[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 201 ] =
BGCG(UG(Cmap(320,26){8,4|5}_20);K1;3).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {160, 177}, {135, 167}, {140, 173}, {143, 173}, {155, 185}, {128,
163}, {138, 175}, {130, 165}, {156, 187}, {139, 172}, {138, 162}, {153, 176},
{139, 187}, {143, 191}, {137, 184}, {139, 185}, {145, 163}, {157, 174}, {156,
168}, {142, 182}, {147, 170}, {147, 168}, {153, 162}, {137, 182}, {150, 169},
{128, 193}, {148, 209}, {149, 211}, {130, 200}, {136, 194}, {130, 201}, {158,
210}, {134, 203}, {151, 218}, {151, 217}, {144, 223}, {133, 212}, {136, 217},
{159, 205}, {142, 221}, {158, 205}, {146, 198}, {157, 201}, {150, 194}, {147,
203}, {160, 249}, {148, 206}, {128, 219}, {156, 199}, {141, 209}, {155, 198},
{144, 207}, {148, 240}, {153, 252}, {134, 224}, {159, 249}, {156, 250}, {144,
247}, {129, 233}, {152, 240}, {129, 232}, {154, 243}, {143, 230}, {136, 225},
{155, 241}, {147, 248}, {152, 244}, {154, 247}, {150, 248}, {160, 206}, {157,
243}, {153, 247}, {149, 250}, {154, 232}, {142, 253}, {135, 242}, {140, 250},
{133, 242}, {135, 255}, {149, 236}, {137, 242}, {132, 248}, {151, 235}, {141,
241}, {145, 238}, {69, 197}, {87, 215}, {77, 204}, {111, 238}, {48, 178}, {53,
183}, {81, 211}, {111, 237}, {51, 176}, {34, 166}, {117, 241}, {107, 238}, {70,
192}, {115, 245}, {94, 216}, {113, 246}, {114, 245}, {77, 197}, {103, 239},
{106, 227}, {40, 162}, {125, 247}, {86, 220}, {90, 208}, {71, 204}, {96, 235},
{105, 226}, {41, 165}, {99, 239}, {79, 194}, {53, 186}, {61, 178}, {52, 164},
{117, 229}, {100, 244}, {58, 171}, {68, 213}, {94, 207}, {36, 183}, {124, 239},
{76, 223}, {44, 191}, {83, 192}, {95, 201}, {35, 180}, {115, 228}, {59, 172},
{49, 166}, {101, 242}, {73, 209}, {84, 204}, {55, 174}, {53, 175}, {92, 198},
{34, 185}, {67, 216}, {93, 193}, {125, 225}, {98, 254}, {70, 219}, {47, 177},
{84, 202}, {41, 182}, {122, 229}, {85, 202}, {3, 163}, {64, 224}, {5, 165}, {83,
243}, {105, 201}, {2, 163}, {127, 222}, {9, 171}, {119, 213}, {72, 234}, {71,
228}, {125, 222}, {72, 235}, {74, 238}, {91, 255}, {14, 171}, {80, 245}, {89,
252}, {100, 193}, {27, 189}, {113, 215}, {88, 254}, {97, 199}, {65, 230}, {106,
205}, {23, 191}, {106, 194}, {108, 196}, {80, 249}, {127, 214}, {78, 228}, {98,
200}, {13, 166}, {88, 243}, {24, 180}, {78, 227}, {102, 203}, {20, 186}, {120,
214}, {115, 221}, {74, 228}, {27, 181}, {82, 253}, {119, 216}, {29, 172}, {114,
195}, {1, 179}, {20, 166}, {91, 233}, {109, 223}, {15, 188}, {123, 200}, {28,
175}, {7, 179}, {75, 255}, {101, 208}, {14, 184}, {93, 235}, {104, 222}, {6,
190}, {4, 189}, {8, 177}, {79, 246}, {99, 218}, {106, 211}, {4, 190}, {85, 239},
{100, 222}, {19, 175}, {84, 232}, {120, 197}, {4, 186}, {65, 254}, {15, 207},
{34, 226}, {98, 162}, {19, 210}, {26, 216}, {122, 184}, {57, 251}, {52, 246},
{46, 236}, {37, 231}, {99, 161}, {103, 164}, {119, 180}, {53, 241}, {10, 207},
{124, 185}, {48, 245}, {37, 227}, {60, 250}, {58, 252}, {50, 244}, {107, 173},
{42, 237}, {116, 179}, {102, 161}, {127, 183}, {19, 218}, {123, 178}, {114,
187}, {109, 164}, {38, 236}, {8, 195}, {45, 230}, {17, 220}, {124, 177}, {120,
181}, {54, 251}, {42, 231}, {13, 195}, {126, 176}, {46, 224}, {35, 237}, {21,
219}, {105, 167}, {11, 196}, {24, 200}, {122, 170}, {120, 168}, {119, 167}, {54,
230}, {45, 253}, {3, 210}, {6, 212}, {127, 173}, {123, 169}, {46, 252}, {5,
214}, {118, 165}, {40, 251}, {36, 240}, {49, 229}, {112, 164}, {3, 214}, {16,
199}, {105, 190}, {21, 205}, {33, 249}, {23, 206}, {52, 237}, {51, 234}, {123,
161}, {108, 183}, {1, 221}, {112, 172}, {31, 195}, {24, 196}, {13, 209}, {96,
188}, {97, 189}, {108, 176}, {110, 178}, {111, 179}, {9, 212}, {45, 240}, {17,
204}, {107, 182}, {37, 251}, {62, 224}, {38, 248}, {2, 221}, {62, 225}, {32,
255}, {20, 244}, {6, 231}, {72, 169}, {39, 198}, {85, 180}, {90, 187}, {31,
253}, {63, 220}, {33, 197}, {61, 217}, {66, 167}, {68, 161}, {89, 188}, {76,
170}, {95, 184}, {30, 246}, {56, 208}, {35, 203}, {60, 213}, {86, 191}, {49,
219}, {68, 174}, {95, 181}, {42, 193}, {63, 212}, {56, 211}, {49, 218}, {43,
192}, {18, 254}, {12, 226}, {60, 210}, {10, 229}, {18, 226}, {47, 223}, {25,
233}, {18, 227}, {59, 202}, {54, 199}, {36, 213}, {79, 190}, {78, 189}, {62,
202}, {65, 181}, {44, 217}, {91, 174}, {50, 196}, {92, 170}, {94, 168}, {27,
236}, {43, 220}, {29, 234}, {77, 186}, {25, 225}, {47, 215}, {40, 208}, {83,
171}, {45, 215}, {52, 206}, {18, 233}, {60, 192}, {26, 231}, {20, 234}, {66,
188}, {22, 232}, {86, 169}, {41, 297}, {14, 271}, {57, 312}, {40, 297}, {1,
259}, {15, 268}, {55, 308}, {22, 277}, {17, 274}, {51, 311}, {28, 281}, {41,
300}, {31, 282}, {34, 292}, {55, 305}, {13, 266}, {59, 316}, {55, 304}, {33,
294}, {23, 287}, {50, 314}, {10, 259}, {63, 310}, {25, 275}, {74, 320}, {54,
316}, {32, 298}, {44, 295}, {14, 258}, {39, 299}, {5, 267}, {30, 272}, {16,
286}, {9, 262}, {27, 276}, {25, 278}, {16, 287}, {2, 274}, {7, 279}, {28, 270},
{33, 306}, {56, 299}, {47, 315}, {11, 286}, {51, 294}, {30, 267}, {38, 304},
{58, 300}, {32, 311}, {63, 296}, {39, 304}, {35, 308}, {11, 273}, {21, 271}, {6,
282}, {39, 313}, {8, 296}, {15, 302}, {1, 291}, {29, 319}, {21, 311}, {2, 289},
{61, 286}, {22, 306}, {46, 266}, {8, 301}, {57, 284}, {28, 313}, {10, 300},
{102, 320}, {4, 291}, {24, 319}, {5, 301}, {48, 280}, {26, 307}, {32, 266}, {59,
273}, {38, 268}, {9, 290}, {12, 288}, {44, 256}, {7, 298}, {16, 317}, {12, 289},
{109, 320}, {17, 319}, {3, 307}, {61, 269}, {57, 264}, {7, 309}, {43, 281}, {23,
292}, {29, 297}, {58, 270}, {19, 294}, {48, 262}, {36, 275}, {22, 302}, {37,
285}, {30, 295}, {12, 311}, {62, 261}, {42, 273}, {43, 279}, {50, 271}, {11,
309}, {31, 288}, {56, 263}, {104, 296}, {113, 305}, {70, 263}, {90, 283}, {95,
286}, {88, 282}, {67, 256}, {126, 317}, {110, 298}, {83, 278}, {87, 274}, {110,
296}, {75, 268}, {126, 313}, {114, 309}, {92, 283}, {104, 303}, {74, 258}, {115,
315}, {87, 287}, {99, 297}, {121, 307}, {69, 265}, {73, 261}, {82, 284}, {109,
291}, {71, 264}, {117, 314}, {75, 260}, {90, 267}, {64, 274}, {66, 273}, {82,
257}, {91, 264}, {96, 307}, {84, 256}, {94, 266}, {67, 283}, {85, 269}, {101,
317}, {89, 256}, {26, 320}, {96, 315}, {101, 318}, {121, 293}, {69, 280}, {118,
299}, {112, 301}, {77, 272}, {69, 283}, {80, 270}, {102, 312}, {88, 312}, {80,
305}, {111, 270}, {64, 290}, {118, 276}, {116, 278}, {67, 288}, {122, 281}, {70,
293}, {76, 303}, {103, 260}, {93, 312}, {97, 263}, {64, 295}, {112, 279}, {79,
294}, {121, 275}, {81, 314}, {73, 293}, {116, 280}, {65, 300}, {93, 304}, {100,
265}, {108, 257}, {75, 292}, {116, 260}, {121, 265}, {76, 317}, {81, 291}, {113,
259}, {87, 293}, {89, 299}, {92, 302}, {66, 305}, {103, 276}, {104, 285}, {81,
295}, {73, 318}, {82, 298}, {117, 269}, {86, 302}, {97, 280}, {110, 276}, {124,
262}, {125, 262}, {78, 306}, {126, 258}, {71, 314}, {72, 309}, {98, 287}, {107,
277}, {68, 315}, {118, 265}, {132, 261}, {155, 282}, {148, 277}, {141, 268},
{138, 259}, {142, 261}, {157, 272}, {131, 275}, {141, 284}, {146, 257}, {158,
269}, {159, 267}, {133, 272}, {129, 279}, {146, 260}, {159, 264}, {133, 284},
{131, 281}, {135, 285}, {136, 277}, {139, 278}, {131, 285}, {144, 271}, {158,
257}, {152, 263}, {131, 290}, {160, 258}, {138, 303}, {134, 288}, {151, 316},
{152, 308}, {154, 310}, {129, 303}, {143, 289}, {145, 318}, {146, 289}, {150,
290}, {137, 316}, {145, 292}, {128, 310}, {132, 306}, {140, 308}, {149, 301},
{140, 310}, {132, 319}, {130, 318}, {134, 313} }>;
(II) A more general form is to represent the graph as the orbit of {160, 177}
under the group generated by the following permutations:
a: (1, 2)(3, 10)(4, 12)(5, 15)(6, 18)(7, 17)(8, 22)(9, 25)(11, 24)(13, 33)(14,
36)(16, 35)(19, 49)(20, 51)(21, 53)(23, 52)(26, 65)(27, 67)(28, 70)(29, 72)(30,
75)(31, 78)(32, 77)(34, 79)(37, 88)(38, 90)(39, 56)(40, 93)(41, 96)(42, 98)(44,
103)(45, 74)(46, 69)(47, 107)(48, 62)(50, 108)(54, 102)(55, 101)(58, 121)(59,
123)(60, 122)(61, 85)(63, 129)(64, 116)(66, 130)(68, 137)(71, 82)(73, 80)(76,
140)(81, 146)(83, 131)(84, 110)(86, 112)(87, 111)(89, 118)(91, 133)(92, 149)(94,
120)(95, 119)(97, 134)(99, 151)(100, 153)(104, 154)(106, 155)(109, 143)(113,
145)(114, 132)(115, 142)(117, 158)(124, 136)(126, 152)(127, 144)(128, 138)(135,
157)(139, 150)(141, 159)(147, 156)(148, 160)(161, 316)(162, 193)(163, 259)(164,
191)(165, 188)(166, 294)(167, 201)(169, 172)(170, 250)(171, 275)(173, 223)(174,
242)(175, 219)(176, 244)(177, 277)(178, 202)(179, 274)(180, 286)(181, 216)(182,
315)(183, 271)(184, 213)(185, 194)(186, 311)(187, 248)(189, 288)(190, 226)(192,
281)(195, 306)(197, 266)(198, 211)(199, 203)(200, 273)(204, 298)(205, 241)(207,
214)(208, 304)(209, 249)(210, 229)(212, 233)(215, 238)(217, 239)(220, 279)(222,
247)(224, 280)(225, 262)(227, 282)(228, 253)(230, 320)(231, 254)(232, 296)(235,
297)(236, 283)(237, 287)(240, 258)(243, 285)(245, 261)(246, 292)(251, 312)(252,
265)(255, 272)(256, 276)(257, 314)(260, 295)(263, 313)(264, 284)(267, 268)(270,
293)(278, 290)(289, 291)(300, 307)(301, 302)(303, 310)(305, 318)(308, 317)(309,
319) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 10, 7, 4)(3, 15, 11, 6)(5, 22, 16, 9)(8, 33, 23, 14)(12, 49, 32, 20)(13,
51, 34, 21)(17, 65, 43, 27)(18, 70, 46, 29)(19, 75, 50, 31)(24, 88, 60, 38)(25,
56, 62, 40)(26, 96, 66, 42)(28, 103, 71, 45)(30, 107, 76, 48)(35, 102, 68,
55)(36, 39, 85, 57)(37, 121, 89, 59)(41, 129, 97, 64)(44, 137, 104, 69)(47, 80,
52, 74)(53, 146, 117, 82)(54, 131, 118, 84)(58, 112, 78, 87)(61, 133, 127,
92)(63, 120, 86, 95)(67, 151, 135, 100)(72, 105, 128, 94)(73, 153, 139, 106)(77,
143, 122, 110)(79, 145, 144, 114)(81, 142, 138, 116)(83, 149, 132, 98)(90, 136,
101, 125)(91, 152, 134, 99)(93, 119)(108, 155, 158, 141)(109, 115, 113,
111)(123, 157, 140, 147)(124, 159, 148, 126)(130, 154, 156, 150)(161, 174, 308,
203)(162, 278, 211, 261)(163, 207, 309, 190)(164, 228, 215, 270)(165, 232, 199,
290)(166, 311)(167, 193, 216, 235)(168, 169, 201, 310)(170, 178, 272, 173)(171,
301, 306, 287)(172, 227, 293, 252)(175, 260, 314, 253)(176, 185, 205, 209)(177,
249, 206, 258)(179, 291, 221, 259)(180, 312, 213, 304)(181, 220)(182, 303, 280,
295)(183, 198, 269, 284)(184, 296, 197, 191)(186, 289, 229, 298)(187, 194, 318,
247)(188, 273, 231, 307)(189, 274, 300, 279)(192, 236, 319, 254)(195, 294, 292,
271)(196, 282, 210, 268)(200, 243, 250, 248)(202, 251, 275, 299)(204, 230, 281,
276)(208, 225)(212, 214, 302, 286)(217, 242, 222, 283)(218, 255, 244, 288)(219,
266, 234, 226)(223, 245, 246, 238)(224, 297, 233, 263)(237, 320, 315, 305)(239,
264, 240, 313)(241, 257)(256, 316, 285, 265)(262, 267, 277, 317)
c: (2, 7)(3, 11)(4, 10)(5, 16)(6, 15)(8, 23)(9, 22)(12, 32)(13, 34)(14, 33)(17,
43)(18, 46)(19, 50)(20, 49)(21, 51)(24, 60)(25, 62)(26, 66)(27, 65)(28, 71)(29,
70)(30, 76)(31, 75)(35, 68)(36, 85)(37, 89)(38, 88)(39, 57)(40, 56)(41, 97)(42,
96)(44, 104)(45, 103)(47, 52)(48, 107)(53, 117)(54, 118)(55, 102)(58, 78)(59,
121)(61, 127)(63, 86)(64, 129)(67, 135)(69, 137)(72, 128)(73, 139)(74, 80)(77,
122)(79, 144)(81, 138)(82, 146)(83, 132)(84, 131)(87, 112)(90, 101)(91, 134)(92,
133)(94, 105)(95, 120)(98, 149)(99, 152)(100, 151)(106, 153)(108, 158)(109,
113)(110, 143)(111, 115)(114, 145)(116, 142)(123, 140)(124, 148)(125, 136)(126,
159)(130, 156)(141, 155)(147, 157)(150, 154)(161, 308)(162, 211)(163, 309)(164,
215)(165, 199)(167, 216)(168, 201)(169, 310)(170, 272)(171, 306)(172, 293)(173,
178)(174, 203)(175, 314)(176, 205)(177, 206)(179, 221)(180, 213)(182, 280)(183,
269)(184, 197)(185, 209)(186, 229)(187, 318)(188, 231)(189, 300)(190, 207)(191,
296)(192, 319)(193, 235)(194, 247)(195, 292)(196, 210)(198, 284)(200, 250)(202,
275)(204, 281)(212, 302)(214, 286)(217, 222)(218, 244)(219, 234)(223, 246)(224,
233)(226, 266)(227, 252)(228, 270)(230, 276)(232, 290)(236, 254)(237, 315)(238,
245)(239, 240)(242, 283)(243, 248)(249, 258)(251, 299)(253, 260)(255, 288)(256,
285)(259, 291)(261, 278)(262, 277)(263, 297)(264, 313)(265, 316)(267, 317)(268,
282)(271, 294)(273, 307)(274, 279)(287, 301)(289, 298)(295, 303)(304, 312)(305,
320)
C4[ 320, 201 ]
320
-1 221 179 291 259
-2 221 289 163 274
-3 210 214 163 307
-4 189 190 291 186
-5 165 267 301 214
-6 231 190 212 282
-7 298 309 179 279
-8 177 301 195 296
-9 212 290 171 262
-10 300 259 207 229
-11 286 309 196 273
-12 288 289 311 226
-13 209 166 266 195
-14 258 171 271 184
-15 188 268 302 207
-16 286 199 287 317
-17 220 319 204 274
-18 254 233 226 227
-19 210 294 218 175
-20 166 244 234 186
-21 311 205 271 219
-22 232 277 302 306
-23 287 191 292 206
-24 319 200 180 196
-25 275 233 278 225
-26 231 320 216 307
-27 276 189 181 236
-28 313 270 281 175
-29 297 319 234 172
-30 267 246 272 295
-31 253 288 282 195
-32 298 255 266 311
-33 249 294 306 197
-34 166 226 292 185
-35 308 180 203 237
-36 275 213 183 240
-37 231 227 251 285
-38 268 236 248 304
-39 198 299 313 304
-40 297 162 251 208
-41 165 297 300 182
-42 231 193 237 273
-43 220 279 192 281
-44 256 191 217 295
-45 253 215 240 230
-46 266 224 236 252
-47 177 223 215 315
-48 178 245 280 262
-49 166 218 229 219
-50 244 314 271 196
-51 176 234 311 294
-52 246 237 206 164
-53 183 175 186 241
-54 199 316 251 230
-55 308 304 305 174
-56 211 299 208 263
-57 264 312 251 284
-58 300 171 270 252
-59 202 172 316 273
-60 210 213 192 250
-61 286 178 269 217
-62 202 224 225 261
-63 220 310 212 296
-64 224 290 295 274
-65 254 300 181 230
-66 188 167 305 273
-67 288 256 216 283
-68 213 161 315 174
-69 265 280 283 197
-70 192 293 219 263
-71 264 204 314 228
-72 309 234 169 235
-73 209 293 261 318
-74 320 258 238 228
-75 255 268 292 260
-76 223 170 303 317
-77 204 272 186 197
-78 189 227 228 306
-79 190 246 194 294
-80 245 270 249 305
-81 211 291 314 295
-82 253 298 257 284
-83 243 278 192 171
-84 232 256 202 204
-85 180 202 269 239
-86 220 169 191 302
-87 287 215 293 274
-88 243 254 312 282
-89 188 299 256 252
-90 187 267 283 208
-91 264 233 255 174
-92 198 170 302 283
-93 235 312 193 304
-94 266 168 216 207
-95 286 201 181 184
-96 188 235 315 307
-97 199 189 280 263
-98 254 287 200 162
-99 297 161 239 218
-100 265 222 244 193
-101 242 317 208 318
-102 320 312 203 161
-103 276 260 239 164
-104 222 303 285 296
-105 167 190 201 226
-106 211 194 205 227
-107 277 182 238 173
-108 176 257 183 196
-109 320 223 291 164
-110 276 298 178 296
-111 179 237 270 238
-112 279 301 172 164
-113 246 215 259 305
-114 187 309 245 195
-115 221 245 315 228
-116 179 278 280 260
-117 269 314 229 241
-118 165 265 276 299
-119 167 180 213 216
-120 168 181 214 197
-121 275 265 293 307
-122 170 281 184 229
-123 178 200 169 161
-124 177 239 185 262
-125 222 225 247 262
-126 176 258 313 317
-127 222 214 183 173
-128 310 193 163 219
-129 232 233 279 303
-130 165 200 201 318
-131 275 290 281 285
-132 319 248 261 306
-133 242 212 272 284
-134 288 224 203 313
-135 242 167 255 285
-136 277 225 194 217
-137 242 182 184 316
-138 259 303 162 175
-139 187 278 172 185
-140 308 310 173 250
-141 209 268 284 241
-142 253 221 182 261
-143 289 191 173 230
-144 223 247 271 207
-145 292 238 163 318
-146 198 289 257 260
-147 168 170 203 248
-148 209 277 206 240
-149 211 301 236 250
-150 169 290 248 194
-151 235 217 316 218
-152 308 244 240 263
-153 176 247 162 252
-154 232 243 310 247
-155 198 282 185 241
-156 187 199 168 250
-157 243 201 272 174
-158 210 257 269 205
-159 264 267 205 249
-160 177 258 249 206
-161 99 68 123 102
-162 138 40 98 153
-163 2 145 3 128
-164 112 103 52 109
-165 5 41 118 130
-166 34 13 49 20
-167 66 135 105 119
-168 156 147 94 120
-169 123 72 150 86
-170 122 92 147 76
-171 14 58 83 9
-172 112 59 29 139
-173 143 127 107 140
-174 55 68 91 157
-175 28 138 19 53
-176 126 51 108 153
-177 47 124 160 8
-178 110 123 48 61
-179 1 111 116 7
-180 24 35 85 119
-181 27 95 65 120
-182 137 41 107 142
-183 36 127 53 108
-184 122 14 137 95
-185 34 155 124 139
-186 77 4 20 53
-187 90 156 114 139
-188 66 89 15 96
-189 78 4 27 97
-190 79 4 6 105
-191 44 143 23 86
-192 70 60 83 43
-193 100 93 128 42
-194 79 136 106 150
-195 13 114 8 31
-196 11 24 50 108
-197 33 77 69 120
-198 155 146 92 39
-199 156 16 97 54
-200 24 123 130 98
-201 157 105 95 130
-202 59 62 84 85
-203 35 134 102 147
-204 77 71 17 84
-205 158 159 106 21
-206 23 148 160 52
-207 144 15 94 10
-208 56 90 101 40
-209 13 148 73 141
-210 3 158 60 19
-211 56 81 149 106
-212 133 6 63 9
-213 68 36 60 119
-214 3 5 127 120
-215 45 47 113 87
-216 67 26 94 119
-217 44 136 61 151
-218 99 49 19 151
-219 70 49 128 21
-220 17 63 86 43
-221 1 2 115 142
-222 100 125 104 127
-223 144 47 76 109
-224 46 134 62 64
-225 25 125 136 62
-226 12 34 105 18
-227 78 37 18 106
-228 78 71 115 74
-229 122 49 117 10
-230 143 45 54 65
-231 26 37 6 42
-232 22 154 84 129
-233 25 91 18 129
-234 72 29 51 20
-235 93 72 96 151
-236 46 27 38 149
-237 111 35 52 42
-238 111 145 74 107
-239 99 124 103 85
-240 45 36 148 152
-241 155 117 53 141
-242 133 101 135 137
-243 88 154 157 83
-244 100 50 20 152
-245 80 48 114 115
-246 79 113 30 52
-247 154 144 125 153
-248 132 147 38 150
-249 33 80 159 160
-250 156 60 149 140
-251 57 37 40 54
-252 89 46 58 153
-253 45 82 31 142
-254 88 18 65 98
-255 91 135 75 32
-256 44 67 89 84
-257 146 158 82 108
-258 14 126 160 74
-259 1 113 138 10
-260 146 103 116 75
-261 132 62 73 142
-262 124 48 125 9
-263 56 70 97 152
-264 57 91 71 159
-265 121 100 69 118
-266 13 46 94 32
-267 90 5 159 30
-268 15 38 75 141
-269 158 61 117 85
-270 111 58 80 28
-271 144 14 50 21
-272 77 133 157 30
-273 11 66 59 42
-274 2 17 64 87
-275 121 25 36 131
-276 110 103 27 118
-277 22 136 148 107
-278 25 83 116 139
-279 112 7 129 43
-280 69 48 116 97
-281 122 28 43 131
-282 88 155 6 31
-283 67 90 69 92
-284 133 57 82 141
-285 135 37 104 131
-286 11 16 61 95
-287 23 16 87 98
-288 12 67 134 31
-289 143 12 2 146
-290 150 9 64 131
-291 1 4 81 109
-292 23 34 145 75
-293 121 70 73 87
-294 33 79 51 19
-295 44 81 30 64
-296 110 104 8 63
-297 99 29 40 41
-298 110 82 7 32
-299 56 89 39 118
-300 58 41 10 65
-301 112 5 149 8
-302 22 15 92 86
-303 104 138 129 76
-304 55 38 93 39
-305 55 66 80 113
-306 22 33 132 78
-307 121 3 26 96
-308 55 35 140 152
-309 11 114 72 7
-310 154 128 63 140
-311 12 51 21 32
-312 88 57 102 93
-313 134 126 28 39
-314 81 71 50 117
-315 68 47 115 96
-316 59 137 151 54
-317 101 16 126 76
-318 101 145 73 130
-319 132 24 17 29
-320 102 26 74 109
0