C4graphGraph forms for C4 [ 320, 199 ] = BGCG(UG(Cmap(320,21){8,4|10}_20);K1;4)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 320, 199 ] = BGCG(UG(Cmap(320,21){8,4|10}_20);K1;4).

(I) Following is a form readable by MAGMA:

g:=Graph<320|{ {160, 170}, {154, 186}, {142, 175}, {147, 178}, {159, 186}, {138, 172}, {140, 170}, {133, 175}, {141, 161}, {158, 178}, {144, 188}, {156, 178}, {152, 183}, {155, 171}, {132, 182}, {130, 182}, {143, 186}, {151, 175}, {139, 183}, {156, 161}, {134, 198}, {160, 224}, {156, 220}, {147, 211}, {133, 193}, {160, 232}, {146, 219}, {158, 212}, {137, 197}, {142, 194}, {153, 212}, {159, 206}, {145, 195}, {129, 215}, {136, 222}, {140, 219}, {128, 216}, {150, 206}, {129, 219}, {137, 211}, {149, 201}, {134, 216}, {157, 195}, {153, 249}, {134, 229}, {137, 238}, {136, 224}, {145, 249}, {129, 235}, {139, 224}, {142, 226}, {150, 250}, {143, 227}, {153, 244}, {131, 237}, {159, 241}, {148, 250}, {135, 232}, {150, 249}, {158, 239}, {155, 232}, {129, 245}, {132, 241}, {152, 238}, {156, 234}, {134, 241}, {140, 244}, {146, 234}, {143, 245}, {144, 235}, {147, 237}, {158, 224}, {46, 174}, {118, 246}, {114, 242}, {81, 209}, {93, 221}, {107, 235}, {79, 206}, {84, 213}, {51, 177}, {33, 162}, {78, 205}, {82, 209}, {59, 191}, {70, 194}, {93, 217}, {95, 219}, {53, 176}, {98, 231}, {65, 199}, {73, 207}, {50, 181}, {116, 243}, {88, 223}, {106, 237}, {34, 170}, {76, 196}, {101, 237}, {106, 227}, {32, 171}, {113, 250}, {70, 202}, {48, 189}, {118, 251}, {106, 231}, {91, 213}, {54, 185}, {66, 205}, {97, 238}, {43, 187}, {92, 204}, {109, 253}, {63, 174}, {72, 217}, {47, 189}, {74, 216}, {62, 172}, {45, 190}, {120, 235}, {64, 211}, {33, 181}, {119, 227}, {94, 203}, {50, 164}, {53, 163}, {103, 241}, {35, 180}, {121, 238}, {41, 190}, {39, 176}, {86, 193}, {54, 174}, {69, 221}, {60, 164}, {83, 203}, {85, 204}, {102, 255}, {44, 182}, {127, 229}, {51, 169}, {90, 192}, {43, 183}, {127, 227}, {123, 231}, {48, 172}, {98, 254}, {36, 185}, {119, 234}, {102, 251}, {32, 190}, {116, 234}, {38, 184}, {36, 187}, {78, 209}, {38, 185}, {108, 243}, {80, 240}, {1, 163}, {15, 173}, {4, 166}, {1, 162}, {26, 185}, {28, 184}, {115, 215}, {95, 251}, {7, 162}, {121, 220}, {30, 187}, {73, 239}, {82, 244}, {105, 207}, {4, 163}, {20, 179}, {13, 170}, {10, 173}, {15, 167}, {124, 212}, {77, 229}, {87, 255}, {90, 242}, {26, 179}, {119, 222}, {75, 225}, {81, 251}, {106, 192}, {12, 167}, {87, 252}, {25, 180}, {91, 246}, {10, 164}, {71, 233}, {29, 179}, {110, 192}, {86, 249}, {3, 179}, {126, 206}, {123, 203}, {8, 184}, {88, 232}, {107, 218}, {120, 201}, {70, 244}, {2, 177}, {117, 198}, {77, 254}, {21, 166}, {105, 218}, {23, 163}, {101, 209}, {13, 184}, {24, 173}, {18, 167}, {99, 214}, {117, 195}, {10, 189}, {6, 190}, {29, 165}, {96, 216}, {103, 223}, {14, 183}, {114, 203}, {99, 218}, {70, 252}, {78, 245}, {122, 193}, {102, 218}, {126, 194}, {125, 193}, {104, 212}, {112, 204}, {12, 177}, {120, 197}, {27, 166}, {16, 173}, {95, 226}, {100, 217}, {66, 252}, {73, 246}, {112, 207}, {9, 201}, {56, 248}, {9, 200}, {37, 228}, {110, 175}, {36, 230}, {126, 188}, {60, 254}, {30, 221}, {113, 178}, {57, 250}, {19, 214}, {115, 182}, {59, 254}, {14, 200}, {58, 252}, {19, 213}, {41, 225}, {117, 189}, {21, 220}, {96, 169}, {97, 168}, {28, 214}, {111, 165}, {34, 233}, {52, 255}, {96, 171}, {11, 199}, {96, 172}, {98, 174}, {4, 202}, {59, 245}, {27, 213}, {24, 214}, {104, 166}, {107, 165}, {103, 168}, {18, 194}, {55, 231}, {97, 177}, {108, 188}, {1, 208}, {44, 253}, {2, 208}, {122, 168}, {1, 210}, {44, 248}, {104, 188}, {29, 200}, {55, 225}, {59, 236}, {10, 210}, {37, 253}, {42, 243}, {56, 225}, {48, 233}, {47, 246}, {8, 210}, {28, 198}, {23, 205}, {52, 239}, {28, 192}, {46, 242}, {35, 255}, {116, 169}, {14, 208}, {20, 202}, {58, 229}, {80, 176}, {85, 181}, {17, 240}, {31, 253}, {73, 171}, {60, 222}, {6, 226}, {61, 217}, {9, 236}, {2, 228}, {47, 201}, {3, 228}, {67, 164}, {16, 247}, {11, 236}, {87, 176}, {58, 210}, {74, 162}, {27, 242}, {65, 168}, {52, 221}, {85, 191}, {7, 236}, {31, 243}, {40, 196}, {89, 181}, {21, 248}, {87, 186}, {42, 196}, {50, 220}, {45, 195}, {34, 205}, {60, 211}, {49, 222}, {39, 200}, {35, 204}, {75, 187}, {2, 240}, {22, 228}, {5, 247}, {35, 208}, {53, 198}, {3, 247}, {75, 191}, {93, 169}, {63, 202}, {14, 248}, {81, 167}, {17, 230}, {67, 180}, {48, 199}, {61, 197}, {38, 223}, {19, 233}, {61, 199}, {53, 207}, {37, 223}, {20, 239}, {79, 180}, {68, 191}, {90, 161}, {11, 247}, {43, 215}, {13, 240}, {57, 196}, {56, 197}, {42, 215}, {31, 226}, {92, 161}, {24, 230}, {91, 165}, {25, 230}, {18, 274}, {49, 307}, {57, 315}, {5, 262}, {61, 318}, {55, 308}, {16, 275}, {23, 275}, {26, 285}, {62, 313}, {56, 319}, {34, 293}, {12, 261}, {16, 282}, {46, 292}, {40, 290}, {26, 278}, {33, 300}, {52, 313}, {8, 262}, {42, 293}, {32, 304}, {49, 290}, {51, 288}, {18, 262}, {54, 290}, {23, 257}, {27, 268}, {40, 319}, {22, 270}, {49, 297}, {43, 307}, {31, 261}, {32, 314}, {47, 308}, {24, 260}, {92, 320}, {22, 267}, {40, 310}, {25, 262}, {62, 286}, {22, 311}, {63, 286}, {7, 293}, {11, 297}, {41, 266}, {41, 271}, {20, 307}, {25, 305}, {37, 268}, {51, 282}, {38, 271}, {57, 275}, {30, 309}, {58, 273}, {46, 261}, {39, 268}, {8, 292}, {3, 302}, {30, 304}, {21, 314}, {62, 273}, {33, 270}, {5, 309}, {6, 310}, {6, 311}, {4, 310}, {5, 310}, {44, 287}, {63, 267}, {12, 313}, {45, 280}, {17, 295}, {54, 256}, {7, 304}, {50, 261}, {39, 272}, {15, 312}, {15, 311}, {55, 268}, {19, 302}, {125, 320}, {9, 311}, {45, 275}, {17, 303}, {13, 307}, {36, 283}, {72, 264}, {108, 300}, {64, 257}, {126, 319}, {83, 274}, {77, 270}, {86, 274}, {120, 316}, {89, 285}, {101, 289}, {108, 296}, {75, 269}, {90, 285}, {94, 276}, {93, 278}, {112, 315}, {86, 282}, {103, 298}, {114, 319}, {109, 288}, {110, 291}, {65, 270}, {125, 306}, {95, 272}, {79, 287}, {88, 265}, {123, 298}, {94, 271}, {104, 315}, {119, 292}, {112, 291}, {122, 302}, {125, 297}, {74, 287}, {84, 257}, {67, 277}, {81, 263}, {69, 274}, {76, 283}, {99, 308}, {113, 297}, {107, 305}, {127, 293}, {66, 281}, {29, 320}, {89, 260}, {99, 318}, {79, 273}, {83, 269}, {89, 263}, {110, 305}, {121, 294}, {66, 290}, {77, 301}, {124, 285}, {69, 295}, {123, 281}, {68, 295}, {69, 294}, {100, 256}, {111, 267}, {98, 263}, {72, 302}, {71, 288}, {113, 278}, {71, 303}, {118, 286}, {85, 317}, {100, 269}, {65, 299}, {109, 263}, {71, 300}, {127, 276}, {94, 309}, {102, 269}, {76, 288}, {116, 280}, {92, 304}, {111, 258}, {122, 279}, {82, 317}, {78, 318}, {115, 259}, {74, 315}, {121, 264}, {80, 289}, {109, 284}, {76, 318}, {84, 294}, {91, 296}, {64, 308}, {100, 273}, {124, 265}, {105, 284}, {117, 259}, {88, 303}, {124, 267}, {111, 279}, {72, 305}, {64, 314}, {114, 264}, {80, 298}, {68, 312}, {118, 266}, {115, 271}, {82, 303}, {68, 314}, {83, 301}, {84, 298}, {97, 287}, {67, 316}, {101, 282}, {105, 278}, {128, 256}, {138, 264}, {157, 277}, {128, 266}, {130, 265}, {144, 283}, {142, 258}, {135, 266}, {154, 279}, {150, 281}, {155, 276}, {137, 281}, {131, 272}, {145, 258}, {132, 272}, {151, 259}, {148, 256}, {136, 286}, {130, 277}, {149, 258}, {147, 260}, {153, 257}, {130, 283}, {157, 260}, {141, 276}, {141, 279}, {131, 280}, {128, 284}, {133, 280}, {148, 265}, {139, 277}, {131, 284}, {141, 300}, {138, 296}, {136, 299}, {160, 259}, {140, 296}, {149, 306}, {154, 317}, {145, 312}, {135, 301}, {152, 306}, {146, 313}, {151, 316}, {139, 295}, {144, 317}, {133, 309}, {146, 289}, {151, 292}, {132, 306}, {138, 316}, {154, 301}, {152, 289}, {159, 291}, {155, 294}, {149, 299}, {157, 291}, {135, 312}, {148, 299}, {143, 320} }>;

(II) A more general form is to represent the graph as the orbit of {160, 170} under the group generated by the following permutations:

a: (2, 10, 7, 4)(3, 15, 11, 6)(5, 22, 16, 9)(8, 33, 23, 14)(12, 48, 32, 20)(13, 50, 34, 21)(17, 60, 42, 27)(18, 65, 45, 29)(19, 68, 49, 31)(24, 59, 40, 37)(25, 77, 57, 39)(26, 81, 61, 41)(28, 85, 66, 44)(30, 63, 51, 47)(35, 58, 74, 53)(36, 98, 76, 55)(38, 89, 78, 56)(43, 46, 71, 64)(52, 62, 96, 73)(54, 109, 99, 75)(67, 127, 104, 80)(69, 136, 116, 91)(70, 97, 117, 92)(72, 135, 113, 95)(79, 134, 112, 87)(82, 137, 115, 90)(83, 148, 131, 107)(84, 139, 119, 108)(86, 149, 133, 111)(88, 147, 129, 114)(93, 118)(94, 124, 101, 120)(100, 128, 105, 102)(103, 157, 143, 126)(106, 144, 123, 130)(110, 154, 150, 132)(121, 160, 156, 140)(122, 145, 125, 142)(138, 155, 158, 146)(141, 153, 152, 151)(161, 244, 238, 259)(162, 163, 208, 210)(164, 293, 166, 240)(165, 274, 299, 280)(167, 199, 190, 179)(168, 195, 320, 194)(169, 246, 221, 286)(170, 220)(171, 239, 313, 172)(173, 236, 310, 228)(174, 288, 308, 187)(175, 279, 249, 306)(176, 180, 229, 315)(177, 189, 304, 202)(178, 219, 264, 232)(181, 205, 248, 184)(182, 192, 317, 281)(183, 292, 300, 257)(185, 263, 318, 225)(186, 206, 241, 291)(188, 298, 277, 227)(191, 290, 253, 214)(193, 258)(196, 268, 230, 254)(197, 271, 285, 209)(198, 204, 252, 287)(200, 262, 270, 275)(201, 309, 267, 282)(203, 265, 237, 235)(207, 255, 273, 216)(211, 215, 242, 303)(212, 289, 316, 276)(213, 295, 222, 243)(217, 266, 278, 251)(218, 269, 256, 284)(223, 260, 245, 319)(224, 234, 296, 294)(226, 302, 312, 297)(231, 283)(233, 314, 307, 261)(247, 311)(250, 272, 305, 301)
b: (1, 2)(3, 10)(4, 12)(5, 15)(6, 18)(7, 17)(8, 22)(9, 25)(11, 24)(13, 33)(14, 35)(19, 48)(20, 50)(21, 52)(23, 51)(26, 60)(27, 62)(28, 65)(29, 67)(30, 68)(31, 70)(32, 69)(34, 71)(36, 59)(37, 58)(38, 77)(39, 79)(40, 81)(41, 83)(42, 82)(43, 85)(44, 87)(45, 86)(46, 63)(47, 72)(49, 89)(53, 97)(54, 98)(55, 100)(56, 102)(57, 101)(61, 99)(64, 93)(66, 109)(73, 121)(74, 80)(76, 78)(84, 96)(88, 127)(90, 136)(91, 138)(92, 139)(94, 135)(95, 126)(103, 134)(104, 146)(105, 137)(106, 148)(107, 120)(108, 140)(110, 149)(111, 151)(112, 152)(113, 147)(114, 118)(115, 154)(116, 153)(117, 122)(119, 124)(123, 128)(125, 157)(129, 144)(130, 143)(131, 150)(132, 159)(133, 145)(141, 160)(156, 158)(161, 224)(162, 240)(163, 177)(164, 179)(165, 316)(166, 313)(167, 310)(168, 198)(169, 257)(170, 300)(171, 294)(172, 213)(173, 247)(175, 258)(176, 287)(180, 200)(181, 307)(182, 186)(183, 204)(184, 270)(185, 254)(187, 191)(188, 219)(189, 302)(190, 274)(192, 299)(193, 195)(194, 226)(196, 209)(197, 218)(199, 214)(201, 305)(202, 261)(203, 266)(205, 288)(206, 272)(207, 238)(210, 228)(211, 278)(212, 234)(215, 317)(216, 298)(217, 308)(220, 239)(221, 314)(222, 285)(223, 229)(225, 269)(227, 265)(230, 236)(231, 256)(232, 276)(237, 250)(242, 286)(243, 244)(245, 283)(246, 264)(248, 255)(249, 280)(251, 319)(252, 253)(259, 279)(260, 297)(262, 311)(263, 290)(267, 292)(268, 273)(271, 301)(275, 282)(277, 320)(281, 284)(289, 315)(291, 306)(293, 303)(295, 304)(309, 312)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 320, 199 ]
320
-1 210 162 163 208
-2 177 228 240 208
-3 179 247 302 228
-4 166 310 202 163
-5 309 310 247 262
-6 310 190 311 226
-7 236 293 304 162
-8 210 292 184 262
-9 200 201 311 236
-10 210 189 173 164
-11 297 199 236 247
-12 177 167 313 261
-13 170 184 240 307
-14 200 248 183 208
-15 167 311 312 173
-16 275 247 282 173
-17 303 240 295 230
-18 167 194 262 274
-19 233 213 214 302
-20 179 202 239 307
-21 220 166 248 314
-22 267 311 270 228
-23 275 257 205 163
-24 214 260 173 230
-25 180 305 262 230
-26 179 278 185 285
-27 242 166 213 268
-28 198 192 214 184
-29 165 320 200 179
-30 187 221 309 304
-31 253 243 226 261
-32 190 171 314 304
-33 300 181 270 162
-34 233 170 205 293
-35 255 180 204 208
-36 187 283 185 230
-37 253 223 268 228
-38 223 271 184 185
-39 176 200 268 272
-40 319 310 290 196
-41 266 190 225 271
-42 243 215 293 196
-43 187 215 183 307
-44 253 287 182 248
-45 275 190 280 195
-46 242 292 261 174
-47 308 189 201 246
-48 199 189 233 172
-49 297 222 290 307
-50 220 181 261 164
-51 177 288 169 282
-52 221 255 313 239
-53 176 198 163 207
-54 256 290 174 185
-55 231 308 268 225
-56 319 225 248 197
-57 275 315 250 196
-58 210 229 273 252
-59 254 245 191 236
-60 254 211 222 164
-61 199 217 197 318
-62 286 313 172 273
-63 286 267 202 174
-64 308 211 257 314
-65 199 299 168 270
-66 290 281 205 252
-67 277 180 316 164
-68 191 312 314 295
-69 221 294 295 274
-70 244 202 194 252
-71 233 288 300 303
-72 264 302 217 305
-73 246 171 239 207
-74 287 216 315 162
-75 187 191 225 269
-76 288 283 196 318
-77 254 301 270 229
-78 209 245 205 318
-79 287 180 206 273
-80 176 298 289 240
-81 209 167 251 263
-82 209 244 303 317
-83 301 203 269 274
-84 298 213 257 294
-85 191 181 204 317
-86 193 249 282 274
-87 176 255 186 252
-88 232 265 223 303
-89 181 260 263 285
-90 242 192 161 285
-91 165 213 246 296
-92 320 204 161 304
-93 221 278 169 217
-94 276 309 203 271
-95 226 272 251 219
-96 169 171 172 216
-97 177 287 168 238
-98 231 254 174 263
-99 308 214 218 318
-100 256 269 217 273
-101 209 289 237 282
-102 255 269 218 251
-103 298 168 223 241
-104 166 188 212 315
-105 278 207 218 284
-106 231 192 237 227
-107 165 235 305 218
-108 188 243 300 296
-109 253 288 284 263
-110 192 291 305 175
-111 165 267 279 258
-112 291 204 315 207
-113 297 178 278 250
-114 242 264 319 203
-115 182 215 259 271
-116 243 234 169 280
-117 198 189 259 195
-118 286 266 246 251
-119 222 234 292 227
-120 201 235 316 197
-121 220 264 238 294
-122 168 279 302 193
-123 231 298 203 281
-124 265 212 267 285
-125 297 320 193 306
-126 319 188 194 206
-127 276 227 293 229
-128 266 256 216 284
-129 245 235 215 219
-130 265 277 182 283
-131 280 237 272 284
-132 182 272 306 241
-133 309 280 193 175
-134 198 216 229 241
-135 232 266 301 312
-136 286 222 299 224
-137 211 281 238 197
-138 264 172 316 296
-139 277 224 183 295
-140 244 170 219 296
-141 276 300 279 161
-142 258 226 194 175
-143 320 245 227 186
-144 188 235 283 317
-145 312 258 249 195
-146 234 289 313 219
-147 178 211 237 260
-148 265 299 256 250
-149 299 201 258 306
-150 281 249 206 250
-151 259 292 316 175
-152 289 183 238 306
-153 244 212 257 249
-154 279 301 317 186
-155 232 276 171 294
-156 220 178 234 161
-157 277 291 260 195
-158 178 212 224 239
-159 291 206 186 241
-160 232 224 170 259
-161 90 156 92 141
-162 33 1 7 74
-163 1 23 4 53
-164 67 60 50 10
-165 111 91 29 107
-166 4 27 104 21
-167 12 15 81 18
-168 122 103 97 65
-169 93 116 51 96
-170 34 13 160 140
-171 155 73 96 32
-172 48 138 62 96
-173 24 15 16 10
-174 46 63 54 98
-175 110 133 151 142
-176 80 39 53 87
-177 12 2 51 97
-178 156 113 147 158
-179 3 26 29 20
-180 67 35 79 25
-181 33 89 50 85
-182 44 132 115 130
-183 14 139 152 43
-184 13 38 28 8
-185 36 26 38 54
-186 143 154 159 87
-187 36 30 75 43
-188 144 104 126 108
-189 47 48 117 10
-190 45 6 41 32
-191 68 59 85 75
-192 110 90 28 106
-193 122 133 125 86
-194 70 126 18 142
-195 45 145 157 117
-196 57 40 42 76
-197 56 137 61 120
-198 134 28 117 53
-199 11 48 61 65
-200 14 39 29 9
-201 47 149 9 120
-202 4 70 63 20
-203 123 114 83 94
-204 35 112 92 85
-205 66 23 34 78
-206 79 126 159 150
-207 112 105 73 53
-208 1 2 35 14
-209 78 101 81 82
-210 1 58 8 10
-211 147 60 137 64
-212 124 158 104 153
-213 91 27 84 19
-214 99 24 28 19
-215 115 129 42 43
-216 134 128 74 96
-217 100 93 61 72
-218 99 102 105 107
-219 146 95 129 140
-220 121 156 50 21
-221 69 93 30 52
-222 136 49 60 119
-223 88 37 103 38
-224 136 158 160 139
-225 55 56 41 75
-226 6 95 31 142
-227 143 127 106 119
-228 22 2 3 37
-229 77 134 58 127
-230 24 25 36 17
-231 55 123 106 98
-232 88 155 135 160
-233 34 48 71 19
-234 156 146 116 119
-235 144 107 129 120
-236 11 59 7 9
-237 101 147 106 131
-238 121 137 97 152
-239 158 73 52 20
-240 2 13 80 17
-241 132 134 103 159
-242 46 90 114 27
-243 116 31 42 108
-244 70 82 140 153
-245 143 78 59 129
-246 47 91 73 118
-247 11 3 5 16
-248 44 56 14 21
-249 145 150 86 153
-250 57 113 148 150
-251 102 81 95 118
-252 66 58 70 87
-253 44 37 31 109
-254 77 59 60 98
-255 35 102 52 87
-256 100 148 128 54
-257 23 84 64 153
-258 111 145 149 142
-259 115 160 117 151
-260 89 24 157 147
-261 12 46 50 31
-262 25 5 18 8
-263 89 81 98 109
-264 121 114 72 138
-265 88 124 148 130
-266 135 128 41 118
-267 22 111 124 63
-268 55 37 27 39
-269 100 102 83 75
-270 22 33 77 65
-271 38 115 94 41
-272 132 39 95 131
-273 100 79 58 62
-274 69 83 18 86
-275 23 45 57 16
-276 155 94 127 141
-277 67 157 139 130
-278 113 26 93 105
-279 154 111 122 141
-280 45 133 116 131
-281 66 123 137 150
-282 101 16 51 86
-283 144 36 130 76
-284 105 128 109 131
-285 89 90 124 26
-286 136 62 63 118
-287 44 79 74 97
-288 71 51 76 109
-289 101 80 146 152
-290 66 49 40 54
-291 110 112 157 159
-292 46 8 151 119
-293 34 127 7 42
-294 121 155 69 84
-295 68 69 17 139
-296 91 138 140 108
-297 11 113 125 49
-298 123 80 103 84
-299 136 148 149 65
-300 33 71 108 141
-301 77 154 135 83
-302 122 3 72 19
-303 88 71 82 17
-304 92 7 30 32
-305 110 25 72 107
-306 132 125 149 152
-307 13 49 20 43
-308 55 99 47 64
-309 133 5 94 30
-310 4 5 6 40
-311 22 15 6 9
-312 68 145 135 15
-313 12 146 62 52
-314 68 64 21 32
-315 57 112 104 74
-316 67 138 151 120
-317 154 144 82 85
-318 99 78 61 76
-319 56 114 126 40
-320 143 92 125 29
0

**************