[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 320, 224 ] =
AT[320,77].
(I) Following is a form readable by MAGMA:
g:=Graph<320|{ {120, 121}, {296, 297}, {276, 277}, {128, 129}, {1, 3}, {156,
158}, {1, 2}, {152, 155}, {45, 46}, {1, 5}, {170, 174}, {2, 6}, {1, 4}, {296,
301}, {2, 7}, {49, 55}, {266, 268}, {3, 11}, {4, 12}, {2, 8}, {5, 15}, {4, 14},
{3, 9}, {132, 142}, {165, 169}, {246, 250}, {3, 13}, {4, 10}, {6, 22}, {10, 26},
{9, 25}, {8, 24}, {7, 23}, {6, 20}, {162, 176}, {12, 30}, {7, 21}, {8, 27},
{295, 308}, {293, 310}, {5, 17}, {296, 316}, {8, 28}, {7, 19}, {239, 250}, {6,
16}, {11, 29}, {9, 31}, {5, 18}, {293, 317}, {138, 147}, {258, 283}, {139, 146},
{98, 121}, {295, 315}, {295, 313}, {13, 47}, {284, 318}, {17, 50}, {268, 303},
{21, 54}, {14, 42}, {269, 297}, {256, 292}, {81, 116}, {278, 307}, {261, 288},
{134, 163}, {14, 40}, {18, 52}, {15, 41}, {16, 55}, {20, 51}, {17, 57}, {21,
61}, {18, 59}, {278, 319}, {275, 314}, {88, 113}, {135, 174}, {9, 35}, {277,
319}, {13, 39}, {12, 38}, {11, 33}, {10, 32}, {19, 56}, {275, 312}, {269, 294},
{149, 190}, {19, 63}, {271, 291}, {274, 319}, {10, 36}, {20, 58}, {16, 62}, {12,
34}, {11, 37}, {130, 178}, {284, 300}, {261, 309}, {159, 175}, {157, 173}, {132,
181}, {69, 119}, {262, 308}, {15, 60}, {269, 318}, {204, 255}, {151, 163}, {76,
121}, {275, 294}, {271, 314}, {262, 307}, {277, 291}, {280, 302}, {129, 182},
{280, 303}, {133, 189}, {274, 298}, {196, 252}, {270, 311}, {274, 299}, {15,
53}, {287, 293}, {278, 300}, {134, 188}, {147, 169}, {16, 43}, {148, 168}, {13,
48}, {199, 250}, {19, 46}, {17, 44}, {268, 306}, {14, 49}, {18, 45}, {151, 168},
{28, 92}, {188, 252}, {189, 252}, {27, 89}, {157, 223}, {143, 204}, {32, 100},
{153, 221}, {51, 119}, {40, 108}, {35, 103}, {34, 102}, {33, 101}, {24, 93},
{31, 90}, {149, 208}, {30, 88}, {185, 255}, {161, 231}, {152, 222}, {48, 118},
{41, 111}, {137, 206}, {37, 109}, {44, 100}, {38, 110}, {145, 217}, {146, 218},
{29, 87}, {24, 83}, {53, 126}, {36, 104}, {39, 107}, {38, 106}, {37, 105}, {53,
120}, {178, 255}, {28, 82}, {49, 127}, {25, 86}, {54, 121}, {31, 80}, {134,
214}, {146, 194}, {31, 78}, {23, 69}, {159, 205}, {26, 73}, {27, 72}, {145,
194}, {20, 64}, {27, 79}, {23, 67}, {22, 66}, {21, 65}, {148, 192}, {28, 73},
{30, 75}, {135, 210}, {29, 74}, {130, 213}, {280, 320}, {23, 78}, {36, 125},
{35, 122}, {143, 214}, {22, 76}, {47, 117}, {46, 116}, {43, 113}, {42, 112},
{22, 77}, {24, 68}, {26, 71}, {38, 120}, {45, 115}, {44, 114}, {25, 70}, {41,
118}, {36, 123}, {35, 124}, {133, 218}, {148, 203}, {42, 74}, {137, 233}, {162,
195}, {52, 86}, {138, 232}, {144, 242}, {47, 75}, {135, 227}, {37, 64}, {167,
193}, {167, 206}, {132, 244}, {32, 81}, {159, 237}, {154, 238}, {33, 84}, {34,
85}, {25, 96}, {152, 226}, {162, 216}, {26, 97}, {154, 225}, {32, 91}, {130,
249}, {138, 241}, {143, 243}, {156, 224}, {30, 99}, {50, 79}, {34, 95}, {149,
235}, {29, 98}, {157, 226}, {33, 94}, {128, 255}, {63, 191}, {85, 213}, {80,
211}, {94, 221}, {74, 206}, {127, 251}, {81, 212}, {105, 236}, {123, 254}, {89,
223}, {77, 202}, {104, 239}, {122, 253}, {79, 199}, {66, 203}, {82, 219}, {98,
235}, {99, 234}, {104, 225}, {106, 227}, {114, 251}, {43, 160}, {83, 216}, {78,
197}, {113, 250}, {119, 252}, {107, 231}, {44, 161}, {46, 163}, {92, 209}, {98,
239}, {78, 192}, {94, 208}, {95, 209}, {96, 238}, {45, 162}, {67, 204}, {73,
217}, {86, 198}, {100, 244}, {101, 245}, {102, 246}, {77, 220}, {96, 241}, {58,
168}, {88, 202}, {69, 215}, {63, 173}, {62, 172}, {59, 169}, {92, 206}, {93,
207}, {54, 165}, {99, 240}, {122, 233}, {89, 205}, {108, 248}, {71, 210}, {90,
207}, {85, 192}, {79, 218}, {103, 242}, {60, 170}, {61, 171}, {51, 164}, {83,
196}, {80, 199}, {102, 241}, {103, 240}, {110, 249}, {76, 214}, {82, 200}, {104,
243}, {107, 247}, {67, 222}, {117, 232}, {56, 166}, {88, 198}, {87, 201}, {57,
167}, {66, 221}, {47, 143}, {52, 149}, {60, 157}, {58, 155}, {117, 212}, {39,
133}, {71, 229}, {70, 228}, {49, 146}, {61, 158}, {57, 154}, {112, 211}, {120,
219}, {123, 216}, {53, 145}, {55, 147}, {105, 205}, {109, 200}, {124, 217}, {50,
148}, {111, 201}, {43, 140}, {68, 227}, {59, 156}, {48, 151}, {106, 195}, {97,
204}, {127, 210}, {40, 134}, {72, 230}, {56, 150}, {89, 233}, {90, 234}, {91,
235}, {40, 153}, {93, 236}, {58, 136}, {85, 231}, {59, 137}, {107, 217}, {50,
129}, {94, 237}, {48, 132}, {41, 159}, {61, 139}, {60, 138}, {52, 130}, {92,
234}, {114, 196}, {55, 128}, {54, 142}, {101, 220}, {42, 144}, {111, 213}, {112,
202}, {126, 196}, {127, 197}, {56, 131}, {91, 224}, {123, 192}, {93, 225}, {125,
193}, {95, 226}, {97, 220}, {51, 141}, {57, 135}, {39, 152}, {87, 232}, {101,
218}, {71, 131}, {102, 163}, {122, 191}, {126, 185}, {70, 142}, {90, 147}, {126,
183}, {97, 171}, {105, 165}, {99, 174}, {118, 187}, {109, 188}, {110, 189},
{124, 175}, {84, 140}, {100, 191}, {125, 166}, {108, 177}, {82, 140}, {86, 136},
{91, 187}, {118, 150}, {108, 136}, {84, 177}, {84, 191}, {80, 188}, {81, 189},
{83, 190}, {64, 174}, {72, 166}, {65, 175}, {75, 164}, {87, 184}, {68, 180},
{70, 182}, {69, 181}, {73, 184}, {64, 178}, {67, 177}, {66, 176}, {65, 179},
{74, 185}, {95, 172}, {75, 190}, {125, 136}, {76, 186}, {77, 187}, {103, 158},
{62, 195}, {63, 194}, {115, 141}, {119, 137}, {62, 193}, {72, 183}, {68, 187},
{65, 190}, {109, 268}, {96, 258}, {110, 269}, {112, 275}, {116, 279}, {106,
271}, {113, 276}, {115, 278}, {114, 277}, {117, 280}, {115, 256}, {116, 264},
{124, 256}, {111, 274}, {139, 267}, {129, 256}, {160, 289}, {131, 257}, {171,
297}, {170, 296}, {167, 293}, {166, 292}, {153, 284}, {179, 310}, {165, 288},
{150, 272}, {186, 316}, {155, 285}, {178, 309}, {184, 304}, {128, 265}, {131,
266}, {141, 260}, {171, 289}, {133, 270}, {172, 288}, {184, 308}, {183, 315},
{142, 259}, {180, 313}, {150, 283}, {168, 294}, {173, 291}, {172, 290}, {169,
295}, {140, 259}, {181, 314}, {158, 273}, {151, 262}, {160, 305}, {139, 281},
{144, 258}, {156, 271}, {145, 261}, {141, 282}, {175, 312}, {176, 298}, {183,
301}, {177, 299}, {153, 261}, {155, 263}, {154, 262}, {144, 270}, {179, 300},
{182, 297}, {186, 282}, {161, 258}, {170, 270}, {176, 281}, {182, 287}, {236,
320}, {180, 260}, {186, 266}, {173, 287}, {179, 257}, {246, 320}, {185, 257},
{164, 287}, {251, 320}, {181, 265}, {161, 284}, {160, 286}, {164, 283}, {180,
267}, {219, 283}, {246, 310}, {209, 272}, {253, 316}, {248, 313}, {223, 286},
{240, 306}, {254, 316}, {200, 267}, {245, 310}, {229, 294}, {244, 304}, {249,
317}, {205, 264}, {238, 299}, {229, 288}, {231, 289}, {243, 315}, {203, 257},
{212, 286}, {224, 299}, {254, 309}, {243, 312}, {228, 303}, {221, 273}, {232,
292}, {197, 264}, {249, 308}, {224, 301}, {198, 267}, {198, 264}, {247, 313},
{245, 314}, {210, 259}, {239, 318}, {211, 263}, {207, 282}, {234, 319}, {213,
259}, {230, 305}, {233, 318}, {208, 265}, {235, 305}, {230, 317}, {236, 311},
{219, 263}, {242, 302}, {247, 298}, {201, 279}, {228, 315}, {253, 290}, {215,
311}, {212, 309}, {229, 260}, {245, 279}, {222, 317}, {200, 300}, {238, 266},
{215, 305}, {248, 286}, {240, 279}, {197, 301}, {248, 272}, {241, 281}, {209,
312}, {216, 306}, {254, 276}, {201, 290}, {251, 272}, {222, 306}, {223, 307},
{194, 303}, {202, 292}, {244, 282}, {207, 289}, {193, 302}, {220, 307}, {225,
273}, {237, 285}, {195, 304}, {226, 273}, {214, 291}, {215, 290}, {242, 260},
{199, 304}, {211, 298}, {237, 276}, {228, 285}, {253, 263}, {203, 311}, {208,
302}, {247, 265}, {227, 285}, {230, 281} }>;
(II) A more general form is to represent the graph as the orbit of {120, 121}
under the group generated by the following permutations:
a: (2, 3, 4)(6, 11, 14)(7, 13, 10)(8, 9, 12)(15, 17, 18)(16, 37, 42)(19, 48,
32)(20, 29, 49)(21, 39, 36)(22, 33, 40)(23, 47, 26)(24, 35, 34)(25, 38, 27)(28,
31, 30)(41, 44, 45)(43, 109, 112)(46, 118, 100)(50, 52, 53)(51, 87, 127)(54,
133, 125)(55, 64, 74)(56, 132, 81)(57, 59, 60)(58, 98, 146)(61, 152, 104)(62,
105, 144)(63, 151, 91)(65, 107, 123)(66, 94, 153)(67, 143, 97)(68, 122, 102)(69,
117, 71)(70, 110, 72)(73, 78, 75)(76, 101, 108)(77, 84, 134)(79, 86, 120)(80,
88, 82)(83, 124, 85)(89, 96, 106)(90, 99, 92)(93, 103, 95)(111, 114, 115)(113,
200, 211)(116, 150, 244)(119, 232, 210)(121, 218, 136)(126, 129, 130)(128, 178,
185)(131, 181, 212)(135, 137, 138)(139, 155, 239)(140, 188, 202)(141, 201,
251)(142, 189, 166)(145, 148, 149)(147, 174, 206)(154, 156, 157)(158, 226,
225)(159, 161, 162)(160, 268, 275)(163, 187, 191)(164, 184, 197)(165, 270,
193)(167, 169, 170)(168, 235, 194)(171, 222, 243)(172, 236, 242)(173, 262,
224)(175, 231, 216)(176, 237, 284)(177, 214, 220)(179, 247, 254)(180, 253,
246)(182, 249, 183)(186, 245, 248)(190, 217, 192)(195, 205, 258)(196, 256,
213)(198, 219, 199)(203, 208, 261)(207, 240, 209)(215, 280, 229)(223, 238,
271)(227, 233, 241)(228, 269, 230)(250, 267, 263)(252, 292, 259)(257, 265,
309)(260, 290, 320)(264, 283, 304)(266, 314, 286)(272, 282, 279)(274, 277,
278)(276, 300, 298)(281, 285, 318)(287, 308, 301)(288, 311, 302)(289, 306,
312)(291, 307, 299)(293, 295, 296)(294, 305, 303)(297, 317, 315)(310, 313,
316) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 6)(4, 7)(5, 8)(9, 16)(10, 19)(11, 20)(12, 21)(13, 22)(14, 23)(15,
24)(17, 27)(18, 28)(25, 43)(26, 46)(29, 51)(30, 54)(31, 55)(32, 56)(33, 58)(34,
61)(35, 62)(36, 63)(37, 64)(38, 65)(39, 66)(40, 67)(41, 68)(42, 69)(44, 72)(45,
73)(47, 76)(48, 77)(49, 78)(50, 79)(52, 82)(53, 83)(57, 89)(59, 92)(60, 93)(70,
113)(71, 116)(74, 119)(75, 121)(80, 128)(81, 131)(84, 136)(85, 139)(86, 140)(87,
141)(88, 142)(90, 147)(91, 150)(94, 155)(95, 158)(96, 160)(97, 163)(98, 164)(99,
165)(100, 166)(101, 168)(102, 171)(103, 172)(104, 173)(105, 174)(106, 175)(107,
176)(108, 177)(109, 178)(110, 179)(111, 180)(112, 181)(114, 183)(115, 184)(117,
186)(118, 187)(120, 190)(122, 193)(123, 194)(124, 195)(125, 191)(126, 196)(127,
197)(129, 199)(130, 200)(132, 202)(133, 203)(134, 204)(135, 205)(137, 206)(138,
207)(143, 214)(144, 215)(145, 216)(146, 192)(148, 218)(149, 219)(151, 220)(152,
221)(153, 222)(154, 223)(156, 209)(157, 225)(159, 227)(161, 230)(162, 217)(167,
233)(169, 234)(170, 236)(182, 250)(185, 252)(188, 255)(189, 257)(198, 259)(201,
260)(208, 263)(210, 264)(211, 265)(212, 266)(213, 267)(224, 272)(226, 273)(228,
276)(229, 279)(231, 281)(232, 282)(235, 283)(237, 285)(238, 286)(239, 287)(240,
288)(241, 289)(242, 290)(243, 291)(244, 292)(245, 294)(246, 297)(247, 298)(248,
299)(249, 300)(251, 301)(253, 302)(254, 303)(256, 304)(258, 305)(261, 306)(262,
307)(268, 309)(269, 310)(270, 311)(271, 312)(274, 313)(275, 314)(277, 315)(278,
308)(280, 316)(284, 317)(293, 318)(295, 319)(296, 320)
c: (2, 4, 5)(6, 12, 18)(7, 14, 15)(8, 10, 17)(9, 11, 13)(16, 38, 45)(19, 49,
53)(20, 30, 52)(21, 40, 60)(22, 34, 59)(23, 42, 41)(24, 36, 57)(25, 37, 47)(26,
44, 27)(28, 32, 50)(29, 48, 31)(33, 39, 35)(43, 110, 115)(46, 55, 120)(51, 88,
130)(54, 134, 138)(56, 127, 126)(58, 99, 149)(61, 153, 157)(62, 106, 162)(63,
146, 145)(64, 75, 86)(65, 108, 170)(66, 95, 156)(67, 144, 159)(68, 123, 167)(69,
112, 111)(70, 109, 117)(71, 114, 72)(73, 100, 79)(74, 118, 78)(76, 102, 169)(77,
85, 137)(80, 87, 132)(81, 129, 82)(83, 125, 135)(84, 133, 124)(89, 97, 161)(90,
98, 151)(91, 148, 92)(93, 104, 154)(94, 152, 103)(96, 105, 143)(101, 107,
122)(113, 249, 141)(116, 128, 219)(119, 202, 213)(121, 163, 147)(131, 251,
183)(136, 174, 190)(139, 261, 173)(140, 189, 256)(142, 188, 232)(150, 197,
185)(155, 240, 208)(158, 221, 226)(160, 269, 278)(164, 198, 178)(165, 214,
241)(166, 210, 196)(168, 234, 235)(171, 284, 223)(172, 271, 176)(175, 177,
270)(179, 248, 296)(180, 254, 293)(181, 211, 201)(182, 200, 212)(184, 244,
199)(186, 246, 295)(187, 192, 206)(191, 218, 217)(193, 227, 216)(203, 209,
224)(204, 258, 205)(207, 239, 262)(215, 275, 274)(220, 231, 233)(222, 242,
237)(228, 268, 280)(229, 277, 230)(236, 243, 238)(245, 247, 253)(250, 308,
282)(252, 292, 259)(255, 283, 264)(257, 272, 301)(260, 276, 317)(263, 279,
265)(266, 320, 315)(267, 309, 287)(281, 288, 291)(285, 306, 302)(286, 297,
300)(289, 318, 307)(290, 314, 298)(294, 319, 305)(299, 311, 312)(310, 313,
316)
C4[ 320, 224 ]
320
-1 2 3 4 5
-2 1 6 7 8
-3 11 1 13 9
-4 1 12 14 10
-5 1 15 17 18
-6 22 2 16 20
-7 23 2 19 21
-8 2 24 27 28
-9 35 3 25 31
-10 36 4 26 32
-11 33 3 37 29
-12 34 4 38 30
-13 3 47 48 39
-14 4 49 40 42
-15 5 60 41 53
-16 55 6 62 43
-17 44 57 5 50
-18 45 59 5 52
-19 56 46 7 63
-20 58 6 51 64
-21 61 7 54 65
-22 66 77 6 76
-23 67 78 69 7
-24 68 93 83 8
-25 70 96 9 86
-26 71 73 97 10
-27 89 79 72 8
-28 92 82 73 8
-29 11 74 87 98
-30 88 99 12 75
-31 78 90 80 9
-32 100 91 81 10
-33 11 101 94 84
-34 12 102 95 85
-35 122 124 103 9
-36 123 125 104 10
-37 11 105 64 109
-38 110 12 106 120
-39 133 13 107 152
-40 134 14 108 153
-41 111 15 159 118
-42 144 112 14 74
-43 113 16 160 140
-44 100 114 17 161
-45 46 115 18 162
-46 45 116 19 163
-47 143 13 117 75
-48 132 13 118 151
-49 55 14 146 127
-50 79 148 17 129
-51 20 119 141 164
-52 149 18 86 130
-53 145 15 126 120
-54 121 165 21 142
-55 147 16 49 128
-56 166 150 19 131
-57 154 167 135 17
-58 155 168 136 20
-59 156 169 137 18
-60 157 15 170 138
-61 158 171 139 21
-62 16 193 172 195
-63 191 194 19 173
-64 178 37 20 174
-65 179 190 21 175
-66 22 176 221 203
-67 23 177 222 204
-68 187 24 180 227
-69 23 181 215 119
-70 25 182 228 142
-71 210 26 229 131
-72 166 27 183 230
-73 26 28 184 217
-74 29 206 42 185
-75 47 190 30 164
-76 22 121 214 186
-77 22 187 220 202
-78 23 192 31 197
-79 199 27 50 218
-80 188 199 211 31
-81 189 212 116 32
-82 200 28 140 219
-83 24 190 216 196
-84 33 177 191 140
-85 231 34 213 192
-86 198 25 136 52
-87 232 201 29 184
-88 198 113 202 30
-89 233 223 27 205
-90 234 147 31 207
-91 187 224 235 32
-92 209 234 28 206
-93 24 225 236 207
-94 33 221 237 208
-95 209 34 226 172
-96 25 258 238 241
-97 220 26 171 204
-98 121 235 29 239
-99 234 30 174 240
-100 44 244 191 32
-101 33 220 245 218
-102 34 246 163 241
-103 242 35 158 240
-104 243 36 225 239
-105 165 37 236 205
-106 38 227 271 195
-107 231 247 39 217
-108 177 136 248 40
-109 188 200 37 268
-110 189 38 269 249
-111 201 213 41 274
-112 275 211 202 42
-113 88 276 250 43
-114 44 277 196 251
-115 45 256 278 141
-116 264 46 81 279
-117 232 47 212 280
-118 187 48 150 41
-119 69 137 51 252
-120 121 38 53 219
-121 120 54 76 98
-122 253 35 233 191
-123 254 36 192 216
-124 35 256 217 175
-125 166 36 136 193
-126 183 53 185 196
-127 210 49 251 197
-128 55 265 255 129
-129 256 50 182 128
-130 178 213 249 52
-131 56 266 257 71
-132 244 48 181 142
-133 189 39 270 218
-134 188 214 40 163
-135 210 57 227 174
-136 58 125 86 108
-137 233 59 206 119
-138 232 147 60 241
-139 146 267 61 281
-140 82 259 84 43
-141 115 51 260 282
-142 132 70 259 54
-143 243 47 214 204
-144 242 258 270 42
-145 194 217 261 53
-146 49 139 194 218
-147 55 90 169 138
-148 168 192 203 50
-149 190 235 52 208
-150 56 118 272 283
-151 168 48 163 262
-152 155 222 39 226
-153 221 40 261 284
-154 57 225 238 262
-155 58 152 263 285
-156 59 158 224 271
-157 223 60 226 173
-158 156 103 61 273
-159 237 205 41 175
-160 286 289 305 43
-161 44 231 258 284
-162 176 45 216 195
-163 46 134 102 151
-164 287 51 283 75
-165 288 169 105 54
-166 56 125 72 292
-167 57 193 293 206
-168 58 148 151 294
-169 165 59 147 295
-170 60 270 174 296
-171 297 289 61 97
-172 288 290 62 95
-173 287 157 291 63
-174 99 135 170 64
-175 124 312 159 65
-176 66 298 281 162
-177 67 299 84 108
-178 309 255 64 130
-179 310 300 257 65
-180 68 267 313 260
-181 132 265 69 314
-182 297 287 70 129
-183 301 126 72 315
-184 308 73 304 87
-185 255 257 126 74
-186 266 282 316 76
-187 77 68 91 118
-188 134 80 109 252
-189 110 133 81 252
-190 83 149 75 65
-191 100 122 84 63
-192 78 123 148 85
-193 167 125 302 62
-194 145 146 303 63
-195 62 106 304 162
-196 114 126 83 252
-197 264 78 301 127
-198 88 264 267 86
-199 79 80 304 250
-200 267 300 82 109
-201 111 279 290 87
-202 77 88 112 292
-203 66 311 257 148
-204 143 67 255 97
-205 264 89 159 105
-206 167 92 137 74
-207 90 289 93 282
-208 265 302 94 149
-209 92 312 95 272
-210 135 71 127 259
-211 298 112 80 263
-212 286 309 81 117
-213 111 259 85 130
-214 143 134 291 76
-215 69 311 290 305
-216 123 83 162 306
-217 145 124 73 107
-218 133 79 101 146
-219 82 283 120 263
-220 77 101 97 307
-221 66 94 273 153
-222 67 152 306 317
-223 286 89 157 307
-224 156 299 91 301
-225 154 93 104 273
-226 157 95 152 273
-227 68 135 106 285
-228 70 303 315 285
-229 288 71 260 294
-230 72 281 305 317
-231 289 161 85 107
-232 138 292 117 87
-233 89 122 137 318
-234 99 319 90 92
-235 91 149 305 98
-236 320 311 93 105
-237 276 159 94 285
-238 154 266 299 96
-239 104 250 98 318
-240 99 103 279 306
-241 102 138 281 96
-242 144 103 302 260
-243 143 312 104 315
-244 132 100 282 304
-245 101 310 279 314
-246 320 310 102 250
-247 265 298 313 107
-248 286 313 272 108
-249 110 308 130 317
-250 199 113 246 239
-251 320 114 127 272
-252 188 189 119 196
-253 122 290 316 263
-254 276 309 123 316
-255 178 204 128 185
-256 124 115 292 129
-257 179 203 185 131
-258 144 161 96 283
-259 210 213 140 142
-260 242 180 141 229
-261 309 145 288 153
-262 154 308 151 307
-263 253 155 211 219
-264 198 116 205 197
-265 181 247 128 208
-266 268 238 131 186
-267 198 200 180 139
-268 266 303 306 109
-269 110 297 294 318
-270 133 144 311 170
-271 156 291 314 106
-272 209 248 150 251
-273 221 158 225 226
-274 319 111 298 299
-275 112 312 314 294
-276 254 277 113 237
-277 319 276 114 291
-278 319 300 115 307
-279 201 245 116 240
-280 320 302 303 117
-281 176 139 230 241
-282 244 141 207 186
-283 258 150 164 219
-284 300 161 153 318
-285 155 237 227 228
-286 212 223 160 248
-287 182 293 173 164
-288 165 172 261 229
-289 231 160 171 207
-290 253 201 215 172
-291 277 214 271 173
-292 166 232 256 202
-293 287 167 310 317
-294 275 168 269 229
-295 308 169 313 315
-296 297 301 170 316
-297 269 171 182 296
-298 176 211 247 274
-299 177 224 238 274
-300 200 179 278 284
-301 224 183 197 296
-302 242 280 193 208
-303 268 280 194 228
-304 199 244 184 195
-305 235 160 215 230
-306 222 268 216 240
-307 220 223 278 262
-308 249 184 262 295
-309 254 178 212 261
-310 179 245 246 293
-311 203 236 215 270
-312 209 275 243 175
-313 180 247 248 295
-314 275 245 181 271
-315 243 183 228 295
-316 253 254 186 296
-317 222 249 293 230
-318 233 269 239 284
-319 277 234 278 274
-320 246 236 280 251
0