[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 197 ] =
BGCG(UG(Cmap(320,21){8,4|10}_20);K1;1).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {134, 167}, {157, 188}, {146, 182}, {142, 168}, {129, 166}, {149,
178}, {144, 183}, {145, 185}, {156, 180}, {150, 191}, {148, 191}, {149, 190},
{149, 185}, {130, 175}, {145, 188}, {141, 163}, {147, 189}, {157, 175}, {130,
177}, {141, 186}, {150, 161}, {132, 190}, {136, 178}, {139, 176}, {151, 172},
{151, 171}, {134, 187}, {141, 176}, {155, 165}, {151, 168}, {140, 205}, {150,
215}, {148, 214}, {144, 211}, {147, 208}, {159, 219}, {153, 220}, {135, 206},
{158, 212}, {136, 196}, {143, 195}, {145, 220}, {128, 207}, {158, 209}, {153,
202}, {137, 221}, {158, 202}, {128, 214}, {154, 204}, {129, 214}, {160, 247},
{143, 214}, {147, 201}, {136, 211}, {137, 210}, {137, 215}, {132, 219}, {139,
212}, {133, 218}, {138, 235}, {155, 250}, {156, 248}, {160, 196}, {128, 229},
{144, 245}, {142, 230}, {149, 253}, {131, 233}, {153, 243}, {151, 251}, {132,
233}, {160, 205}, {130, 236}, {142, 224}, {135, 232}, {138, 251}, {138, 254},
{147, 228}, {148, 236}, {159, 231}, {157, 228}, {143, 244}, {153, 229}, {146,
237}, {33, 161}, {100, 228}, {121, 248}, {47, 173}, {117, 247}, {72, 202}, {56,
187}, {66, 193}, {33, 164}, {120, 253}, {80, 213}, {88, 221}, {85, 211}, {96,
230}, {50, 181}, {101, 226}, {95, 215}, {109, 229}, {76, 197}, {111, 230}, {110,
231}, {33, 171}, {120, 242}, {113, 251}, {57, 179}, {85, 223}, {84, 223}, {67,
207}, {43, 166}, {52, 185}, {70, 200}, {92, 210}, {57, 169}, {97, 241}, {109,
253}, {91, 201}, {108, 254}, {50, 161}, {114, 225}, {55, 164}, {75, 216}, {39,
179}, {49, 165}, {90, 206}, {54, 163}, {102, 240}, {34, 181}, {42, 189}, {73,
209}, {37, 188}, {119, 238}, {35, 185}, {71, 221}, {96, 250}, {47, 180}, {80,
203}, {98, 249}, {34, 190}, {94, 194}, {44, 177}, {60, 162}, {116, 234}, {94,
192}, {106, 244}, {107, 245}, {53, 170}, {78, 209}, {83, 204}, {21, 181}, {71,
231}, {110, 206}, {82, 243}, {118, 215}, {113, 208}, {96, 193}, {103, 198},
{112, 210}, {28, 191}, {127, 220}, {64, 227}, {89, 250}, {11, 175}, {124, 216},
{122, 222}, {74, 238}, {89, 253}, {19, 182}, {89, 252}, {111, 201}, {27, 188},
{125, 218}, {68, 227}, {87, 240}, {7, 175}, {10, 162}, {109, 197}, {23, 190},
{72, 225}, {85, 252}, {16, 186}, {104, 194}, {90, 241}, {119, 220}, {92, 247},
{99, 200}, {19, 191}, {74, 230}, {101, 201}, {23, 186}, {68, 233}, {11, 165},
{29, 179}, {22, 184}, {2, 173}, {118, 217}, {98, 205}, {100, 203}, {88, 232},
{101, 213}, {67, 242}, {84, 229}, {112, 194}, {3, 183}, {66, 246}, {76, 248},
{86, 226}, {2, 183}, {116, 193}, {31, 170}, {3, 182}, {28, 170}, {15, 184},
{111, 216}, {83, 228}, {13, 181}, {118, 206}, {17, 169}, {78, 246}, {103, 222},
{68, 254}, {123, 193}, {17, 173}, {30, 162}, {85, 233}, {9, 180}, {123, 198},
{27, 166}, {22, 171}, {79, 241}, {125, 195}, {81, 239}, {95, 224}, {127, 192},
{42, 234}, {116, 180}, {114, 178}, {119, 182}, {2, 192}, {57, 251}, {44, 238},
{120, 187}, {36, 224}, {127, 187}, {59, 255}, {43, 239}, {38, 226}, {40, 237},
{13, 203}, {108, 170}, {99, 164}, {100, 163}, {112, 184}, {15, 198}, {126, 183},
{35, 234}, {102, 172}, {122, 176}, {31, 212}, {10, 198}, {19, 223}, {12, 192},
{11, 199}, {98, 174}, {8, 197}, {38, 235}, {37, 235}, {115, 189}, {54, 249},
{108, 163}, {24, 200}, {1, 208}, {105, 184}, {2, 208}, {117, 167}, {17, 195},
{7, 213}, {6, 212}, {25, 202}, {37, 246}, {31, 204}, {16, 196}, {122, 174}, {54,
226}, {51, 231}, {40, 252}, {32, 245}, {62, 235}, {56, 237}, {31, 199}, {115,
171}, {45, 245}, {38, 255}, {52, 237}, {35, 249}, {24, 195}, {119, 172}, {118,
173}, {36, 248}, {7, 217}, {49, 239}, {49, 238}, {1, 225}, {58, 218}, {56, 216},
{44, 204}, {22, 246}, {16, 240}, {15, 239}, {12, 236}, {3, 227}, {90, 186}, {60,
221}, {24, 250}, {28, 255}, {74, 169}, {38, 194}, {63, 219}, {62, 218}, {7,
225}, {72, 174}, {63, 217}, {41, 207}, {20, 242}, {75, 172}, {1, 232}, {46,
199}, {29, 247}, {59, 209}, {91, 177}, {26, 241}, {4, 232}, {69, 169}, {94,
178}, {62, 211}, {74, 164}, {61, 210}, {4, 244}, {15, 254}, {84, 165}, {6, 244},
{25, 234}, {67, 176}, {42, 217}, {42, 222}, {32, 213}, {46, 219}, {82, 167}, {4,
242}, {61, 203}, {40, 222}, {9, 255}, {81, 167}, {14, 249}, {63, 200}, {51,
196}, {86, 161}, {73, 177}, {80, 168}, {5, 252}, {26, 227}, {9, 243}, {61, 199},
{55, 205}, {26, 224}, {11, 240}, {35, 223}, {84, 168}, {90, 166}, {14, 243},
{64, 189}, {50, 207}, {18, 236}, {58, 197}, {76, 179}, {81, 174}, {93, 162}, {9,
265}, {36, 293}, {51, 304}, {57, 314}, {48, 308}, {61, 312}, {16, 278}, {53,
307}, {48, 310}, {23, 287}, {73, 320}, {10, 256}, {30, 276}, {6, 269}, {58,
305}, {39, 299}, {55, 315}, {5, 267}, {24, 278}, {20, 282}, {6, 265}, {12, 287},
{30, 267}, {51, 294}, {34, 311}, {17, 263}, {50, 292}, {34, 308}, {21, 259},
{36, 307}, {60, 299}, {45, 314}, {45, 309}, {22, 271}, {32, 313}, {37, 319},
{39, 315}, {49, 301}, {14, 275}, {59, 294}, {28, 257}, {19, 269}, {53, 299},
{27, 261}, {14, 303}, {62, 287}, {54, 279}, {30, 319}, {20, 309}, {25, 315},
{48, 275}, {59, 280}, {23, 307}, {60, 280}, {41, 269}, {18, 308}, {41, 270},
{53, 274}, {47, 264}, {12, 292}, {18, 315}, {46, 263}, {8, 290}, {27, 304}, {21,
313}, {26, 311}, {41, 260}, {52, 282}, {56, 278}, {13, 290}, {48, 256}, {63,
271}, {29, 302}, {4, 304}, {8, 317}, {52, 257}, {10, 316}, {5, 317}, {47, 279},
{43, 275}, {13, 309}, {29, 292}, {55, 270}, {20, 302}, {44, 278}, {21, 303}, {5,
318}, {39, 284}, {33, 282}, {18, 297}, {25, 293}, {1, 316}, {45, 272}, {3, 318},
{40, 279}, {58, 261}, {43, 276}, {70, 262}, {77, 268}, {110, 303}, {70, 260},
{93, 286}, {110, 301}, {95, 284}, {69, 257}, {86, 274}, {99, 295}, {79, 265},
{106, 300}, {107, 301}, {65, 262}, {86, 273}, {97, 294}, {8, 320}, {127, 311},
{64, 264}, {77, 261}, {69, 271}, {71, 269}, {105, 291}, {111, 290}, {107, 292},
{91, 267}, {113, 289}, {114, 291}, {121, 296}, {80, 258}, {81, 259}, {109, 319},
{87, 260}, {69, 273}, {126, 298}, {116, 288}, {79, 283}, {102, 306}, {78, 283},
{123, 302}, {82, 263}, {87, 258}, {103, 306}, {72, 286}, {123, 300}, {67, 283},
{98, 314}, {107, 306}, {73, 274}, {89, 258}, {106, 310}, {124, 288}, {71, 282},
{126, 291}, {91, 261}, {105, 311}, {64, 287}, {32, 320}, {125, 285}, {117, 279},
{92, 319}, {95, 316}, {65, 293}, {79, 298}, {117, 272}, {112, 277}, {102, 259},
{126, 280}, {83, 308}, {97, 262}, {77, 293}, {122, 274}, {104, 256}, {78, 295},
{121, 272}, {120, 273}, {88, 306}, {104, 259}, {106, 257}, {75, 294}, {115,
286}, {93, 304}, {100, 265}, {103, 266}, {46, 320}, {66, 301}, {70, 297}, {105,
281}, {97, 272}, {108, 285}, {66, 305}, {125, 270}, {82, 289}, {96, 275}, {76,
312}, {68, 305}, {114, 263}, {92, 297}, {104, 285}, {121, 271}, {65, 310}, {115,
260}, {77, 314}, {65, 313}, {75, 307}, {88, 288}, {94, 295}, {99, 281}, {93,
289}, {124, 256}, {83, 302}, {101, 283}, {124, 258}, {87, 296}, {113, 270},
{152, 281}, {150, 276}, {152, 285}, {140, 267}, {155, 284}, {146, 277}, {157,
277}, {140, 262}, {160, 298}, {135, 268}, {159, 276}, {134, 266}, {129, 273},
{141, 284}, {139, 281}, {154, 264}, {152, 268}, {158, 266}, {142, 280}, {156,
266}, {159, 264}, {140, 277}, {132, 286}, {146, 268}, {131, 291}, {133, 295},
{138, 296}, {136, 299}, {133, 288}, {152, 317}, {143, 296}, {145, 312}, {133,
303}, {148, 313}, {130, 300}, {155, 298}, {137, 317}, {131, 310}, {156, 297},
{131, 309}, {134, 318}, {154, 290}, {139, 305}, {154, 289}, {144, 300}, {129,
316}, {128, 318}, {135, 312} }>;
(II) A more general form is to represent the graph as the orbit of {134, 167}
under the group generated by the following permutations:
a: (2, 4, 7, 10)(3, 6, 11, 15)(5, 9, 16, 22)(8, 14, 23, 33)(12, 20, 32, 48)(13,
21, 34, 50)(17, 27, 42, 60)(18, 29, 45, 65)(19, 31, 49, 68)(24, 37, 40, 59)(25,
39, 57, 77)(26, 41, 61, 81)(28, 44, 66, 85)(30, 47, 51, 63)(35, 53, 74, 58)(36,
55, 76, 98)(38, 56, 78, 89)(43, 64, 71, 46)(52, 73, 96, 62)(54, 75, 99, 109)(67,
80, 104, 127)(69, 91, 116, 136)(70, 92, 117, 97)(72, 95, 113, 135)(79, 87, 112,
134)(82, 90, 115, 137)(83, 107, 131, 148)(84, 108, 119, 139)(86, 111, 133,
149)(88, 114, 129, 147)(93, 118)(94, 120, 101, 124)(100, 102, 105, 128)(103,
126, 143, 157)(106, 130, 123, 144)(110, 132, 150, 154)(121, 140, 156, 160)(122,
142, 125, 145)(138, 146, 158, 155)(141, 151, 152, 153)(161, 290, 303, 190)(162,
173, 304, 217)(163, 172, 281, 229)(164, 197, 249, 307)(165, 254, 182, 212)(166,
189, 221, 263)(167, 241, 260, 210)(168, 285, 220, 176)(169, 261, 234, 299)(170,
238, 305, 223)(171, 317, 243, 186)(174, 224, 270, 312)(175, 198, 183, 244)(177,
193, 211, 257)(178, 273, 201, 288)(179, 314, 293, 315)(180, 196, 271, 267)(184,
318, 265, 240)(185, 274, 230, 218)(187, 283, 258, 194)(188, 222, 280, 195)(191,
204, 301, 233)(192, 242, 213, 256)(199, 239, 227, 269)(200, 319, 279, 294)(202,
284, 251, 268)(203, 259, 311, 207)(205, 248)(206, 286, 215, 289)(208, 232, 225,
316)(209, 250, 235, 237)(214, 228, 306, 291)(216, 295, 253, 226)(219, 276, 264,
231)(236, 302, 245, 310)(246, 252, 255, 278)(247, 272, 262, 297)(266, 298, 296,
277)(275, 287, 282, 320)(292, 309, 313, 308) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 10)(4, 12)(5, 15)(6, 18)(7, 17)(8, 22)(9, 25)(11, 24)(13, 33)(14,
35)(19, 48)(20, 50)(21, 52)(23, 51)(26, 60)(27, 62)(28, 65)(29, 67)(30, 68)(31,
70)(32, 69)(34, 71)(36, 59)(37, 58)(38, 77)(39, 79)(40, 81)(41, 83)(42, 82)(43,
85)(44, 87)(45, 86)(46, 63)(47, 72)(49, 89)(53, 97)(54, 98)(55, 100)(56,
102)(57, 101)(61, 99)(64, 93)(66, 109)(73, 121)(74, 80)(76, 78)(84, 96)(88,
127)(90, 136)(91, 138)(92, 139)(94, 135)(95, 126)(103, 134)(104, 146)(105,
137)(106, 148)(107, 120)(108, 140)(110, 149)(111, 151)(112, 152)(113, 147)(114,
118)(115, 154)(116, 153)(117, 122)(119, 124)(123, 128)(125, 157)(129, 144)(130,
143)(131, 150)(132, 159)(133, 145)(141, 160)(156, 158)(161, 309)(162, 227)(163,
205)(164, 203)(165, 250)(166, 211)(167, 222)(168, 230)(169, 213)(170, 262)(171,
290)(172, 216)(173, 225)(174, 279)(175, 195)(176, 247)(177, 296)(178, 206)(179,
283)(180, 202)(181, 282)(182, 256)(183, 316)(184, 317)(185, 303)(186, 196)(187,
306)(188, 218)(189, 289)(190, 231)(191, 310)(192, 232)(193, 229)(194, 268)(197,
246)(198, 318)(199, 200)(201, 251)(204, 260)(207, 302)(209, 248)(210, 281)(212,
297)(214, 300)(215, 291)(217, 263)(220, 288)(221, 311)(223, 275)(224, 280)(226,
314)(228, 270)(233, 276)(234, 243)(235, 261)(236, 244)(237, 259)(238, 258)(239,
252)(240, 278)(241, 299)(242, 292)(245, 273)(253, 301)(254, 267)(255, 293)(257,
313)(264, 286)(265, 315)(269, 308)(271, 320)(272, 274)(277, 285)(284, 298)(287,
304)(294, 307)(295, 312)(305, 319)
C4[ 320, 197 ]
320
-1 232 225 316 208
-2 192 183 173 208
-3 182 183 227 318
-4 242 232 244 304
-5 267 317 252 318
-6 265 244 212 269
-7 213 225 217 175
-8 320 290 317 197
-9 243 265 255 180
-10 198 256 162 316
-11 165 199 240 175
-12 287 192 236 292
-13 309 290 181 203
-14 275 243 303 249
-15 198 254 184 239
-16 278 196 240 186
-17 169 173 195 263
-18 297 308 236 315
-19 223 191 269 182
-20 242 309 302 282
-21 181 313 259 303
-22 246 171 271 184
-23 287 190 186 307
-24 200 278 195 250
-25 234 202 293 315
-26 311 224 227 241
-27 166 188 304 261
-28 255 191 257 170
-29 179 247 302 292
-30 319 276 267 162
-31 199 212 170 204
-32 320 245 213 313
-33 171 161 282 164
-34 308 190 311 181
-35 223 234 249 185
-36 224 248 293 307
-37 319 188 235 246
-38 255 235 226 194
-39 299 179 315 284
-40 222 279 237 252
-41 269 270 260 207
-42 189 222 234 217
-43 275 166 276 239
-44 177 278 204 238
-45 309 245 314 272
-46 199 320 219 263
-47 264 180 279 173
-48 275 308 310 256
-49 165 301 238 239
-50 181 292 161 207
-51 231 304 294 196
-52 257 237 282 185
-53 299 170 274 307
-54 279 226 249 163
-55 270 205 315 164
-56 187 278 237 216
-57 179 169 314 251
-58 261 305 218 197
-59 209 255 280 294
-60 221 299 280 162
-61 199 210 312 203
-62 287 211 235 218
-63 200 271 217 219
-64 264 287 189 227
-65 310 313 293 262
-66 246 301 193 305
-67 176 242 283 207
-68 254 233 227 305
-69 169 257 271 273
-70 297 200 260 262
-71 231 221 269 282
-72 286 202 225 174
-73 209 177 320 274
-74 169 238 164 230
-75 172 216 294 307
-76 179 312 248 197
-77 268 314 293 261
-78 209 246 283 295
-79 265 298 283 241
-80 168 213 203 258
-81 167 259 239 174
-82 243 167 289 263
-83 308 302 204 228
-84 165 168 223 229
-85 211 233 223 252
-86 226 161 273 274
-87 258 260 240 296
-88 221 232 288 306
-89 253 258 250 252
-90 166 206 186 241
-91 177 201 267 261
-92 297 319 210 247
-93 286 289 304 162
-94 178 192 194 295
-95 224 215 316 284
-96 275 193 250 230
-97 272 294 262 241
-98 314 205 249 174
-99 200 281 295 164
-100 265 203 228 163
-101 201 213 226 283
-102 259 172 240 306
-103 198 222 266 306
-104 256 259 194 285
-105 311 291 281 184
-106 244 310 300 257
-107 245 301 292 306
-108 254 170 163 285
-109 253 319 229 197
-110 231 301 303 206
-111 201 290 216 230
-112 210 277 194 184
-113 289 270 251 208
-114 178 225 291 263
-115 286 189 171 260
-116 288 234 180 193
-117 167 279 247 272
-118 215 173 206 217
-119 220 182 172 238
-120 187 242 253 273
-121 248 271 272 296
-122 176 222 174 274
-123 198 300 302 193
-124 288 256 258 216
-125 270 195 218 285
-126 298 280 291 183
-127 187 220 311 192
-128 214 207 229 318
-129 166 214 316 273
-130 177 300 236 175
-131 309 233 310 291
-132 286 233 190 219
-133 288 303 218 295
-134 187 167 266 318
-135 232 268 312 206
-136 178 211 299 196
-137 210 221 215 317
-138 254 235 251 296
-139 176 212 281 305
-140 277 267 205 262
-141 176 163 284 186
-142 168 224 280 230
-143 244 214 195 296
-144 211 245 300 183
-145 220 188 312 185
-146 277 268 182 237
-147 189 201 228 208
-148 191 214 236 313
-149 253 178 190 185
-150 276 191 215 161
-151 168 171 172 251
-152 268 281 317 285
-153 220 243 202 229
-154 264 289 290 204
-155 165 298 250 284
-156 297 266 180 248
-157 188 277 228 175
-158 209 266 212 202
-159 231 264 276 219
-160 298 247 205 196
-161 33 50 150 86
-162 60 93 30 10
-163 100 108 141 54
-164 33 55 99 74
-165 11 155 49 84
-166 90 27 129 43
-167 134 81 82 117
-168 80 84 151 142
-169 57 69 17 74
-170 28 31 53 108
-171 22 33 115 151
-172 102 151 75 119
-173 2 47 17 118
-174 122 81 72 98
-175 11 157 7 130
-176 67 122 139 141
-177 44 91 73 130
-178 114 136 94 149
-179 57 39 29 76
-180 156 47 116 9
-181 34 13 50 21
-182 3 146 19 119
-183 144 2 3 126
-184 22 112 15 105
-185 35 145 149 52
-186 23 90 16 141
-187 56 134 127 120
-188 145 157 37 27
-189 147 115 42 64
-190 132 23 34 149
-191 148 28 150 19
-192 12 2 94 127
-193 66 123 116 96
-194 112 38 104 94
-195 143 24 125 17
-196 136 16 160 51
-197 58 8 76 109
-198 123 15 103 10
-199 11 46 61 31
-200 99 24 70 63
-201 111 101 91 147
-202 25 158 72 153
-203 100 13 80 61
-204 44 154 83 31
-205 55 160 140 98
-206 110 90 135 118
-207 67 50 128 41
-208 1 2 113 147
-209 78 59 158 73
-210 112 92 137 61
-211 144 136 62 85
-212 158 6 139 31
-213 101 80 7 32
-214 143 148 128 129
-215 137 95 150 118
-216 56 111 124 75
-217 7 63 118 42
-218 133 58 125 62
-219 132 46 159 63
-220 145 127 119 153
-221 88 60 71 137
-222 122 103 40 42
-223 35 84 19 85
-224 36 26 95 142
-225 1 114 72 7
-226 101 38 86 54
-227 68 3 26 64
-228 100 157 147 83
-229 84 128 109 153
-230 111 74 96 142
-231 110 71 159 51
-232 88 1 135 4
-233 132 68 85 131
-234 35 25 116 42
-235 37 38 138 62
-236 12 148 18 130
-237 56 146 40 52
-238 44 49 74 119
-239 15 81 49 43
-240 11 102 16 87
-241 79 90 26 97
-242 67 4 20 120
-243 14 82 9 153
-244 143 4 6 106
-245 45 144 107 32
-246 22 66 78 37
-247 92 160 29 117
-248 121 156 36 76
-249 35 14 54 98
-250 89 155 24 96
-251 57 113 138 151
-252 89 5 40 85
-253 89 149 109 120
-254 68 15 138 108
-255 59 38 28 9
-256 124 48 104 10
-257 69 28 106 52
-258 89 80 124 87
-259 102 81 104 21
-260 70 115 41 87
-261 77 58 91 27
-262 70 140 97 65
-263 46 114 82 17
-264 154 47 159 64
-265 100 79 6 9
-266 134 156 103 158
-267 91 5 30 140
-268 77 135 146 152
-269 71 6 19 41
-270 55 113 125 41
-271 22 121 69 63
-272 121 45 117 97
-273 69 129 86 120
-274 122 73 53 86
-275 14 48 96 43
-276 159 150 30 43
-277 112 146 157 140
-278 44 56 24 16
-279 47 40 117 54
-280 59 60 126 142
-281 99 105 139 152
-282 33 71 52 20
-283 67 78 79 101
-284 155 39 95 141
-285 125 104 108 152
-286 132 93 115 72
-287 12 23 62 64
-288 88 133 124 116
-289 154 113 82 93
-290 154 111 13 8
-291 114 126 105 131
-292 12 50 29 107
-293 77 25 36 65
-294 59 51 75 97
-295 99 78 133 94
-296 121 143 138 87
-297 156 70 92 18
-298 155 79 126 160
-299 136 60 39 53
-300 144 123 106 130
-301 66 110 49 107
-302 123 83 29 20
-303 110 133 14 21
-304 4 27 93 51
-305 66 68 58 139
-306 88 102 103 107
-307 23 36 53 75
-308 34 48 83 18
-309 45 13 20 131
-310 48 106 65 131
-311 34 26 105 127
-312 145 135 61 76
-313 148 21 32 65
-314 77 45 57 98
-315 55 25 39 18
-316 1 95 129 10
-317 5 137 8 152
-318 134 3 5 128
-319 37 92 30 109
-320 46 73 8 32
0