[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 324, 7 ]. See Glossary for some
detail.
PS( 36, 9; 2) = PS( 36, 9; 4) = PS( 36, 18; 5)
= PS( 36, 18; 7) = MPS( 18, 18; 5) = MPS( 18, 18; 7)
= MSZ ( 36, 9, 11, 4) = MSZ ( 36, 9, 13, 4) = UG(ATD[324, 9])
= UG(ATD[324, 10]) = MG(Cmap(324, 55) { 36, 36| 18}_ 18) = MG(Cmap(324, 56) {
36, 36| 18}_ 18)
= MG(Cmap(324, 57) { 36, 36| 18}_ 18) = MG(Cmap(324, 58) { 36, 36| 18}_ 18) =
HT[324, 5]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 | 0 | - | - | 0 |
2 | 0 | - | - | - | - | - | 1 | - | 1 35 |
3 | - | - | - | 0 | 0 2 | - | 0 | - | - |
4 | - | - | 0 | - | 1 | - | - | 35 | 33 |
5 | 0 | - | 0 34 | 35 | - | - | - | - | - |
6 | 0 | - | - | - | - | - | 33 | 1 35 | - |
7 | - | 35 | 0 | - | - | 3 | - | 3 | - |
8 | - | - | - | 1 | - | 1 35 | 33 | - | - |
9 | 0 | 1 35 | - | 3 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 | 0 | - | - | 0 |
2 | 0 | 1 35 | - | 1 | - | - | - | - | - |
3 | - | - | - | 0 | - | 0 2 | 0 | - | - |
4 | - | 35 | 0 | - | - | 3 | - | 1 | - |
5 | 0 | - | - | - | - | - | 35 | 33 35 | - |
6 | 0 | - | 0 34 | 33 | - | - | - | - | - |
7 | - | - | 0 | - | 1 | - | - | 33 | 33 |
8 | - | - | - | 35 | 1 3 | - | 3 | - | - |
9 | 0 | - | - | - | - | - | 3 | - | 1 35 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 4 | - | - | - | - | - | - | 0 16 |
2 | 0 32 | - | 16 24 | - | - | - | - | - | - |
3 | - | 12 20 | - | 16 32 | - | - | - | - | - |
4 | - | - | 4 20 | - | 8 12 | - | - | - | - |
5 | - | - | - | 24 28 | - | 16 24 | - | - | - |
6 | - | - | - | - | 12 20 | - | 16 32 | - | - |
7 | - | - | - | - | - | 4 20 | - | 8 12 | - |
8 | - | - | - | - | - | - | 24 28 | - | 1 29 |
9 | 0 20 | - | - | - | - | - | - | 7 35 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | - | 0 | - | 0 |
2 | - | - | - | - | 2 | - | 0 | 0 | 34 |
3 | - | - | 1 35 | 0 | 2 | - | - | - | - |
4 | 0 | - | 0 | - | - | - | 33 | 35 | - |
5 | 0 | 34 | 34 | - | - | - | - | 1 | - |
6 | - | - | - | - | - | 1 35 | 34 | 2 | - |
7 | 0 | 0 | - | 3 | - | 2 | - | - | - |
8 | - | 0 | - | 1 | 35 | 34 | - | - | - |
9 | 0 | 2 | - | - | - | - | - | - | 1 35 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | - | 0 |
2 | - | - | - | 0 | - | 12 | 0 | 0 | - |
3 | - | - | - | 12 | 0 | - | - | 0 | 12 |
4 | - | 0 | 24 | - | - | - | - | 1 | 25 |
5 | 0 | - | 0 | - | - | - | 25 | - | 13 |
6 | 0 | 24 | - | - | - | - | 1 | 13 | - |
7 | 0 | 0 | - | - | 11 | 35 | - | - | - |
8 | - | 0 | 0 | 35 | - | 23 | - | - | - |
9 | 0 | - | 24 | 11 | 23 | - | - | - | - |