[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 202 ] =
BGCG(UG(Cmap(320,26){8,4|5}_20);K1;5).
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {160, 174}, {160, 191}, {155, 187}, {150, 183}, {139, 175}, {132,
161}, {149, 176}, {150, 177}, {151, 190}, {159, 181}, {138, 164}, {129, 177},
{155, 171}, {159, 174}, {131, 177}, {144, 164}, {138, 191}, {146, 167}, {136,
190}, {129, 182}, {154, 173}, {140, 180}, {158, 167}, {132, 190}, {143, 180},
{140, 176}, {144, 173}, {155, 166}, {156, 162}, {142, 205}, {156, 216}, {131,
197}, {129, 201}, {134, 206}, {154, 211}, {145, 219}, {156, 214}, {147, 216},
{133, 201}, {149, 217}, {135, 200}, {142, 222}, {143, 221}, {142, 221}, {159,
203}, {158, 203}, {150, 192}, {151, 207}, {148, 205}, {152, 196}, {153, 197},
{147, 204}, {152, 199}, {154, 250}, {149, 246}, {157, 254}, {134, 226}, {141,
233}, {134, 227}, {149, 240}, {141, 229}, {139, 225}, {143, 229}, {158, 245},
{133, 233}, {152, 245}, {160, 205}, {141, 227}, {148, 229}, {137, 251}, {144,
226}, {158, 232}, {146, 229}, {157, 234}, {135, 254}, {156, 231}, {136, 244},
{131, 254}, {133, 251}, {146, 236}, {67, 195}, {112, 240}, {80, 208}, {105,
233}, {61, 188}, {56, 186}, {90, 217}, {54, 178}, {116, 240}, {115, 247}, {83,
215}, {34, 167}, {41, 172}, {43, 173}, {117, 243}, {76, 202}, {77, 203}, {103,
225}, {84, 211}, {91, 220}, {93, 218}, {87, 222}, {66, 206}, {87, 219}, {120,
246}, {100, 235}, {44, 188}, {56, 168}, {103, 247}, {53, 164}, {74, 219}, {70,
215}, {61, 172}, {97, 240}, {61, 175}, {72, 218}, {91, 201}, {104, 250}, {53,
166}, {64, 211}, {59, 175}, {51, 166}, {85, 192}, {49, 167}, {50, 164}, {80,
198}, {89, 206}, {118, 225}, {68, 220}, {116, 236}, {67, 217}, {109, 247}, {123,
224}, {73, 213}, {126, 226}, {119, 235}, {100, 248}, {106, 246}, {45, 179},
{121, 231}, {114, 236}, {93, 195}, {106, 244}, {45, 178}, {48, 175}, {70, 230},
{127, 223}, {72, 232}, {84, 244}, {2, 163}, {117, 212}, {92, 253}, {11, 169},
{115, 209}, {69, 231}, {66, 224}, {81, 243}, {88, 250}, {104, 202}, {29, 190},
{88, 251}, {24, 188}, {68, 224}, {24, 189}, {29, 184}, {97, 196}, {13, 171},
{17, 183}, {22, 177}, {67, 228}, {96, 199}, {12, 166}, {127, 213}, {126, 212},
{125, 215}, {98, 200}, {102, 204}, {20, 184}, {121, 213}, {21, 185}, {96, 204},
{17, 188}, {20, 185}, {83, 254}, {98, 207}, {101, 200}, {7, 169}, {122, 212},
{19, 189}, {75, 228}, {96, 209}, {17, 163}, {71, 244}, {100, 215}, {114, 198},
{123, 207}, {22, 163}, {112, 198}, {104, 223}, {69, 253}, {125, 197}, {108,
212}, {3, 186}, {27, 162}, {65, 251}, {30, 165}, {127, 196}, {123, 192}, {90,
225}, {79, 243}, {120, 196}, {94, 226}, {98, 222}, {4, 185}, {107, 213}, {121,
199}, {115, 205}, {111, 209}, {5, 186}, {82, 237}, {42, 234}, {42, 235}, {126,
191}, {24, 218}, {113, 179}, {62, 252}, {45, 239}, {36, 230}, {9, 202}, {15,
204}, {105, 170}, {109, 174}, {14, 202}, {38, 227}, {26, 220}, {118, 176}, {112,
182}, {52, 242}, {48, 247}, {50, 245}, {107, 163}, {60, 245}, {124, 182}, {34,
233}, {125, 182}, {102, 170}, {110, 162}, {34, 239}, {117, 184}, {103, 169},
{113, 191}, {36, 235}, {99, 172}, {17, 193}, {114, 162}, {1, 208}, {108, 189},
{46, 252}, {5, 214}, {53, 230}, {106, 185}, {4, 208}, {113, 165}, {57, 237},
{22, 194}, {100, 176}, {7, 210}, {61, 232}, {47, 249}, {115, 165}, {33, 246},
{122, 173}, {49, 230}, {101, 178}, {25, 193}, {107, 179}, {26, 195}, {40, 241},
{28, 197}, {9, 211}, {18, 200}, {9, 210}, {60, 231}, {51, 232}, {38, 253}, {30,
194}, {111, 179}, {105, 181}, {55, 234}, {119, 170}, {99, 189}, {37, 250}, {19,
243}, {56, 216}, {54, 214}, {91, 187}, {12, 237}, {64, 161}, {16, 241}, {48,
210}, {71, 165}, {28, 255}, {62, 221}, {60, 223}, {33, 194}, {87, 180}, {88,
187}, {39, 195}, {23, 242}, {77, 168}, {27, 253}, {12, 228}, {4, 238}, {43,
193}, {22, 252}, {21, 255}, {5, 238}, {19, 248}, {15, 228}, {11, 224}, {6, 234},
{29, 241}, {20, 248}, {19, 255}, {35, 206}, {69, 168}, {85, 184}, {44, 194},
{91, 181}, {78, 161}, {2, 242}, {55, 199}, {31, 239}, {30, 238}, {75, 187}, {81,
161}, {8, 249}, {44, 221}, {33, 208}, {14, 255}, {52, 198}, {70, 180}, {88,
170}, {1, 242}, {31, 236}, {15, 252}, {95, 172}, {43, 223}, {47, 219}, {27,
238}, {94, 171}, {63, 201}, {41, 222}, {46, 217}, {92, 171}, {1, 249}, {23,
239}, {79, 183}, {35, 218}, {54, 207}, {43, 210}, {37, 220}, {81, 168}, {11,
241}, {77, 183}, {79, 181}, {3, 248}, {73, 178}, {42, 209}, {31, 227}, {70,
186}, {85, 169}, {7, 249}, {62, 192}, {53, 203}, {18, 237}, {62, 193}, {41,
214}, {39, 216}, {81, 174}, {1, 256}, {11, 266}, {6, 260}, {45, 303}, {38, 292},
{34, 294}, {60, 312}, {40, 301}, {32, 294}, {58, 316}, {56, 318}, {26, 285},
{44, 292}, {57, 305}, {15, 262}, {16, 281}, {10, 256}, {16, 282}, {21, 286},
{36, 303}, {10, 262}, {63, 307}, {9, 260}, {52, 313}, {36, 297}, {14, 256}, {32,
302}, {23, 281}, {8, 280}, {24, 264}, {37, 308}, {57, 301}, {63, 299}, {41,
316}, {18, 260}, {40, 318}, {26, 268}, {18, 267}, {28, 262}, {40, 306}, {5,
280}, {63, 290}, {25, 260}, {3, 285}, {10, 277}, {32, 319}, {12, 300}, {54,
278}, {35, 259}, {31, 319}, {7, 294}, {58, 283}, {39, 262}, {13, 300}, {8, 299},
{49, 277}, {55, 275}, {13, 296}, {57, 284}, {27, 318}, {51, 277}, {55, 273},
{28, 315}, {29, 314}, {48, 280}, {14, 295}, {30, 308}, {3, 303}, {47, 259}, {2,
303}, {2, 300}, {10, 293}, {59, 276}, {33, 270}, {25, 310}, {25, 297}, {32,
274}, {37, 278}, {59, 264}, {47, 283}, {4, 305}, {39, 274}, {16, 293}, {6, 305},
{52, 259}, {38, 273}, {23, 288}, {13, 309}, {50, 266}, {6, 319}, {59, 258},
{122, 320}, {21, 302}, {49, 266}, {20, 296}, {50, 270}, {46, 274}, {8, 309},
{51, 270}, {35, 285}, {42, 276}, {58, 261}, {93, 284}, {124, 317}, {123, 314},
{82, 272}, {126, 316}, {116, 310}, {114, 304}, {80, 275}, {108, 296}, {78, 267},
{90, 287}, {98, 295}, {77, 267}, {68, 259}, {122, 306}, {71, 270}, {95, 278},
{67, 265}, {121, 307}, {112, 314}, {72, 258}, {74, 256}, {76, 263}, {80, 283},
{124, 304}, {66, 268}, {94, 273}, {78, 287}, {103, 309}, {120, 298}, {99, 304},
{110, 317}, {86, 258}, {111, 315}, {110, 314}, {83, 261}, {109, 315}, {84, 258},
{85, 269}, {110, 310}, {74, 275}, {101, 316}, {75, 272}, {117, 302}, {90, 257},
{92, 263}, {118, 298}, {69, 280}, {84, 265}, {66, 284}, {89, 263}, {95, 257},
{104, 310}, {106, 308}, {125, 290}, {111, 271}, {64, 289}, {127, 286}, {109,
268}, {86, 311}, {65, 291}, {65, 293}, {101, 257}, {73, 300}, {93, 312}, {119,
273}, {73, 288}, {76, 293}, {92, 311}, {118, 282}, {96, 269}, {46, 320}, {82,
317}, {102, 276}, {107, 281}, {108, 286}, {74, 313}, {124, 271}, {89, 298}, {86,
290}, {94, 298}, {102, 275}, {71, 305}, {79, 313}, {86, 288}, {87, 289}, {64,
311}, {76, 315}, {78, 313}, {99, 276}, {72, 304}, {83, 299}, {95, 295}, {120,
257}, {58, 320}, {119, 269}, {82, 296}, {97, 282}, {116, 271}, {68, 312}, {89,
292}, {113, 268}, {75, 309}, {97, 287}, {65, 318}, {105, 278}, {146, 274}, {159,
287}, {137, 264}, {145, 272}, {148, 279}, {129, 261}, {145, 279}, {130, 264},
{144, 283}, {153, 277}, {132, 265}, {138, 261}, {152, 279}, {137, 281}, {140,
285}, {157, 267}, {128, 279}, {130, 282}, {147, 265}, {151, 269}, {135, 284},
{151, 266}, {128, 286}, {153, 263}, {142, 272}, {139, 299}, {130, 291}, {141,
302}, {132, 288}, {140, 297}, {155, 317}, {136, 289}, {136, 290}, {143, 291},
{139, 294}, {130, 301}, {160, 271}, {131, 307}, {157, 301}, {133, 308}, {134,
311}, {145, 291}, {150, 292}, {128, 307}, {154, 297}, {148, 289}, {128, 312},
{138, 306}, {135, 319}, {137, 306}, {153, 295}, {147, 320} }>;
(II) A more general form is to represent the graph as the orbit of {160, 174}
under the group generated by the following permutations:
a: (2, 7)(3, 11)(4, 10)(5, 16)(6, 15)(8, 23)(9, 22)(12, 32)(13, 34)(14, 33)(17,
43)(18, 46)(19, 50)(20, 49)(21, 51)(24, 60)(25, 62)(26, 66)(27, 65)(28, 71)(29,
70)(30, 76)(31, 75)(35, 68)(36, 85)(37, 89)(38, 88)(39, 57)(40, 56)(41, 97)(42,
96)(44, 104)(45, 103)(47, 52)(48, 107)(53, 117)(54, 118)(55, 102)(58, 78)(59,
121)(61, 127)(63, 86)(64, 129)(67, 135)(69, 137)(72, 128)(73, 139)(74, 80)(77,
122)(79, 144)(81, 138)(82, 146)(83, 132)(84, 131)(87, 112)(90, 101)(91, 134)(92,
133)(94, 105)(95, 120)(98, 149)(99, 152)(100, 151)(106, 153)(108, 158)(109,
113)(110, 143)(111, 115)(114, 145)(116, 142)(123, 140)(124, 148)(125, 136)(126,
159)(130, 156)(141, 155)(147, 157)(150, 154)(161, 261)(162, 291)(163, 210)(164,
243)(165, 315)(166, 302)(167, 296)(168, 306)(169, 303)(170, 273)(171, 233)(172,
196)(173, 183)(174, 191)(175, 213)(176, 207)(177, 211)(178, 225)(179, 247)(180,
314)(181, 226)(182, 289)(184, 230)(185, 277)(186, 241)(187, 227)(188, 223)(189,
245)(190, 215)(192, 297)(194, 202)(195, 284)(197, 244)(198, 219)(199, 276)(200,
217)(201, 311)(203, 212)(204, 234)(205, 271)(206, 220)(208, 256)(214, 282)(216,
301)(218, 312)(221, 310)(222, 240)(224, 285)(228, 319)(229, 317)(231, 264)(232,
286)(235, 269)(236, 272)(237, 274)(238, 293)(239, 309)(242, 249)(246, 295)(248,
266)(250, 292)(251, 253)(252, 260)(254, 265)(255, 270)(258, 307)(262, 305)(263,
308)(267, 320)(278, 298)(279, 304)(280, 281)(283, 313)(287, 316)(288, 299)(294,
300) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 12, 51, 33, 22, 15, 10)(3, 18, 72, 120, 129, 96, 65, 7)(4, 17, 67,
153, 80, 107, 75, 49)(5, 25, 93, 95, 112, 121, 88, 11)(6, 24, 90, 125, 55, 137,
103, 70)(8, 36, 57, 61, 149, 131, 102, 16)(9, 35, 101, 124, 152, 133, 85,
56)(13, 53, 71, 44, 46, 28, 74, 23)(14, 52, 73, 155, 50, 30, 62, 39)(19, 78, 86,
94, 138, 115, 143, 32)(20, 77, 84, 89, 58, 111, 145, 34)(21, 79, 132, 92, 144,
113, 142, 146)(26, 98, 114, 127, 91, 151, 27, 43)(29, 69, 154, 66, 41, 116, 128,
105)(31, 108, 159, 136, 38, 122, 109, 87)(37, 123, 156, 104, 68, 54, 110,
60)(40, 48, 140, 135, 99, 97, 63, 119)(42, 130, 139, 100, 157, 59, 118, 83)(45,
82, 158, 106, 150, 147, 76, 47)(64, 134, 126, 160, 148, 141, 117, 81)(161, 311,
226, 191, 205, 229, 302, 243)(162, 223, 220, 207)(163, 228, 277, 208)(164, 165,
221, 274, 255, 313, 288, 171)(166, 270, 194, 252, 262, 256, 242, 300)(167, 185,
183, 265, 263, 283, 179, 272)(168, 211, 206, 316, 271, 279, 233, 184)(169, 186,
260, 218, 257, 182, 199, 251)(170, 241, 280, 297, 284, 172, 240, 307)(173, 268,
222, 236, 286, 181, 190, 253)(174, 289, 227, 212)(175, 176, 254, 276, 282, 299,
235, 301)(177, 204, 293, 249, 303, 237, 232, 246)(178, 317, 245, 308, 192, 216,
202, 259)(180, 319, 189, 287, 290, 273, 306, 247)(187, 266, 238, 193, 195, 295,
198, 213)(188, 217, 197, 275, 281, 309, 230, 305)(196, 201, 269, 318, 210, 285,
200, 304)(203, 244, 292, 320, 315, 219, 239, 296)(209, 291, 294, 248, 267, 258,
298, 261)(214, 310, 312, 278, 314, 231, 250, 224)(215, 234, 264, 225)
c: (2, 4, 7, 10)(3, 6, 11, 15)(5, 9, 16, 22)(8, 14, 23, 33)(12, 20, 32, 49)(13,
21, 34, 51)(17, 27, 43, 65)(18, 29, 46, 70)(19, 31, 50, 75)(24, 38, 60, 88)(25,
40, 62, 56)(26, 42, 66, 96)(28, 45, 71, 103)(30, 48, 76, 107)(35, 55, 68,
102)(36, 57, 85, 39)(37, 59, 89, 121)(41, 64, 97, 129)(44, 69, 104, 137)(47, 74,
52, 80)(53, 82, 117, 146)(54, 84, 118, 131)(58, 87, 78, 112)(61, 92, 127,
133)(63, 95, 86, 120)(67, 100, 135, 151)(72, 94, 128, 105)(73, 106, 139,
153)(77, 110, 122, 143)(79, 114, 144, 145)(81, 116, 138, 142)(83, 98, 132,
149)(90, 125, 101, 136)(91, 99, 134, 152)(93, 119)(108, 141, 158, 155)(109, 111,
113, 115)(123, 147, 140, 157)(124, 126, 148, 159)(130, 150, 156, 154)(161, 240,
261, 222)(162, 173, 291, 183)(163, 238, 210, 293)(164, 272, 243, 236)(165, 247,
315, 179)(166, 296, 302, 167)(168, 310, 306, 221)(169, 262, 303, 305)(170, 218,
273, 312)(171, 286, 233, 232)(172, 311, 196, 201)(174, 271, 191, 205)(175, 263,
213, 308)(176, 254, 207, 265)(177, 214, 211, 282)(178, 244, 225, 197)(180, 267,
314, 320)(181, 304, 226, 279)(182, 316, 289, 287)(184, 274, 230, 237)(185, 294,
277, 300)(186, 260, 241, 252)(187, 189, 227, 245)(188, 253, 223, 251)(190, 217,
215, 200)(192, 216, 297, 301)(193, 318)(194, 280, 202, 281)(195, 235, 284,
269)(198, 283, 219, 313)(199, 220, 276, 206)(203, 317, 212, 229)(204, 285, 234,
224)(208, 249, 256, 242)(209, 268)(228, 248, 319, 266)(231, 250, 264, 292)(239,
270, 309, 255)(246, 299, 295, 288)(257, 290)(258, 298, 307, 278)(259, 275)
C4[ 320, 202 ]
320
-1 242 256 249 208
-2 242 300 303 163
-3 248 303 186 285
-4 238 305 185 208
-5 214 280 238 186
-6 319 234 260 305
-7 210 169 249 294
-8 309 299 280 249
-9 210 211 202 260
-10 277 256 293 262
-11 266 169 224 241
-12 166 300 237 228
-13 309 300 171 296
-14 255 256 202 295
-15 204 228 262 252
-16 281 282 293 241
-17 188 193 183 163
-18 200 267 237 260
-19 243 189 255 248
-20 248 184 185 296
-21 286 255 302 185
-22 177 194 163 252
-23 242 288 281 239
-24 264 188 189 218
-25 297 310 193 260
-26 220 268 195 285
-27 253 238 162 318
-28 255 315 262 197
-29 190 314 184 241
-30 165 308 194 238
-31 319 236 227 239
-32 319 302 294 274
-33 246 270 194 208
-34 167 233 239 294
-35 259 206 218 285
-36 297 235 303 230
-37 220 308 278 250
-38 253 292 227 273
-39 216 195 262 274
-40 301 306 241 318
-41 222 214 172 316
-42 209 276 234 235
-43 210 223 193 173
-44 188 221 292 194
-45 178 179 303 239
-46 320 217 252 274
-47 259 249 283 219
-48 210 247 280 175
-49 167 266 277 230
-50 266 245 270 164
-51 166 232 277 270
-52 198 242 313 259
-53 166 203 164 230
-54 178 278 214 207
-55 275 199 234 273
-56 168 216 186 318
-57 301 237 305 284
-58 320 261 283 316
-59 264 276 258 175
-60 231 223 245 312
-61 188 232 172 175
-62 221 192 193 252
-63 299 201 290 307
-64 211 289 311 161
-65 291 293 251 318
-66 224 268 206 284
-67 265 195 217 228
-68 220 224 312 259
-69 231 253 168 280
-70 180 215 186 230
-71 165 244 270 305
-72 232 258 304 218
-73 178 288 300 213
-74 275 256 313 219
-75 187 309 228 272
-76 202 293 315 263
-77 168 267 203 183
-78 287 267 313 161
-79 243 181 313 183
-80 198 275 283 208
-81 243 168 161 174
-82 237 272 317 296
-83 254 299 215 261
-84 265 211 244 258
-85 169 192 269 184
-86 288 311 290 258
-87 222 289 180 219
-88 187 170 250 251
-89 298 292 206 263
-90 287 257 225 217
-91 187 220 201 181
-92 253 311 171 263
-93 312 195 218 284
-94 298 171 226 273
-95 278 257 172 295
-96 209 199 269 204
-97 287 282 196 240
-98 200 222 207 295
-99 276 189 172 304
-100 176 235 215 248
-101 178 200 257 316
-102 275 276 170 204
-103 309 169 225 247
-104 310 223 202 250
-105 233 278 170 181
-106 308 244 246 185
-107 179 213 281 163
-108 286 189 212 296
-109 268 247 315 174
-110 310 314 162 317
-111 209 179 271 315
-112 198 182 314 240
-113 165 179 191 268
-114 198 236 304 162
-115 165 209 247 205
-116 310 236 271 240
-117 243 212 302 184
-118 176 298 225 282
-119 235 170 269 273
-120 298 246 257 196
-121 231 199 213 307
-122 320 212 173 306
-123 224 192 314 207
-124 182 271 304 317
-125 290 182 215 197
-126 212 191 226 316
-127 286 223 213 196
-128 286 279 312 307
-129 177 201 182 261
-130 264 301 291 282
-131 177 254 197 307
-132 265 288 190 161
-133 308 233 201 251
-134 311 226 227 206
-135 319 254 200 284
-136 244 190 289 290
-137 264 281 251 306
-138 191 261 306 164
-139 299 225 294 175
-140 176 297 180 285
-141 233 302 227 229
-142 221 222 205 272
-143 221 180 291 229
-144 226 173 283 164
-145 279 291 272 219
-146 167 236 229 274
-147 265 320 204 216
-148 289 279 205 229
-149 176 246 217 240
-150 177 192 292 183
-151 266 190 269 207
-152 199 245 279 196
-153 277 295 197 263
-154 297 211 173 250
-155 187 166 171 317
-156 231 214 216 162
-157 254 234 267 301
-158 232 167 245 203
-159 287 181 203 174
-160 191 205 271 174
-161 132 78 81 64
-162 110 156 114 27
-163 22 2 17 107
-164 144 50 138 53
-165 113 71 115 30
-166 12 155 51 53
-167 34 146 158 49
-168 77 56 69 81
-169 11 103 7 85
-170 88 102 105 119
-171 155 13 92 94
-172 99 61 95 41
-173 154 122 144 43
-174 81 159 160 109
-175 48 59 61 139
-176 100 149 118 140
-177 22 150 129 131
-178 45 101 73 54
-179 45 111 113 107
-180 143 70 140 87
-181 79 91 159 105
-182 112 124 125 129
-183 77 79 17 150
-184 29 117 85 20
-185 4 106 20 21
-186 56 3 70 5
-187 88 155 91 75
-188 44 24 17 61
-189 99 24 19 108
-190 132 136 29 151
-191 113 126 138 160
-192 123 62 150 85
-193 25 17 62 43
-194 22 33 44 30
-195 67 26 93 39
-196 127 97 152 120
-197 125 28 131 153
-198 112 80 114 52
-199 55 121 96 152
-200 101 135 18 98
-201 133 91 63 129
-202 14 104 9 76
-203 77 158 159 53
-204 102 15 147 96
-205 115 148 160 142
-206 66 89 35 134
-207 123 151 54 98
-208 33 1 80 4
-209 111 115 96 42
-210 48 7 9 43
-211 154 84 9 64
-212 122 126 117 108
-213 121 127 73 107
-214 156 5 41 54
-215 100 70 125 83
-216 56 156 147 39
-217 67 46 90 149
-218 24 35 93 72
-219 145 47 74 87
-220 68 91 26 37
-221 44 143 62 142
-222 41 87 98 142
-223 60 104 127 43
-224 11 66 68 123
-225 90 103 139 118
-226 144 134 126 94
-227 134 38 31 141
-228 12 67 15 75
-229 143 146 148 141
-230 36 70 49 53
-231 121 156 69 60
-232 158 61 72 51
-233 34 133 105 141
-234 55 157 6 42
-235 100 36 42 119
-236 146 114 116 31
-237 12 57 82 18
-238 4 5 27 30
-239 23 34 45 31
-240 112 116 149 97
-241 11 16 29 40
-242 1 23 2 52
-243 79 81 117 19
-244 136 71 84 106
-245 158 60 50 152
-246 33 149 106 120
-247 48 103 115 109
-248 100 3 19 20
-249 1 47 7 8
-250 88 154 37 104
-251 88 133 137 65
-252 22 46 15 62
-253 69 92 27 38
-254 135 157 83 131
-255 14 28 19 21
-256 1 14 74 10
-257 90 101 95 120
-258 59 72 84 86
-259 35 68 47 52
-260 25 6 18 9
-261 58 83 138 129
-262 15 28 39 10
-263 89 92 76 153
-264 24 59 137 130
-265 132 67 147 84
-266 11 49 50 151
-267 77 78 157 18
-268 66 113 26 109
-269 85 96 151 119
-270 33 71 50 51
-271 111 124 116 160
-272 145 82 75 142
-273 55 38 94 119
-274 46 146 39 32
-275 55 80 102 74
-276 99 102 59 42
-277 49 51 10 153
-278 37 105 95 54
-279 145 148 128 152
-280 69 48 5 8
-281 23 16 137 107
-282 16 118 97 130
-283 144 47 58 80
-284 66 57 135 93
-285 35 3 26 140
-286 127 128 108 21
-287 78 90 159 97
-288 132 23 73 86
-289 136 148 64 87
-290 125 136 63 86
-291 143 145 130 65
-292 44 89 38 150
-293 16 10 65 76
-294 34 7 139 32
-295 14 95 98 153
-296 13 82 20 108
-297 154 25 36 140
-298 89 94 118 120
-299 83 139 8 63
-300 12 2 13 73
-301 57 157 40 130
-302 117 141 21 32
-303 45 2 3 36
-304 99 124 114 72
-305 57 4 71 6
-306 122 137 138 40
-307 121 128 63 131
-308 133 37 106 30
-309 13 103 8 75
-310 110 25 104 116
-311 134 92 64 86
-312 68 60 93 128
-313 78 79 52 74
-314 110 112 123 29
-315 111 28 76 109
-316 101 58 126 41
-317 110 155 124 82
-318 56 27 40 65
-319 135 6 31 32
-320 122 46 58 147
0