44 84 9 10
-230 99 34 35 59
-231 11 115 75 10
-232 12 26 71 106
-233 143 80 103 137
-234 102 146 49 142
-235 55 90 36 10
-236 66 114 138 149
-237 2 47 82 28
-238 89 5 9 64
-239 1 105 40 65
-240 83 18 19 43
-241 155 101 126 53
-242 22 56 96 21
-243 33 113 48 29
-244 112 37 38 72
-245 4 18 63 98
-246 13 68 93 9
-247 101 17 21 76
-248 122 158 118 65
-249 102 126 137 54
-250 80 5 6 120
-251 24 38 118 43
-252 145 105 139 42
-253 110 16 30 75
-254 110 154 57 150
-255 45 147 158 93
-256 48 160 96 131
-257 100 6 20 65
-258 11 12 46 86
-259 121 127 64 87
-260 22 36 116 41
-261 89 24 25 49
-262 121 132 59 107
-263 77 112 18 32
-264 132 79 92 136
-265 156 116 160 63
-266 126 73 86 130
-267 125 159 62 85
-268 111 145 48 151
-269 14 28 73 108
-270 66 106 31 32
-271 111 46 27 31
-272 146 106 150 53
-273 44 147 107 141
-274 135 146 81 73
-275 155 115 149 52
-276 135 72 95 129
-277 111 125 136 63
-278 11 15 70 95
-279 13 17 72 97
-280 23 78 103 19
-281 24 69 104 10
-282 57 159 105 130
-283 78 101 135 141
-284 143 154 89 41
-285 81 16 17 41
-286 2 16 61 96
-287 122 69 82 126
-288 22 67 102 8
-289 55 148 108 152
-290 68 91 125 131
-291 33 34 68 108
-292 55 95 30 31
-293 123 134 61 109
-294 113 73 8 9
-295 100 144 47 140
-296 123 157 60 83
-297 93 28 29 53
-298 1 2 116 76
-299 35 39 119 54
-300 22 23 47 87
-301 122 49 151 97
-302 134 94 138 41
-303 55 157 103 128
-304 99 133 139 76
-305 88 34 8 53
-306 124 71 84 128
-307 45 138 98 142
-308 99 15 19 74
-309 121 78 150 86
-310 122 133 50 98
-311 44 156 92 127
-312 102 27 28 62
-313 114 39 40 74
-314 35 115 50 31
-315 133 144 71 119
-316 112 136 147 64
-317 67 2 3 107
-318 25 80 105 21
-319 1 5 60 85
-320 157 117 151 54
0