[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 186 ] =
BGCG(KE_40(1,21,8,17,11);K1;{12,13}).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {160, 172}, {160, 188}, {160, 191}, {132, 165}, {152, 185}, {143,
171}, {132, 161}, {143, 170}, {155, 189}, {150, 190}, {147, 186}, {154, 183},
{135, 169}, {130, 173}, {132, 171}, {156, 173}, {136, 186}, {128, 183}, {146,
165}, {149, 172}, {134, 188}, {146, 169}, {131, 191}, {158, 161}, {136, 201},
{144, 209}, {146, 208}, {156, 223}, {139, 206}, {131, 197}, {138, 205}, {145,
220}, {128, 206}, {131, 211}, {158, 204}, {133, 209}, {144, 198}, {147, 197},
{134, 222}, {142, 211}, {155, 198}, {147, 204}, {135, 231}, {142, 239}, {144,
241}, {139, 232}, {153, 250}, {140, 234}, {149, 243}, {137, 238}, {156, 251},
{145, 251}, {157, 240}, {145, 255}, {141, 226}, {153, 246}, {154, 234}, {160,
208}, {152, 233}, {130, 241}, {155, 232}, {146, 225}, {144, 228}, {133, 240},
{133, 243}, {153, 239}, {159, 231}, {132, 253}, {149, 236}, {134, 255}, {148,
238}, {158, 228}, {157, 225}, {136, 247}, {137, 246}, {73, 201}, {65, 192}, {89,
216}, {43, 169}, {63, 189}, {49, 179}, {77, 207}, {85, 215}, {88, 218}, {108,
239}, {118, 245}, {44, 168}, {121, 253}, {87, 211}, {105, 237}, {75, 205}, {124,
250}, {116, 242}, {69, 194}, {113, 246}, {82, 213}, {101, 226}, {48, 184}, {117,
253}, {89, 209}, {104, 224}, {80, 217}, {97, 235}, {46, 162}, {54, 186}, {47,
163}, {104, 228}, {69, 200}, {122, 247}, {81, 220}, {82, 223}, {53, 187}, {63,
177}, {59, 181}, {100, 234}, {40, 167}, {74, 197}, {35, 179}, {62, 174}, {54,
166}, {94, 206}, {34, 179}, {125, 236}, {119, 230}, {112, 225}, {70, 215}, {74,
219}, {74, 216}, {49, 165}, {95, 203}, {57, 172}, {74, 223}, {50, 164}, {66,
212}, {107, 252}, {126, 233}, {109, 250}, {81, 201}, {96, 248}, {50, 171}, {112,
233}, {71, 222}, {80, 203}, {115, 232}, {100, 255}, {39, 187}, {59, 167}, {79,
211}, {38, 187}, {64, 221}, {100, 249}, {83, 205}, {109, 243}, {101, 251}, {41,
182}, {125, 226}, {91, 196}, {107, 244}, {18, 178}, {127, 223}, {64, 224}, {5,
164}, {120, 217}, {64, 225}, {102, 199}, {6, 164}, {23, 180}, {98, 193}, {11,
175}, {20, 176}, {21, 176}, {123, 222}, {121, 220}, {29, 184}, {82, 247}, {68,
226}, {80, 246}, {110, 198}, {79, 230}, {119, 222}, {114, 219}, {119, 221}, {90,
241}, {103, 204}, {10, 166}, {111, 195}, {69, 233}, {26, 182}, {24, 180}, {27,
182}, {83, 254}, {93, 240}, {107, 197}, {110, 192}, {9, 166}, {109, 194}, {23,
184}, {12, 163}, {2, 178}, {5, 181}, {4, 181}, {25, 168}, {96, 210}, {127, 205},
{93, 238}, {125, 201}, {71, 242}, {21, 162}, {67, 244}, {84, 227}, {9, 177},
{69, 253}, {79, 247}, {95, 231}, {8, 177}, {27, 162}, {85, 236}, {106, 208},
{117, 207}, {114, 200}, {19, 168}, {78, 245}, {18, 174}, {106, 214}, {17, 175},
{106, 212}, {17, 174}, {117, 202}, {28, 163}, {24, 167}, {76, 243}, {90, 229},
{21, 212}, {10, 200}, {123, 185}, {42, 232}, {22, 212}, {45, 238}, {126, 189},
{115, 176}, {15, 203}, {120, 188}, {39, 227}, {30, 219}, {114, 183}, {60, 249},
{105, 172}, {6, 192}, {29, 219}, {61, 250}, {121, 190}, {101, 162}, {45, 229},
{52, 252}, {102, 174}, {3, 202}, {98, 171}, {116, 190}, {40, 227}, {52, 255},
{51, 248}, {99, 168}, {14, 194}, {60, 240}, {26, 214}, {15, 194}, {103, 170},
{53, 251}, {44, 227}, {118, 185}, {104, 167}, {9, 216}, {22, 199}, {5, 215},
{111, 189}, {57, 235}, {18, 193}, {60, 239}, {57, 234}, {2, 214}, {33, 245},
{43, 254}, {127, 170}, {36, 242}, {99, 181}, {103, 177}, {15, 216}, {118, 161},
{34, 245}, {5, 221}, {52, 236}, {32, 248}, {23, 207}, {108, 180}, {3, 218},
{116, 173}, {62, 231}, {61, 228}, {22, 207}, {11, 210}, {11, 215}, {31, 195},
{102, 186}, {33, 252}, {4, 218}, {47, 241}, {30, 192}, {21, 203}, {12, 210},
{50, 237}, {103, 184}, {36, 196}, {46, 206}, {82, 178}, {37, 196}, {38, 199},
{28, 254}, {29, 254}, {34, 193}, {76, 175}, {73, 173}, {37, 195}, {93, 187},
{27, 252}, {81, 182}, {3, 235}, {16, 248}, {2, 235}, {16, 249}, {86, 191}, {34,
200}, {56, 210}, {48, 218}, {75, 161}, {89, 179}, {61, 214}, {48, 220}, {70,
170}, {10, 229}, {63, 208}, {37, 202}, {37, 213}, {71, 183}, {68, 180}, {77,
188}, {78, 191}, {31, 237}, {91, 169}, {19, 224}, {38, 213}, {20, 224}, {62,
202}, {53, 193}, {25, 237}, {91, 175}, {15, 249}, {51, 196}, {12, 244}, {62,
198}, {41, 209}, {94, 166}, {13, 244}, {92, 165}, {35, 217}, {68, 190}, {39,
221}, {55, 204}, {56, 195}, {75, 176}, {36, 217}, {12, 242}, {57, 199}, {24,
230}, {90, 164}, {25, 230}, {70, 185}, {42, 213}, {26, 229}, {77, 178}, {92,
163}, {56, 312}, {17, 275}, {59, 313}, {16, 275}, {31, 283}, {55, 307}, {30,
283}, {3, 261}, {42, 300}, {4, 258}, {19, 276}, {29, 277}, {61, 309}, {47, 294},
{52, 317}, {32, 298}, {49, 314}, {63, 308}, {9, 261}, {44, 288}, {40, 293}, {38,
296}, {6, 265}, {1, 273}, {8, 282}, {55, 293}, {10, 280}, {11, 280}, {47, 316},
{20, 257}, {46, 315}, {42, 319}, {26, 271}, {20, 258}, {56, 302}, {25, 271},
{48, 295}, {40, 304}, {58, 290}, {13, 276}, {59, 289}, {32, 316}, {33, 316},
{43, 310}, {49, 303}, {22, 265}, {46, 305}, {16, 304}, {41, 265}, {14, 303},
{98, 320}, {7, 292}, {54, 277}, {51, 272}, {1, 293}, {36, 257}, {51, 278}, {14,
296}, {23, 319}, {28, 308}, {13, 292}, {41, 256}, {39, 269}, {53, 286}, {54,
285}, {33, 269}, {43, 262}, {60, 273}, {17, 319}, {24, 310}, {4, 308}, {30,
303}, {7, 309}, {35, 273}, {6, 309}, {44, 287}, {8, 317}, {31, 298}, {35, 277},
{55, 257}, {45, 283}, {58, 269}, {19, 299}, {27, 291}, {2, 315}, {58, 259}, {50,
267}, {18, 299}, {7, 318}, {1, 315}, {32, 282}, {7, 317}, {8, 310}, {1, 318},
{45, 274}, {28, 291}, {68, 261}, {88, 281}, {105, 301}, {115, 311}, {104, 302},
{119, 305}, {96, 295}, {66, 266}, {120, 304}, {106, 290}, {65, 264}, {70, 271},
{78, 263}, {80, 281}, {85, 284}, {93, 276}, {87, 285}, {88, 274}, {99, 297},
{107, 289}, {64, 268}, {72, 260}, {13, 320}, {67, 270}, {79, 258}, {14, 320},
{85, 283}, {94, 272}, {86, 262}, {124, 300}, {101, 309}, {77, 284}, {98, 307},
{123, 297}, {112, 291}, {71, 275}, {84, 256}, {65, 279}, {83, 261}, {84, 258},
{83, 267}, {108, 308}, {91, 259}, {65, 280}, {67, 282}, {78, 276}, {113, 299},
{97, 314}, {122, 289}, {97, 319}, {126, 288}, {118, 296}, {116, 298}, {86, 265},
{102, 313}, {110, 270}, {73, 296}, {110, 271}, {89, 312}, {92, 317}, {73, 299},
{127, 285}, {115, 273}, {122, 281}, {72, 301}, {100, 257}, {76, 298}, {84, 306},
{111, 263}, {112, 282}, {117, 287}, {66, 297}, {72, 291}, {87, 316}, {72, 292},
{86, 315}, {122, 279}, {97, 268}, {88, 310}, {81, 318}, {123, 267}, {94, 303},
{105, 280}, {124, 270}, {87, 292}, {67, 311}, {99, 278}, {121, 268}, {90, 300},
{109, 277}, {126, 262}, {114, 266}, {95, 294}, {125, 260}, {113, 264}, {58,
320}, {95, 293}, {75, 304}, {108, 279}, {66, 318}, {124, 256}, {120, 260}, {113,
269}, {111, 275}, {92, 288}, {76, 306}, {96, 286}, {131, 259}, {135, 263}, {157,
287}, {148, 279}, {148, 272}, {137, 268}, {128, 264}, {150, 286}, {138, 256},
{151, 285}, {140, 262}, {154, 278}, {140, 284}, {151, 263}, {128, 274}, {141,
287}, {157, 264}, {159, 266}, {134, 272}, {136, 286}, {147, 267}, {155, 259},
{150, 270}, {143, 278}, {133, 281}, {142, 274}, {129, 284}, {148, 266}, {154,
260}, {153, 312}, {139, 297}, {152, 314}, {138, 302}, {130, 295}, {156, 313},
{159, 311}, {137, 288}, {141, 295}, {135, 300}, {152, 307}, {129, 301}, {158,
306}, {139, 294}, {140, 290}, {159, 305}, {150, 294}, {129, 306}, {130, 311},
{151, 290}, {151, 289}, {141, 314}, {142, 313}, {129, 312}, {138, 307}, {149,
302}, {145, 301}, {143, 305} }>;
(II) A more general form is to represent the graph as the orbit of {160, 172}
under the group generated by the following permutations:
a: (2, 81)(3, 121)(4, 64)(7, 86)(8, 126)(9, 69)(12, 91)(13, 131)(14, 74)(17,
96)(18, 136)(19, 79)(22, 101)(23, 141)(24, 44)(27, 106)(28, 146)(29, 49)(32,
111)(33, 151)(34, 54)(37, 116)(38, 156)(39, 59)(41, 61)(42, 130)(43, 92)(46,
66)(47, 135)(48, 97)(51, 71)(52, 140)(53, 102)(56, 76)(57, 145)(58, 107)(62,
150)(63, 112)(67, 155)(68, 117)(72, 160)(73, 82)(77, 125)(78, 87)(83, 132)(84,
104)(88, 137)(89, 109)(93, 142)(94, 114)(98, 147)(99, 119)(103, 152)(108,
157)(113, 122)(118, 127)(123, 143)(124, 144)(128, 148)(129, 149)(133, 153)(134,
154)(138, 158)(139, 159)(161, 205)(162, 212)(163, 169)(165, 254)(166, 200)(167,
227)(168, 230)(170, 185)(171, 267)(172, 301)(173, 213)(174, 286)(175, 210)(177,
233)(178, 201)(179, 277)(180, 287)(181, 221)(182, 214)(183, 272)(184, 314)(186,
193)(187, 313)(188, 260)(189, 282)(190, 202)(191, 292)(194, 216)(195, 298)(196,
242)(197, 320)(198, 270)(199, 251)(204, 307)(206, 266)(207, 226)(208, 291)(209,
250)(211, 276)(218, 268)(219, 303)(220, 235)(222, 278)(223, 296)(224, 258)(225,
308)(228, 256)(231, 294)(232, 311)(234, 255)(236, 284)(238, 274)(239, 240)(241,
300)(243, 312)(244, 259)(245, 285)(246, 281)(247, 299)(248, 275)(252, 290)(253,
261)(262, 317)(263, 316)(264, 279)(265, 309)(269, 289)(288, 310)(295, 319)(297,
305)(302, 306)(315, 318) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 83, 123, 134, 145, 156, 59, 40)(4, 75, 66, 77, 48, 127, 99, 120,
81, 82)(5, 16, 7, 18, 88, 138, 139, 160, 121, 74)(6, 17, 8, 98, 128, 149, 150,
131, 64, 15)(9, 50, 71, 52, 53, 142, 104, 95, 86, 97)(10, 31, 12, 33, 93, 153,
144, 135, 126, 49)(11, 32, 13, 113, 133, 124, 155, 146, 69, 30)(14, 65, 76, 67,
58, 157, 109, 110, 91, 112)(19, 80, 41, 42, 63, 132, 114, 85, 96, 87)(20, 21,
22, 23, 103, 143, 154, 125, 136, 79)(24, 55, 46, 57, 68, 147, 119, 100, 101,
102)(25, 36, 27, 38, 108, 158, 159, 140, 141, 54)(26, 37, 28, 118, 148, 129,
130, 151, 44, 35)(29, 70, 51, 72, 73, 122, 84, 115, 106, 117)(34, 45, 56, 47,
78, 137, 89, 90, 111, 92)(39, 60, 61, 62, 43, 152, 94, 105, 116, 107)(161, 266,
284, 295, 285, 168, 217, 182, 213, 308)(162, 199, 180, 204, 305, 234, 226, 186,
230, 257)(163, 245, 238, 312, 241, 263, 288, 179, 229, 195)(164, 275, 317, 193,
274, 302, 294, 191, 268, 216)(165, 200, 283, 210, 316, 276, 246, 209, 300,
189)(166, 237, 242, 252, 187, 239, 228, 231, 262, 314)(167, 293, 315, 235, 261,
267, 222, 255, 251, 313)(169, 233, 303, 280, 298, 244, 269, 240, 250, 198)(170,
278, 260, 201, 247, 258, 176, 212, 207, 184)(171, 183, 236, 286, 211, 224, 203,
265, 319, 177)(172, 190, 197, 221, 249, 309, 174, 310, 307, 206)(173, 289, 227,
273, 214, 202, 254, 185, 272, 301)(175, 282, 320, 264, 243, 270, 259, 225, 194,
192)(178, 218, 205, 297, 188, 220, 223, 181, 304, 318)(196, 291, 296, 279, 306,
311, 290, 287, 277, 271)(208, 253, 219, 215, 248, 292, 299, 281, 256, 232)
c: (2, 40)(3, 39)(4, 38)(5, 37)(6, 36)(7, 35)(8, 34)(9, 33)(10, 32)(11, 31)(12,
30)(13, 29)(14, 28)(15, 27)(16, 26)(17, 25)(18, 24)(19, 23)(20, 22)(41, 100)(42,
99)(43, 98)(44, 97)(45, 96)(46, 95)(47, 94)(48, 93)(49, 92)(50, 91)(51, 90)(52,
89)(53, 88)(54, 87)(55, 86)(56, 85)(57, 84)(58, 83)(59, 82)(60, 81)(61, 120)(62,
119)(63, 118)(64, 117)(65, 116)(66, 115)(67, 114)(68, 113)(69, 112)(70, 111)(71,
110)(72, 109)(73, 108)(74, 107)(75, 106)(76, 105)(77, 104)(78, 103)(79, 102)(80,
101)(121, 157)(122, 156)(123, 155)(124, 154)(125, 153)(126, 152)(127, 151)(128,
150)(129, 149)(130, 148)(131, 147)(132, 146)(133, 145)(134, 144)(135, 143)(136,
142)(137, 141)(138, 140)(158, 160)(161, 208)(162, 203)(163, 303)(164, 196)(166,
316)(167, 178)(168, 319)(169, 171)(170, 263)(172, 306)(173, 279)(174, 230)(175,
237)(176, 212)(177, 245)(179, 317)(180, 299)(181, 213)(182, 249)(183, 270)(184,
276)(185, 189)(186, 211)(187, 218)(188, 228)(190, 264)(191, 204)(192, 242)(193,
310)(194, 291)(195, 215)(198, 222)(199, 258)(200, 282)(201, 239)(202, 221)(205,
290)(206, 294)(207, 224)(209, 255)(210, 283)(214, 304)(216, 252)(217, 309)(219,
244)(220, 240)(223, 289)(225, 253)(226, 246)(227, 235)(229, 248)(231, 305)(232,
297)(234, 256)(236, 312)(238, 295)(241, 272)(243, 301)(247, 313)(250, 260)(251,
281)(254, 320)(257, 265)(259, 267)(261, 269)(262, 307)(266, 311)(268, 287)(271,
275)(273, 318)(274, 286)(277, 292)(278, 300)(280, 298)(284, 302)(288, 314)(293,
315)(296, 308)
C4[ 320, 186 ]
320
-1 293 315 273 318
-2 178 235 214 315
-3 202 235 261 218
-4 308 181 258 218
-5 221 181 215 164
-6 265 309 192 164
-7 309 292 317 318
-8 177 310 282 317
-9 166 177 216 261
-10 166 200 280 229
-11 210 280 215 175
-12 242 210 244 163
-13 276 320 244 292
-14 320 303 194 296
-15 203 194 216 249
-16 275 248 249 304
-17 275 319 174 175
-18 178 299 193 174
-19 276 299 168 224
-20 176 224 257 258
-21 176 212 203 162
-22 199 265 212 207
-23 319 180 184 207
-24 167 310 180 230
-25 168 237 271 230
-26 214 182 271 229
-27 291 182 162 252
-28 308 254 291 163
-29 254 277 184 219
-30 192 303 283 219
-31 298 237 195 283
-32 298 248 282 316
-33 245 269 316 252
-34 200 179 245 193
-35 277 179 217 273
-36 242 257 217 196
-37 202 213 195 196
-38 187 199 213 296
-39 187 221 269 227
-40 167 227 293 304
-41 209 265 256 182
-42 319 232 300 213
-43 254 310 169 262
-44 287 288 168 227
-45 238 283 229 274
-46 315 162 206 305
-47 294 316 163 241
-48 220 184 218 295
-49 165 179 303 314
-50 267 171 237 164
-51 278 248 272 196
-52 255 236 317 252
-53 187 286 193 251
-54 166 277 186 285
-55 257 204 293 307
-56 210 312 302 195
-57 199 234 235 172
-58 320 290 269 259
-59 167 289 181 313
-60 249 239 240 273
-61 309 214 228 250
-62 198 231 202 174
-63 308 177 189 208
-64 221 224 268 225
-65 264 279 192 280
-66 297 266 212 318
-67 244 311 270 282
-68 190 180 226 261
-69 253 200 233 194
-70 170 215 271 185
-71 242 275 222 183
-72 301 291 292 260
-73 299 201 173 296
-74 223 216 197 219
-75 176 161 205 304
-76 243 298 306 175
-77 188 178 207 284
-78 276 245 191 263
-79 211 247 258 230
-80 246 203 281 217
-81 220 201 182 318
-82 178 223 213 247
-83 254 267 205 261
-84 256 258 227 306
-85 236 215 283 284
-86 265 191 315 262
-87 211 292 316 285
-88 310 281 218 274
-89 209 179 312 216
-90 300 229 164 241
-91 169 259 196 175
-92 165 288 163 317
-93 187 276 238 240
-94 166 303 206 272
-95 231 203 293 294
-96 286 210 248 295
-97 319 235 268 314
-98 320 171 193 307
-99 297 168 278 181
-100 255 234 257 249
-101 309 226 162 251
-102 199 313 174 186
-103 177 170 204 184
-104 167 224 302 228
-105 301 280 237 172
-106 212 290 214 208
-107 244 289 197 252
-108 308 180 279 239
-109 243 277 194 250
-110 198 192 270 271
-111 275 189 195 263
-112 233 225 291 282
-113 264 299 246 269
-114 200 266 183 219
-115 176 232 311 273
-116 242 298 190 173
-117 253 287 202 207
-118 245 161 185 296
-119 221 222 305 230
-120 188 260 304 217
-121 220 253 190 268
-122 289 279 247 281
-123 297 222 267 185
-124 256 300 270 250
-125 201 236 226 260
-126 189 233 288 262
-127 223 170 205 285
-128 264 183 206 274
-129 301 312 284 306
-130 311 173 295 241
-131 211 191 259 197
-132 165 253 171 161
-133 209 243 281 240
-134 188 222 255 272
-135 231 300 169 263
-136 286 201 247 186
-137 288 246 268 238
-138 256 302 205 307
-139 297 232 206 294
-140 234 290 262 284
-141 287 226 314 295
-142 211 313 239 274
-143 278 170 171 305
-144 198 209 228 241
-145 220 255 301 251
-146 165 169 225 208
-147 267 204 186 197
-148 266 279 238 272
-149 243 236 302 172
-150 286 190 270 294
-151 289 290 263 285
-152 233 314 185 307
-153 246 312 239 250
-154 234 278 183 260
-155 198 232 189 259
-156 223 313 173 251
-157 264 287 225 240
-158 204 161 228 306
-159 231 266 311 305
-160 188 191 172 208
-161 132 158 118 75
-162 46 101 27 21
-163 12 47 92 28
-164 90 5 6 50
-165 132 146 92 49
-166 94 9 10 54
-167 24 59 104 40
-168 44 99 25 19
-169 91 135 146 43
-170 143 70 103 127
-171 132 143 50 98
-172 57 105 149 160
-173 156 116 73 130
-174 102 17 18 62
-175 11 91 17 76
-176 115 20 75 21
-177 103 8 63 9
-178 77 2 82 18
-179 34 89 35 49
-180 23 24 68 108
-181 99 4 59 5
-182 26 81 27 41
-183 154 114 71 128
-184 23 48 103 29
-185 123 70 118 152
-186 102 136 147 54
-187 38 93 39 53
-188 77 134 160 120
-189 111 155 126 63
-190 121 68 116 150
-191 78 160 86 131
-192 110 6 30 65
-193 34 18 53 98
-194 14 69 15 109
-195 56 111 37 31
-196 36 91 37 51
-197 147 74 107 131
-198 110 144 155 62
-199 22 57 102 38
-200 34 69 114 10
-201 81 125 136 73
-202 3 37 62 117
-203 80 15 95 21
-204 55 103 147 158
-205 83 127 138 75
-206 46 94 128 139
-207 22 77 23 117
-208 146 160 106 63
-209 89 133 144 41
-210 11 12 56 96
-211 79 87 131 142
-212 22 66 106 21
-213 37 38 82 42
-214 2 26 61 106
-215 11 70 5 85
-216 89 15 74 9
-217 35 36 80 120
-218 88 3 4 48
-219 114 29 30 74
-220 121 145 48 81
-221 5 39 64 119
-222 123 134 71 119
-223 156 82 127 74
-224 104 19 20 64
-225 112 146 157 64
-226 68 101 125 141
-227 44 39 40 84
-228 144 158 104 61
-229 45 90 26 10
-230 24 79 25 119
-231 135 159 62 95
-232 155 115 139 42
-233 112 69 126 152
-234 154 100 57 140
-235 2 57 3 97
-236 125 149 52 85
-237 25 50 105 31
-238 45 93 137 148
-239 60 108 142 153
-240 133 157 60 93
-241 144 90 47 130
-242 12 36 71 116
-243 133 149 76 109
-244 12 67 13 107
-245 33 34 78 118
-246 80 113 137 153
-247 122 79 136 82
-248 16 51 96 32
-249 100 15 16 60
-250 124 61 109 153
-251 101 145 156 53
-252 33 27 52 107
-253 121 132 69 117
-254 28 83 29 43
-255 100 134 145 52
-256 124 138 84 41
-257 55 100 36 20
-258 79 4 84 20
-259 155 58 91 131
-260 154 125 72 120
-261 68 3 83 9
-262 126 140 86 43
-263 78 111 135 151
-264 113 157 128 65
-265 22 6 41 86
-266 66 114 148 159
-267 123 147 50 83
-268 121 137 64 97
-269 33 58 113 39
-270 110 67 124 150
-271 110 25 26 70
-272 134 148 94 51
-273 1 35 60 115
-274 88 45 128 142
-275 111 16 71 17
-276 78 13 93 19
-277 35 29 54 109
-278 99 143 154 51
-279 122 148 108 65
-280 11 105 10 65
-281 88 122 133 80
-282 67 112 8 32
-283 45 30 85 31
-284 77 85 129 140
-285 127 151 54 87
-286 136 150 96 53
-287 44 157 117 141
-288 44 92 126 137
-289 122 59 107 151
-290 58 106 140 151
-291 112 27 28 72
-292 13 72 7 87
-293 55 1 40 95
-294 47 95 139 150
-295 48 96 130 141
-296 14 38 73 118
-297 66 99 123 139
-298 116 31 32 76
-299 113 18 73 19
-300 90 124 135 42
-301 145 72 105 129
-302 56 104 138 149
-303 14 49 94 30
-304 16 40 75 120
-305 143 46 159 119
-306 158 84 129 76
-307 55 138 152 98
-308 4 28 63 108
-309 101 6 61 7
-310 88 24 8 43
-311 67 115 159 130
-312 56 89 129 153
-313 156 102 59 142
-314 49 97 141 152
-315 1 2 46 86
-316 33 47 32 87
-317 92 7 8 52
-318 66 1 81 7
-319 23 17 42 97
-320 13 14 58 98
0