C4graphGraph forms for C4 [ 320, 198 ] = BGCG(UG(Cmap(320,21){8,4|10}_20);K1;3)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 320, 198 ] = BGCG(UG(Cmap(320,21){8,4|10}_20);K1;3).

(I) Following is a form readable by MAGMA:

g:=Graph<320|{ {144, 176}, {128, 161}, {130, 163}, {146, 177}, {144, 180}, {149, 176}, {150, 179}, {153, 177}, {128, 170}, {141, 167}, {130, 168}, {148, 187}, {143, 188}, {132, 176}, {144, 168}, {148, 172}, {154, 163}, {158, 167}, {137, 179}, {150, 172}, {129, 188}, {136, 181}, {148, 170}, {157, 163}, {135, 184}, {155, 219}, {140, 205}, {143, 206}, {129, 195}, {151, 212}, {139, 207}, {153, 220}, {134, 192}, {128, 200}, {145, 218}, {136, 196}, {145, 220}, {132, 203}, {149, 218}, {144, 223}, {149, 196}, {156, 205}, {147, 193}, {159, 203}, {141, 219}, {134, 222}, {160, 248}, {150, 206}, {147, 203}, {140, 213}, {156, 197}, {128, 218}, {142, 212}, {134, 218}, {159, 195}, {143, 239}, {135, 229}, {155, 248}, {152, 252}, {146, 247}, {129, 231}, {131, 232}, {156, 240}, {155, 246}, {160, 205}, {133, 235}, {152, 247}, {158, 236}, {150, 229}, {153, 236}, {138, 252}, {133, 242}, {139, 252}, {133, 255}, {159, 229}, {157, 230}, {156, 224}, {147, 237}, {158, 224}, {51, 179}, {68, 196}, {64, 193}, {106, 232}, {125, 255}, {85, 214}, {107, 232}, {41, 173}, {116, 240}, {64, 196}, {60, 184}, {52, 177}, {59, 190}, {89, 220}, {52, 178}, {127, 249}, {76, 202}, {44, 171}, {41, 161}, {52, 188}, {50, 186}, {101, 237}, {48, 185}, {123, 242}, {85, 220}, {48, 186}, {124, 246}, {122, 240}, {61, 183}, {85, 223}, {33, 170}, {68, 207}, {65, 202}, {62, 181}, {109, 230}, {99, 239}, {108, 226}, {119, 249}, {112, 255}, {123, 244}, {62, 174}, {35, 178}, {46, 191}, {63, 173}, {102, 244}, {70, 213}, {82, 193}, {95, 204}, {45, 185}, {58, 174}, {103, 242}, {113, 228}, {32, 182}, {112, 230}, {81, 199}, {105, 255}, {34, 181}, {94, 201}, {98, 245}, {86, 206}, {32, 185}, {117, 236}, {111, 246}, {39, 190}, {92, 197}, {50, 168}, {55, 173}, {34, 185}, {57, 165}, {75, 215}, {95, 195}, {110, 242}, {102, 251}, {88, 199}, {120, 231}, {116, 235}, {31, 191}, {94, 254}, {15, 174}, {114, 211}, {67, 226}, {20, 182}, {84, 246}, {89, 251}, {98, 192}, {21, 182}, {13, 169}, {106, 206}, {12, 169}, {81, 244}, {88, 253}, {99, 198}, {109, 200}, {18, 180}, {87, 241}, {90, 253}, {93, 250}, {103, 192}, {104, 207}, {20, 188}, {30, 183}, {76, 230}, {123, 209}, {116, 222}, {15, 164}, {117, 222}, {29, 182}, {92, 247}, {97, 202}, {3, 175}, {79, 226}, {126, 211}, {110, 195}, {19, 189}, {120, 214}, {105, 198}, {67, 243}, {75, 251}, {3, 178}, {104, 217}, {5, 183}, {72, 250}, {10, 184}, {70, 245}, {69, 241}, {121, 205}, {108, 217}, {12, 186}, {69, 243}, {66, 244}, {105, 223}, {5, 178}, {117, 194}, {70, 241}, {22, 174}, {72, 240}, {30, 166}, {77, 245}, {82, 234}, {87, 239}, {93, 228}, {71, 253}, {118, 204}, {113, 203}, {97, 219}, {18, 169}, {124, 199}, {114, 201}, {22, 173}, {81, 234}, {90, 225}, {106, 209}, {19, 175}, {66, 254}, {20, 169}, {28, 161}, {24, 165}, {21, 168}, {88, 229}, {112, 207}, {16, 208}, {123, 187}, {46, 238}, {43, 235}, {50, 243}, {62, 252}, {109, 175}, {27, 216}, {47, 236}, {35, 224}, {58, 254}, {24, 221}, {26, 223}, {39, 225}, {99, 165}, {21, 210}, {52, 243}, {36, 227}, {23, 208}, {99, 164}, {4, 204}, {29, 213}, {15, 199}, {110, 166}, {35, 234}, {107, 162}, {3, 201}, {127, 181}, {104, 162}, {22, 221}, {106, 161}, {108, 167}, {17, 221}, {111, 163}, {110, 162}, {53, 248}, {41, 231}, {126, 176}, {118, 184}, {42, 228}, {22, 217}, {8, 216}, {111, 191}, {61, 237}, {51, 227}, {17, 193}, {40, 249}, {63, 238}, {26, 201}, {53, 225}, {120, 172}, {113, 165}, {27, 204}, {124, 171}, {10, 210}, {55, 239}, {38, 254}, {49, 235}, {11, 215}, {14, 210}, {13, 209}, {5, 216}, {15, 210}, {124, 162}, {12, 211}, {107, 180}, {17, 241}, {68, 164}, {40, 200}, {38, 198}, {6, 231}, {74, 171}, {8, 233}, {95, 190}, {11, 233}, {7, 228}, {37, 198}, {24, 251}, {13, 233}, {91, 191}, {39, 194}, {84, 177}, {11, 237}, {49, 215}, {27, 253}, {18, 245}, {83, 180}, {45, 197}, {51, 219}, {83, 187}, {30, 247}, {78, 164}, {17, 250}, {59, 208}, {86, 189}, {2, 238}, {60, 208}, {56, 212}, {62, 211}, {71, 170}, {7, 233}, {73, 167}, {56, 214}, {14, 224}, {93, 179}, {1, 238}, {67, 172}, {56, 215}, {45, 194}, {23, 248}, {56, 200}, {39, 213}, {89, 171}, {16, 227}, {57, 202}, {34, 209}, {25, 234}, {42, 222}, {29, 232}, {75, 190}, {55, 194}, {35, 214}, {54, 192}, {89, 175}, {2, 250}, {69, 189}, {44, 212}, {26, 227}, {65, 187}, {71, 189}, {26, 225}, {65, 186}, {76, 183}, {93, 166}, {5, 249}, {57, 197}, {37, 217}, {33, 221}, {90, 166}, {31, 226}, {37, 216}, {2, 258}, {60, 316}, {32, 288}, {32, 289}, {48, 306}, {61, 319}, {53, 311}, {59, 312}, {28, 280}, {47, 299}, {18, 279}, {58, 319}, {53, 307}, {37, 290}, {9, 257}, {47, 295}, {61, 308}, {14, 260}, {49, 315}, {25, 275}, {16, 282}, {1, 266}, {48, 315}, {36, 303}, {19, 280}, {20, 280}, {19, 286}, {44, 289}, {41, 292}, {4, 266}, {25, 279}, {12, 258}, {8, 262}, {14, 257}, {31, 272}, {6, 278}, {11, 282}, {4, 278}, {25, 267}, {8, 283}, {1, 277}, {30, 266}, {27, 271}, {24, 269}, {28, 265}, {6, 272}, {29, 267}, {43, 316}, {44, 308}, {63, 294}, {42, 305}, {4, 280}, {33, 317}, {16, 269}, {57, 292}, {10, 277}, {47, 304}, {46, 305}, {7, 295}, {43, 266}, {58, 283}, {23, 309}, {63, 285}, {50, 278}, {54, 275}, {1, 295}, {55, 273}, {54, 272}, {51, 277}, {7, 289}, {13, 298}, {46, 262}, {40, 257}, {21, 318}, {42, 257}, {45, 256}, {28, 307}, {43, 260}, {38, 265}, {36, 267}, {6, 311}, {10, 315}, {9, 312}, {49, 259}, {54, 261}, {36, 273}, {38, 272}, {33, 278}, {9, 304}, {40, 275}, {60, 263}, {9, 311}, {59, 261}, {31, 289}, {2, 320}, {115, 305}, {3, 320}, {114, 305}, {121, 317}, {115, 310}, {68, 258}, {111, 297}, {79, 264}, {79, 263}, {84, 286}, {116, 318}, {78, 261}, {125, 310}, {82, 281}, {95, 276}, {82, 285}, {102, 297}, {109, 290}, {66, 274}, {74, 282}, {100, 308}, {114, 291}, {126, 303}, {125, 300}, {71, 277}, {127, 301}, {119, 293}, {77, 287}, {96, 306}, {98, 304}, {80, 259}, {92, 271}, {87, 259}, {91, 271}, {83, 262}, {121, 300}, {103, 306}, {108, 313}, {101, 307}, {126, 296}, {104, 318}, {23, 320}, {115, 292}, {85, 258}, {92, 267}, {115, 299}, {84, 269}, {86, 268}, {72, 275}, {78, 274}, {105, 309}, {76, 273}, {120, 293}, {118, 299}, {113, 300}, {80, 269}, {83, 270}, {65, 287}, {80, 270}, {86, 264}, {96, 318}, {70, 294}, {79, 303}, {81, 304}, {127, 286}, {91, 314}, {100, 261}, {34, 320}, {100, 262}, {102, 260}, {73, 298}, {122, 281}, {75, 303}, {97, 263}, {64, 295}, {94, 313}, {69, 300}, {73, 288}, {101, 268}, {88, 306}, {117, 287}, {72, 291}, {119, 284}, {118, 285}, {101, 270}, {100, 264}, {74, 292}, {121, 279}, {77, 290}, {125, 274}, {107, 260}, {91, 298}, {77, 319}, {122, 264}, {90, 296}, {94, 301}, {122, 265}, {98, 273}, {119, 259}, {64, 309}, {97, 279}, {74, 317}, {66, 315}, {80, 298}, {96, 282}, {67, 312}, {96, 284}, {78, 307}, {73, 311}, {87, 297}, {103, 281}, {112, 271}, {153, 281}, {130, 256}, {131, 256}, {141, 265}, {139, 268}, {155, 284}, {154, 285}, {146, 283}, {152, 274}, {151, 284}, {136, 263}, {158, 268}, {148, 256}, {154, 270}, {140, 283}, {134, 286}, {142, 276}, {136, 276}, {151, 310}, {135, 290}, {141, 296}, {142, 296}, {137, 302}, {142, 297}, {132, 301}, {145, 314}, {138, 294}, {131, 301}, {132, 299}, {149, 293}, {151, 294}, {138, 313}, {157, 302}, {147, 288}, {139, 312}, {160, 276}, {137, 316}, {130, 308}, {152, 302}, {140, 314}, {137, 319}, {131, 309}, {138, 317}, {146, 293}, {143, 310}, {154, 291}, {133, 313}, {159, 291}, {129, 316}, {157, 288}, {135, 314}, {145, 302}, {160, 287} }>;

(II) A more general form is to represent the graph as the orbit of {144, 176} under the group generated by the following permutations:

a: (2, 10, 7, 4)(3, 15, 11, 6)(5, 22, 16, 9)(8, 33, 23, 14)(12, 48, 32, 20)(13, 50, 34, 21)(17, 60, 42, 27)(18, 65, 45, 29)(19, 68, 49, 31)(24, 59, 40, 37)(25, 77, 57, 39)(26, 81, 61, 41)(28, 85, 66, 44)(30, 63, 51, 47)(35, 58, 74, 53)(36, 98, 76, 55)(38, 89, 78, 56)(43, 46, 71, 64)(52, 62, 96, 73)(54, 109, 99, 75)(67, 127, 104, 80)(69, 136, 116, 91)(70, 97, 117, 92)(72, 135, 113, 95)(79, 134, 112, 87)(82, 137, 115, 90)(83, 148, 131, 107)(84, 139, 119, 108)(86, 149, 133, 111)(88, 147, 129, 114)(93, 118)(94, 124, 101, 120)(100, 128, 105, 102)(103, 157, 143, 126)(106, 144, 123, 130)(110, 154, 150, 132)(121, 160, 156, 140)(122, 145, 125, 142)(138, 155, 158, 146)(141, 153, 152, 151)(161, 223, 244, 308)(162, 270, 172, 301)(163, 206, 176, 242)(164, 215, 272, 175)(165, 190, 275, 290)(166, 285, 179, 299)(167, 177, 252, 284)(168, 209)(169, 186, 185, 182)(170, 309, 260, 262)(171, 307, 214, 254)(173, 227, 304, 183)(174, 282, 311, 178)(180, 187, 256, 232)(181, 318, 298, 243)(184, 228, 204, 250)(188, 211, 306, 288)(189, 196, 235, 191)(192, 230, 239, 303)(193, 316, 305, 253)(194, 267, 245, 202)(195, 291, 229, 203)(197, 213, 279, 287)(198, 251, 261, 200)(199, 237, 231, 201)(207, 259, 226, 286)(208, 257, 216, 221)(210, 233, 278, 320)(212, 265, 220, 274)(217, 269, 312, 249)(218, 255, 297, 264)(219, 236, 247, 294)(222, 271, 241, 263)(224, 283, 317, 248)(225, 234, 319, 292)(238, 277, 295, 266)(240, 314, 300, 276)(246, 268, 293, 313)(258, 315, 289, 280)(281, 302, 310, 296)
b: (1, 2)(3, 10)(4, 12)(5, 15)(6, 18)(7, 17)(8, 22)(9, 25)(11, 24)(13, 33)(14, 35)(19, 48)(20, 50)(21, 52)(23, 51)(26, 60)(27, 62)(28, 65)(29, 67)(30, 68)(31, 70)(32, 69)(34, 71)(36, 59)(37, 58)(38, 77)(39, 79)(40, 81)(41, 83)(42, 82)(43, 85)(44, 87)(45, 86)(46, 63)(47, 72)(49, 89)(53, 97)(54, 98)(55, 100)(56, 102)(57, 101)(61, 99)(64, 93)(66, 109)(73, 121)(74, 80)(76, 78)(84, 96)(88, 127)(90, 136)(91, 138)(92, 139)(94, 135)(95, 126)(103, 134)(104, 146)(105, 137)(106, 148)(107, 120)(108, 140)(110, 149)(111, 151)(112, 152)(113, 147)(114, 118)(115, 154)(116, 153)(117, 122)(119, 124)(123, 128)(125, 157)(129, 144)(130, 143)(131, 150)(132, 159)(133, 145)(141, 160)(156, 158)(161, 187)(162, 293)(163, 310)(164, 183)(165, 237)(166, 196)(167, 205)(168, 188)(169, 278)(170, 209)(171, 259)(172, 232)(173, 262)(174, 216)(175, 315)(176, 195)(177, 318)(178, 210)(179, 309)(180, 231)(181, 253)(182, 243)(184, 201)(185, 189)(186, 280)(190, 303)(191, 294)(193, 228)(194, 264)(197, 268)(198, 319)(199, 249)(200, 244)(202, 307)(204, 211)(206, 256)(207, 247)(208, 227)(212, 297)(213, 226)(214, 260)(215, 251)(217, 283)(218, 242)(219, 248)(220, 235)(221, 233)(222, 281)(223, 316)(225, 263)(229, 301)(230, 274)(234, 257)(236, 240)(239, 308)(241, 289)(245, 272)(246, 284)(250, 295)(252, 271)(254, 290)(255, 302)(258, 266)(261, 273)(265, 287)(267, 312)(269, 282)(270, 292)(275, 304)(276, 296)(277, 320)(279, 311)(285, 305)(286, 306)(288, 300)(291, 299)(298, 317)(313, 314)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 320, 198 ]
320
-1 266 277 238 295
-2 320 258 238 250
-3 320 178 201 175
-4 266 278 280 204
-5 178 183 216 249
-6 231 278 311 272
-7 233 289 228 295
-8 233 216 283 262
-9 311 257 312 304
-10 210 277 315 184
-11 233 215 237 282
-12 211 169 258 186
-13 209 298 233 169
-14 210 224 257 260
-15 199 210 174 164
-16 269 227 282 208
-17 221 193 250 241
-18 245 169 180 279
-19 286 189 280 175
-20 188 169 280 182
-21 210 168 182 318
-22 221 173 217 174
-23 309 320 248 208
-24 165 221 269 251
-25 275 234 267 279
-26 201 223 225 227
-27 253 204 216 271
-28 265 280 161 307
-29 232 267 213 182
-30 166 266 247 183
-31 289 191 226 272
-32 288 289 182 185
-33 221 278 170 317
-34 209 320 181 185
-35 178 234 224 214
-36 267 303 227 273
-37 198 290 216 217
-38 198 254 265 272
-39 190 213 225 194
-40 275 200 257 249
-41 231 292 161 173
-42 222 257 228 305
-43 266 235 260 316
-44 308 212 289 171
-45 256 194 185 197
-46 191 238 305 262
-47 299 236 304 295
-48 315 185 306 186
-49 235 215 259 315
-50 243 168 278 186
-51 277 179 227 219
-52 177 188 243 178
-53 311 225 248 307
-54 275 192 261 272
-55 194 173 239 273
-56 200 212 214 215
-57 165 202 292 197
-58 319 254 283 174
-59 190 312 261 208
-60 184 316 208 263
-61 308 319 237 183
-62 211 181 174 252
-63 238 173 294 285
-64 309 193 196 295
-65 187 287 202 186
-66 254 244 315 274
-67 243 312 226 172
-68 258 196 207 164
-69 243 189 300 241
-70 245 213 294 241
-71 253 189 277 170
-72 275 291 250 240
-73 298 167 288 311
-74 171 292 282 317
-75 190 215 303 251
-76 202 183 273 230
-77 319 287 245 290
-78 261 164 274 307
-79 264 226 303 263
-80 298 269 259 270
-81 199 244 234 304
-82 234 193 281 285
-83 187 180 270 262
-84 286 177 246 269
-85 220 223 214 258
-86 264 189 268 206
-87 297 259 239 241
-88 253 199 229 306
-89 220 171 251 175
-90 253 166 225 296
-91 298 191 314 271
-92 267 247 271 197
-93 166 179 228 250
-94 254 201 301 313
-95 276 190 204 195
-96 282 284 306 318
-97 202 279 219 263
-98 245 192 304 273
-99 165 198 239 164
-100 264 308 261 262
-101 268 237 270 307
-102 297 244 260 251
-103 242 192 281 306
-104 162 217 207 318
-105 198 309 255 223
-106 209 232 161 206
-107 232 180 260 162
-108 167 313 226 217
-109 200 290 175 230
-110 242 166 162 195
-111 297 191 246 163
-112 255 271 207 230
-113 165 300 203 228
-114 211 201 291 305
-115 299 310 292 305
-116 222 235 240 318
-117 287 222 236 194
-118 299 204 184 285
-119 259 249 293 284
-120 231 214 172 293
-121 300 279 205 317
-122 264 265 281 240
-123 187 209 242 244
-124 199 246 171 162
-125 255 310 300 274
-126 176 211 303 296
-127 286 301 181 249
-128 200 170 161 218
-129 231 188 195 316
-130 308 168 256 163
-131 232 309 256 301
-132 176 299 301 203
-133 242 255 235 313
-134 286 222 192 218
-135 290 314 184 229
-136 276 181 196 263
-137 319 179 302 316
-138 313 294 317 252
-139 268 312 207 252
-140 213 314 205 283
-141 265 167 219 296
-142 297 276 212 296
-143 188 310 206 239
-144 176 168 223 180
-145 220 302 314 218
-146 177 247 293 283
-147 288 203 193 237
-148 187 256 170 172
-149 176 293 196 218
-150 179 172 206 229
-151 310 212 294 284
-152 247 302 252 274
-153 220 177 236 281
-154 291 270 163 285
-155 246 248 284 219
-156 224 205 240 197
-157 288 302 163 230
-158 167 224 268 236
-159 203 291 195 229
-160 276 287 248 205
-161 28 106 128 41
-162 110 124 104 107
-163 154 111 157 130
-164 99 78 68 15
-165 99 24 57 113
-166 110 90 93 30
-167 158 73 108 141
-168 144 50 130 21
-169 12 13 18 20
-170 33 71 148 128
-171 44 89 124 74
-172 67 148 150 120
-173 22 55 41 63
-174 22 58 15 62
-175 89 3 19 109
-176 132 144 126 149
-177 146 84 52 153
-178 35 3 5 52
-179 93 137 51 150
-180 144 83 18 107
-181 34 136 127 62
-182 29 20 21 32
-183 5 61 30 76
-184 135 60 118 10
-185 34 45 48 32
-186 12 48 50 65
-187 123 148 83 65
-188 143 52 129 20
-189 69 71 19 86
-190 59 39 95 75
-191 111 46 91 31
-192 134 103 54 98
-193 147 82 17 64
-194 55 45 39 117
-195 110 159 95 129
-196 68 136 149 64
-197 45 57 156 92
-198 99 37 38 105
-199 88 124 15 81
-200 56 40 128 109
-201 3 26 114 94
-202 57 97 65 76
-203 132 113 147 159
-204 4 27 95 118
-205 121 156 160 140
-206 143 106 150 86
-207 68 112 104 139
-208 23 59 16 60
-209 34 13 123 106
-210 14 15 10 21
-211 12 114 126 62
-212 44 56 151 142
-213 70 39 29 140
-214 56 35 85 120
-215 11 56 49 75
-216 37 5 27 8
-217 22 37 104 108
-218 134 145 149 128
-219 155 51 97 141
-220 89 145 85 153
-221 22 33 24 17
-222 134 116 117 42
-223 144 26 105 85
-224 35 156 14 158
-225 90 26 39 53
-226 67 79 31 108
-227 36 26 16 51
-228 113 93 7 42
-229 88 135 159 150
-230 112 157 76 109
-231 6 41 129 120
-232 29 106 107 131
-233 11 13 7 8
-234 35 25 81 82
-235 133 49 116 43
-236 47 158 117 153
-237 11 101 147 61
-238 1 2 46 63
-239 55 99 143 87
-240 122 156 72 116
-241 69 70 17 87
-242 110 133 123 103
-243 67 69 50 52
-244 66 123 102 81
-245 77 70 18 98
-246 111 155 124 84
-247 146 92 30 152
-248 23 155 160 53
-249 5 127 40 119
-250 2 93 17 72
-251 89 24 102 75
-252 138 62 139 152
-253 88 90 27 71
-254 66 58 38 94
-255 133 112 125 105
-256 45 148 130 131
-257 14 40 9 42
-258 12 2 68 85
-259 80 49 119 87
-260 14 102 107 43
-261 78 100 59 54
-262 100 46 83 8
-263 79 136 60 97
-264 100 122 79 86
-265 122 38 28 141
-266 1 4 30 43
-267 25 36 92 29
-268 101 158 139 86
-269 24 80 16 84
-270 154 101 80 83
-271 112 91 92 27
-272 38 6 31 54
-273 55 36 76 98
-274 66 78 125 152
-275 25 72 40 54
-276 136 160 95 142
-277 1 71 51 10
-278 33 4 6 50
-279 121 25 18 97
-280 4 28 19 20
-281 122 103 82 153
-282 11 16 74 96
-283 58 146 8 140
-284 155 96 151 119
-285 154 82 63 118
-286 134 127 84 19
-287 77 160 117 65
-288 157 147 73 32
-289 44 7 31 32
-290 77 135 37 109
-291 154 114 159 72
-292 57 115 41 74
-293 146 149 119 120
-294 70 138 63 151
-295 1 47 7 64
-296 90 126 141 142
-297 111 102 87 142
-298 13 80 91 73
-299 132 47 115 118
-300 121 69 113 125
-301 132 94 127 131
-302 145 157 137 152
-303 79 36 126 75
-304 47 81 9 98
-305 46 114 115 42
-306 88 48 103 96
-307 78 101 28 53
-308 44 100 61 130
-309 23 105 64 131
-310 143 125 115 151
-311 6 73 9 53
-312 67 59 139 9
-313 133 94 138 108
-314 145 91 135 140
-315 66 48 49 10
-316 60 137 129 43
-317 33 121 138 74
-318 104 116 96 21
-319 77 58 137 61
-320 23 34 2 3
0

**************