C4graphConstructions for C4[ 324, 15 ] = CPM(3,2,18,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 324, 15 ]. See Glossary for some detail.

CPM( 3, 2, 18, 1) = CPM( 6, 2, 9, 1) = CPM( 6, 2, 18, 1)

      = AMC( 36, 3, [ 0. 1: 2. 0]) = UG(ATD[324, 52]) = UG(ATD[324, 53])

      = UG(ATD[324, 54]) = ATD[ 9, 1]#ATD[ 54, 7] = ATD[ 18, 1]#ATD[ 27, 3]

      = ATD[ 18, 1]#ATD[ 54, 7] = ATD[ 27, 3]#DCyc[ 6] = ATD[ 27, 3]#ATD[ 54, 7]

      = ATD[ 54, 7]#DCyc[ 3] = ATD[ 54, 7]#DCyc[ 6] = ATD[ 54, 7]#ATD[ 54, 7]

      = UG(Rmap(648, 47) { 36, 4| 6}_ 36) = UG(Rmap(648, 48) { 36, 4| 6}_ 36) = MG(Rmap(324, 93) { 6, 36| 6}_ 36)

      = DG(Rmap(324, 93) { 6, 36| 6}_ 36) = MG(Rmap(324, 96) { 6, 36| 6}_ 36) = DG(Rmap(324, 96) { 6, 36| 6}_ 36)

      = DG(Rmap(324,116) { 36, 6| 6}_ 36) = DG(Rmap(324,119) { 36, 6| 6}_ 36) = DG(Rmap(162, 68) { 6, 36| 6}_ 36)

      = BGCG(DW( 3, 3), C_ 18, 1) = BGCG(DW( 18, 3), C_ 3, 2) = BGCG(CPM( 3, 2, 9, 1); K1;{2, 3})

      = AT[324, 6]

Cyclic coverings

mod 36:
123456789
1 - - - - 0 0 34 - - 0
2 - 1 35 - 0 - - 0 - -
3 - - 1 35 - - 15 3 - -
4 - 0 - - 15 17 - - 26 -
5 0 - - 19 21 - - - - 3
6 0 2 - 21 - - - - 8 -
7 - 0 33 - - - - - 15 17
8 - - - 10 - 28 - 1 35 -
9 0 - - - 33 - 19 21 - -

mod 36:
123456789
1 - 0 0 - 0 - - 0 -
2 0 - - 21 - - 21 1 -
3 0 - - - 1 10 - - 10
4 - 15 - - 19 24 26 - - -
5 0 - 35 17 - - - - 6
6 - - 26 10 12 - - - 30 -
7 - 15 - - - - 1 35 19 -
8 0 35 - - - 6 17 - -
9 - - 26 - 30 - - - 1 35

mod 36:
123456789
1 - 0 - 0 0 - - - 0
2 0 - 1 - 17 - - 1 -
3 - 35 - - - 34 - 17 31
4 0 - - - 21 - 10 - 17
5 0 19 - 15 - - 6 - -
6 - - 2 - - - 5 34 16
7 - - - 26 30 31 - 10 -
8 - 35 19 - - 2 26 - -
9 0 - 5 19 - 20 - - -