[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 324, 71 ] =
XI(Rmap(162,6){6,6|6}_6).
(I) Following is a form readable by MAGMA:
g:=Graph<324|{ {149, 191}, {135, 181}, {132, 183}, {133, 182}, {137, 190}, {141,
205}, {142, 206}, {128, 193}, {135, 198}, {133, 199}, {140, 207}, {134, 194},
{133, 195}, {147, 213}, {132, 200}, {154, 214}, {148, 219}, {149, 218}, {137,
217}, {134, 210}, {148, 192}, {152, 205}, {160, 247}, {154, 195}, {139, 209},
{145, 206}, {129, 227}, {147, 240}, {138, 238}, {145, 244}, {140, 231}, {152,
243}, {129, 236}, {151, 230}, {160, 209}, {128, 243}, {153, 234}, {132, 240},
{129, 244}, {159, 234}, {156, 233}, {130, 247}, {131, 250}, {157, 228}, {156,
229}, {134, 255}, {128, 254}, {134, 248}, {155, 228}, {94, 220}, {99, 225}, {98,
224}, {95, 221}, {47, 170}, {119, 242}, {64, 197}, {66, 199}, {92, 217}, {93,
219}, {46, 169}, {65, 198}, {53, 189}, {67, 200}, {68, 201}, {70, 203}, {85,
216}, {92, 210}, {123, 245}, {98, 236}, {69, 202}, {121, 246}, {78, 222}, {109,
253}, {104, 248}, {116, 229}, {119, 230}, {110, 252}, {43, 184}, {47, 188}, {75,
216}, {111, 251}, {44, 185}, {46, 187}, {70, 211}, {48, 166}, {45, 186}, {126,
233}, {67, 212}, {79, 215}, {117, 239}, {48, 171}, {112, 235}, {77, 208}, {32,
190}, {125, 227}, {103, 249}, {33, 191}, {64, 222}, {65, 223}, {13, 173}, {115,
211}, {18, 178}, {17, 177}, {16, 176}, {15, 175}, {14, 174}, {93, 253}, {94,
254}, {95, 255}, {2, 163}, {29, 188}, {27, 186}, {25, 184}, {23, 182}, {21,
180}, {10, 171}, {8, 169}, {6, 167}, {4, 165}, {87, 246}, {89, 248}, {91, 250},
{1, 163}, {99, 193}, {7, 165}, {66, 224}, {67, 225}, {96, 194}, {5, 166}, {26,
185}, {22, 181}, {9, 170}, {87, 244}, {90, 249}, {1, 165}, {112, 212}, {12,
168}, {2, 166}, {84, 240}, {85, 241}, {86, 242}, {1, 164}, {77, 232}, {79, 234},
{1, 167}, {3, 164}, {28, 187}, {11, 172}, {72, 239}, {78, 233}, {92, 251}, {5,
173}, {21, 189}, {7, 175}, {6, 174}, {74, 226}, {2, 171}, {121, 208}, {2, 168},
{6, 172}, {3, 169}, {73, 227}, {76, 230}, {16, 187}, {64, 235}, {4, 168}, {30,
178}, {29, 177}, {28, 176}, {11, 167}, {17, 188}, {109, 192}, {88, 245}, {4,
170}, {74, 228}, {75, 229}, {3, 172}, {107, 196}, {106, 197}, {24, 183}, {16,
191}, {12, 163}, {7, 168}, {88, 247}, {15, 190}, {20, 165}, {95, 238}, {65,
243}, {3, 176}, {102, 213}, {14, 189}, {8, 187}, {123, 207}, {4, 177}, {9, 188},
{96, 214}, {5, 178}, {20, 163}, {19, 164}, {10, 178}, {31, 167}, {30, 166}, {18,
171}, {67, 250}, {8, 179}, {31, 164}, {12, 183}, {80, 235}, {83, 239}, {5, 184},
{11, 182}, {9, 180}, {7, 186}, {80, 237}, {96, 221}, {13, 179}, {97, 223}, {6,
185}, {99, 220}, {19, 172}, {10, 181}, {70, 249}, {81, 238}, {82, 237}, {87,
232}, {88, 231}, {35, 227}, {50, 242}, {46, 238}, {45, 237}, {44, 236}, {43,
235}, {42, 234}, {41, 233}, {40, 232}, {39, 231}, {38, 230}, {37, 229}, {36,
228}, {60, 252}, {61, 253}, {62, 254}, {63, 255}, {61, 252}, {20, 214}, {47,
237}, {33, 226}, {12, 200}, {53, 241}, {15, 203}, {14, 202}, {13, 201}, {60,
251}, {22, 223}, {102, 175}, {100, 173}, {41, 224}, {16, 218}, {31, 213}, {30,
212}, {27, 209}, {26, 208}, {17, 219}, {59, 241}, {21, 222}, {101, 174}, {42,
225}, {8, 196}, {11, 199}, {10, 198}, {9, 197}, {18, 220}, {29, 211}, {28, 210},
{19, 221}, {35, 236}, {25, 201}, {27, 203}, {26, 202}, {17, 192}, {111, 190},
{110, 191}, {19, 194}, {39, 245}, {18, 193}, {49, 226}, {51, 231}, {99, 183},
{98, 182}, {97, 181}, {14, 216}, {52, 226}, {25, 207}, {24, 206}, {15, 217},
{20, 195}, {107, 179}, {13, 215}, {23, 205}, {22, 204}, {32, 251}, {36, 255},
{52, 232}, {102, 186}, {101, 185}, {100, 184}, {33, 252}, {35, 254}, {40, 246},
{106, 180}, {34, 253}, {48, 239}, {34, 192}, {43, 201}, {42, 200}, {39, 197},
{38, 196}, {35, 193}, {62, 220}, {63, 221}, {72, 170}, {55, 212}, {59, 216},
{21, 241}, {54, 210}, {53, 209}, {52, 208}, {30, 250}, {29, 249}, {28, 248},
{23, 243}, {22, 242}, {54, 211}, {60, 217}, {36, 194}, {45, 203}, {44, 202},
{37, 195}, {60, 218}, {61, 219}, {61, 218}, {68, 173}, {70, 175}, {69, 174},
{24, 244}, {32, 204}, {27, 247}, {26, 246}, {25, 245}, {56, 213}, {58, 215},
{34, 204}, {41, 199}, {40, 198}, {71, 169}, {31, 240}, {57, 214}, {38, 215},
{75, 189}, {23, 224}, {40, 223}, {71, 176}, {24, 225}, {39, 222}, {72, 177},
{78, 180}, {49, 205}, {51, 207}, {50, 206}, {79, 179}, {50, 204}, {58, 196},
{55, 304}, {57, 305}, {58, 306}, {63, 308}, {73, 322}, {62, 307}, {77, 322},
{51, 288}, {89, 323}, {94, 324}, {52, 303}, {56, 293}, {49, 303}, {103, 324},
{101, 321}, {37, 256}, {97, 324}, {56, 286}, {59, 275}, {50, 283}, {109, 324},
{53, 284}, {55, 285}, {106, 320}, {104, 322}, {49, 282}, {110, 322}, {34, 271},
{32, 271}, {33, 272}, {51, 257}, {55, 260}, {59, 264}, {54, 258}, {36, 273},
{116, 321}, {54, 259}, {45, 280}, {38, 275}, {63, 266}, {37, 274}, {118, 321},
{47, 280}, {46, 281}, {62, 265}, {57, 256}, {44, 279}, {41, 276}, {56, 261},
{43, 278}, {58, 263}, {48, 270}, {42, 277}, {124, 323}, {57, 262}, {125, 317},
{124, 317}, {91, 281}, {100, 294}, {76, 264}, {88, 284}, {113, 308}, {115, 310},
{91, 285}, {127, 313}, {95, 281}, {68, 268}, {114, 314}, {104, 288}, {100, 300},
{97, 297}, {73, 257}, {66, 267}, {117, 316}, {114, 315}, {105, 288}, {71, 269},
{127, 309}, {84, 286}, {108, 295}, {114, 313}, {113, 314}, {77, 257}, {87, 283},
{93, 273}, {105, 292}, {68, 266}, {121, 311}, {110, 288}, {69, 267}, {111, 319},
{122, 299}, {123, 298}, {85, 263}, {113, 291}, {76, 287}, {117, 294}, {90, 265},
{107, 318}, {126, 299}, {125, 296}, {108, 313}, {83, 261}, {120, 303}, {90,
258}, {118, 302}, {86, 271}, {74, 272}, {120, 290}, {89, 259}, {65, 282}, {118,
301}, {73, 279}, {127, 289}, {124, 290}, {92, 259}, {126, 289}, {96, 256}, {64,
290}, {115, 273}, {82, 304}, {91, 312}, {86, 306}, {76, 297}, {103, 258}, {78,
299}, {79, 298}, {90, 319}, {72, 302}, {126, 280}, {116, 274}, {112, 278}, {111,
265}, {108, 267}, {127, 280}, {84, 316}, {120, 272}, {105, 257}, {101, 269},
{81, 312}, {122, 275}, {71, 301}, {125, 279}, {124, 278}, {81, 314}, {121, 274},
{108, 263}, {104, 259}, {93, 310}, {105, 260}, {112, 285}, {107, 262}, {120,
278}, {123, 277}, {122, 276}, {106, 261}, {69, 309}, {80, 289}, {115, 258}, {86,
295}, {89, 296}, {80, 290}, {122, 264}, {109, 287}, {81, 291}, {84, 294}, {85,
295}, {82, 289}, {98, 279}, {82, 292}, {83, 293}, {66, 309}, {94, 297}, {102,
286}, {119, 271}, {118, 270}, {103, 287}, {114, 267}, {116, 269}, {117, 270},
{74, 310}, {75, 311}, {83, 302}, {113, 268}, {119, 264}, {153, 281}, {144, 276},
{151, 275}, {133, 256}, {162, 292}, {142, 265}, {156, 276}, {131, 266}, {152,
274}, {159, 277}, {143, 260}, {157, 273}, {138, 263}, {131, 268}, {146, 262},
{154, 270}, {142, 283}, {161, 308}, {136, 287}, {141, 282}, {139, 284}, {128,
282}, {143, 277}, {132, 286}, {129, 283}, {151, 268}, {140, 272}, {130, 284},
{131, 285}, {146, 269}, {162, 317}, {161, 318}, {136, 297}, {158, 319}, {153,
312}, {140, 303}, {157, 318}, {151, 308}, {146, 305}, {149, 305}, {150, 306},
{141, 296}, {160, 261}, {158, 315}, {150, 307}, {143, 298}, {130, 292}, {162,
260}, {161, 262}, {150, 319}, {144, 314}, {135, 300}, {161, 266}, {156, 311},
{149, 318}, {144, 315}, {136, 291}, {137, 293}, {157, 305}, {145, 316}, {158,
307}, {155, 310}, {152, 311}, {141, 317}, {148, 293}, {150, 295}, {130, 304},
{139, 313}, {138, 312}, {136, 315}, {159, 300}, {155, 296}, {153, 298}, {154,
302}, {138, 306}, {159, 294}, {135, 316}, {144, 299}, {142, 307}, {158, 291},
{145, 300}, {139, 309}, {147, 301}, {143, 304}, {146, 301}, {137, 320}, {147,
321}, {148, 320}, {155, 323}, {160, 320}, {162, 323} }>;
(II) A more general form is to represent the graph as the orbit of {149, 191}
under the group generated by the following permutations:
a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20,
31)(22, 33)(24, 36)(25, 38)(27, 41)(29, 44)(30, 46)(32, 49)(34, 52)(35, 54)(37,
56)(39, 59)(40, 61)(42, 63)(43, 58)(45, 66)(47, 69)(48, 71)(50, 74)(51, 76)(53,
78)(55, 81)(57, 84)(60, 65)(62, 89)(64, 85)(67, 95)(68, 79)(70, 98)(72, 101)(73,
103)(75, 106)(77, 109)(80, 108)(82, 114)(83, 116)(86, 120)(87, 93)(88, 122)(90,
125)(92, 128)(94, 104)(96, 132)(97, 110)(99, 134)(100, 107)(102, 133)(105,
136)(111, 141)(112, 138)(113, 143)(115, 129)(117, 146)(119, 140)(121, 148)(123,
151)(124, 150)(126, 139)(130, 144)(131, 153)(135, 149)(137, 152)(142, 155)(145,
157)(147, 154)(156, 160)(158, 162)(159, 161)(163, 164)(165, 167)(166, 169)(168,
172)(170, 174)(171, 176)(173, 179)(175, 182)(177, 185)(178, 187)(180, 189)(181,
191)(183, 194)(184, 196)(186, 199)(188, 202)(190, 205)(192, 208)(193, 210)(195,
213)(197, 216)(198, 218)(200, 221)(201, 215)(203, 224)(204, 226)(206, 228)(207,
230)(209, 233)(211, 236)(212, 238)(214, 240)(217, 243)(219, 246)(220, 248)(222,
241)(223, 252)(225, 255)(227, 258)(229, 261)(231, 264)(232, 253)(234, 266)(235,
263)(237, 267)(239, 269)(242, 272)(244, 273)(245, 275)(247, 276)(249, 279)(250,
281)(251, 282)(254, 259)(256, 286)(257, 287)(260, 291)(262, 294)(265, 296)(268,
298)(270, 301)(271, 303)(274, 293)(277, 308)(278, 306)(280, 309)(283, 310)(284,
299)(285, 312)(288, 297)(289, 313)(290, 295)(292, 315)(300, 318)(302, 321)(304,
314)(305, 316)(307, 323)(311, 320)(317, 319)(322, 324) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(5, 17)(7, 12)(8, 16)(9, 10)(13, 61)(14, 26)(15, 42)(18, 47)(21,
40)(22, 39)(23, 41)(24, 27)(25, 34)(28, 46)(29, 30)(32, 123)(33, 38)(35,
127)(36, 63)(43, 109)(44, 69)(45, 99)(48, 72)(49, 122)(50, 88)(51, 86)(52,
59)(53, 87)(54, 91)(55, 90)(56, 84)(58, 110)(60, 79)(62, 82)(64, 97)(65, 78)(66,
98)(67, 70)(68, 93)(73, 108)(74, 151)(75, 121)(76, 120)(77, 85)(80, 94)(81,
89)(83, 117)(92, 153)(95, 134)(100, 148)(102, 132)(103, 112)(104, 138)(105,
150)(106, 135)(107, 149)(111, 143)(113, 155)(114, 125)(115, 131)(119, 140)(124,
136)(126, 128)(129, 139)(130, 142)(137, 159)(141, 144)(145, 160)(152, 156)(157,
161)(158, 162)(163, 165)(166, 177)(169, 176)(170, 171)(173, 219)(174, 185)(175,
200)(178, 188)(179, 218)(180, 198)(181, 197)(182, 199)(183, 186)(184, 192)(189,
246)(190, 277)(191, 196)(193, 280)(194, 221)(201, 253)(203, 225)(204, 245)(205,
276)(206, 247)(207, 271)(208, 216)(209, 244)(210, 281)(211, 250)(212, 249)(213,
240)(215, 252)(217, 234)(220, 237)(222, 223)(226, 275)(227, 313)(228, 308)(229,
274)(230, 272)(231, 242)(232, 241)(233, 243)(235, 324)(236, 309)(238, 248)(251,
298)(254, 289)(257, 295)(258, 285)(259, 312)(260, 319)(261, 316)(262, 305)(263,
322)(264, 303)(265, 304)(266, 273)(267, 279)(268, 310)(270, 302)(278, 287)(282,
299)(283, 284)(288, 306)(290, 297)(291, 323)(292, 307)(293, 294)(296, 314)(300,
320)(315, 317)
c: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17,
27)(19, 30)(21, 32)(23, 35)(24, 37)(26, 40)(28, 43)(29, 45)(31, 48)(33, 51)(34,
53)(36, 55)(38, 58)(39, 60)(41, 62)(42, 57)(44, 65)(46, 68)(47, 70)(49, 73)(50,
75)(52, 77)(54, 80)(56, 83)(59, 86)(61, 88)(63, 91)(64, 92)(66, 94)(67, 96)(69,
97)(71, 100)(72, 102)(74, 105)(76, 108)(78, 111)(79, 107)(81, 113)(82, 115)(84,
118)(85, 119)(87, 121)(89, 124)(90, 126)(93, 130)(95, 131)(98, 128)(99,
133)(101, 135)(103, 127)(104, 120)(106, 137)(109, 139)(110, 140)(112, 134)(114,
136)(116, 145)(117, 147)(122, 150)(123, 149)(125, 141)(129, 152)(132, 154)(138,
151)(142, 156)(143, 157)(144, 158)(146, 159)(148, 160)(153, 161)(155, 162)(164,
166)(165, 168)(167, 171)(169, 173)(170, 175)(172, 178)(174, 181)(176, 184)(177,
186)(180, 190)(182, 193)(183, 195)(185, 198)(187, 201)(188, 203)(189, 204)(191,
207)(192, 209)(194, 212)(196, 215)(197, 217)(199, 220)(200, 214)(202, 223)(205,
227)(206, 229)(208, 232)(210, 235)(211, 237)(213, 239)(216, 242)(218, 245)(219,
247)(221, 250)(222, 251)(224, 254)(225, 256)(226, 257)(228, 260)(230, 263)(231,
252)(233, 265)(234, 262)(236, 243)(238, 268)(240, 270)(241, 271)(244, 274)(248,
278)(249, 280)(253, 284)(255, 285)(258, 289)(259, 290)(261, 293)(264, 295)(266,
281)(267, 297)(269, 300)(272, 288)(273, 304)(275, 306)(276, 307)(277, 305)(279,
282)(283, 311)(286, 302)(287, 313)(291, 314)(292, 310)(294, 301)(296, 317)(298,
318)(299, 319)(303, 322)(308, 312)(309, 324)(316, 321)
C4[ 324, 71 ]
324
-1 165 167 163 164
-2 166 168 171 163
-3 176 169 172 164
-4 165 177 168 170
-5 166 178 173 184
-6 167 172 174 185
-7 165 168 175 186
-8 187 179 169 196
-9 188 180 170 197
-10 198 178 181 171
-11 199 167 182 172
-12 200 168 183 163
-13 179 201 215 173
-14 189 202 216 174
-15 190 203 217 175
-16 176 187 191 218
-17 177 188 192 219
-18 220 178 171 193
-19 221 172 194 164
-20 165 214 195 163
-21 189 222 180 241
-22 242 223 181 204
-23 243 224 182 205
-24 244 225 183 206
-25 201 245 184 207
-26 202 246 185 208
-27 209 203 247 186
-28 176 187 210 248
-29 177 188 211 249
-30 166 178 212 250
-31 167 213 240 164
-32 190 204 271 251
-33 191 226 272 252
-34 253 192 204 271
-35 254 236 193 227
-36 255 194 228 273
-37 256 195 229 274
-38 275 215 196 230
-39 231 222 245 197
-40 198 232 223 246
-41 199 276 233 224
-42 200 277 234 225
-43 201 278 235 184
-44 202 279 236 185
-45 203 280 237 186
-46 187 169 281 238
-47 188 170 280 237
-48 166 171 270 239
-49 226 303 205 282
-50 242 204 206 283
-51 231 288 257 207
-52 232 226 303 208
-53 209 189 284 241
-54 210 211 258 259
-55 212 260 304 285
-56 286 213 293 261
-57 256 214 305 262
-58 215 196 306 263
-59 264 275 216 241
-60 217 218 251 252
-61 253 218 219 252
-62 220 254 265 307
-63 308 221 255 266
-64 222 235 290 197
-65 198 243 223 282
-66 199 309 267 224
-67 200 212 225 250
-68 266 201 268 173
-69 309 267 202 174
-70 211 203 249 175
-71 176 169 301 269
-72 177 170 302 239
-73 322 257 279 227
-74 310 226 228 272
-75 189 311 216 229
-76 264 297 287 230
-77 232 322 257 208
-78 222 233 299 180
-79 298 179 234 215
-80 289 235 290 237
-81 312 291 314 238
-82 289 237 292 304
-83 302 293 239 261
-84 286 294 316 240
-85 216 295 241 263
-86 242 271 295 306
-87 232 244 246 283
-88 231 245 247 284
-89 323 248 259 296
-90 319 265 258 249
-91 312 281 250 285
-92 210 259 217 251
-93 253 310 273 219
-94 220 297 254 324
-95 221 255 281 238
-96 221 256 214 194
-97 297 223 181 324
-98 224 279 236 182
-99 220 225 193 183
-100 300 173 184 294
-101 321 269 174 185
-102 286 213 175 186
-103 287 258 324 249
-104 288 322 248 259
-105 288 257 292 260
-106 320 180 261 197
-107 179 196 262 318
-108 267 313 295 263
-109 253 287 192 324
-110 288 322 191 252
-111 319 265 190 251
-112 212 278 235 285
-113 308 268 291 314
-114 267 313 314 315
-115 211 310 258 273
-116 321 269 229 274
-117 270 239 294 316
-118 321 301 302 270
-119 242 264 271 230
-120 278 290 303 272
-121 311 246 208 274
-122 264 275 276 299
-123 298 277 245 207
-124 278 290 323 317
-125 279 227 317 296
-126 233 299 289 280
-127 309 289 280 313
-128 243 254 193 282
-129 244 236 227 283
-130 247 292 304 284
-131 266 268 250 285
-132 286 200 183 240
-133 199 256 182 195
-134 210 255 248 194
-135 198 300 181 316
-136 297 287 291 315
-137 320 190 293 217
-138 312 238 306 263
-139 209 309 313 284
-140 231 303 272 207
-141 205 282 317 296
-142 265 206 283 307
-143 298 277 260 304
-144 276 299 314 315
-145 244 300 206 316
-146 301 269 305 262
-147 321 213 301 240
-148 320 192 293 219
-149 191 305 218 318
-150 319 295 306 307
-151 275 308 268 230
-152 243 311 205 274
-153 298 234 312 281
-154 214 302 270 195
-155 310 323 228 296
-156 276 233 311 229
-157 228 305 273 318
-158 319 291 315 307
-159 277 234 300 294
-160 209 320 247 261
-161 308 266 262 318
-162 323 292 260 317
-163 1 12 2 20
-164 1 3 19 31
-165 1 4 7 20
-166 2 48 5 30
-167 11 1 6 31
-168 12 2 4 7
-169 46 3 71 8
-170 47 4 72 9
-171 2 48 18 10
-172 11 3 6 19
-173 100 13 68 5
-174 101 14 69 6
-175 102 15 70 7
-176 3 16 71 28
-177 4 17 72 29
-178 5 18 30 10
-179 13 79 8 107
-180 78 106 9 21
-181 22 135 97 10
-182 11 23 133 98
-183 99 132 12 24
-184 100 25 5 43
-185 44 101 26 6
-186 45 102 27 7
-187 46 16 28 8
-188 47 17 29 9
-189 14 53 75 21
-190 111 15 137 32
-191 33 110 16 149
-192 34 148 17 109
-193 99 35 18 128
-194 134 36 19 96
-195 154 133 37 20
-196 58 38 8 107
-197 39 106 9 64
-198 135 40 10 65
-199 11 66 133 41
-200 132 12 67 42
-201 13 68 25 43
-202 44 14 69 26
-203 45 15 70 27
-204 22 34 50 32
-205 23 49 141 152
-206 24 145 50 142
-207 123 25 51 140
-208 77 121 26 52
-209 27 160 139 53
-210 134 92 28 54
-211 70 115 29 54
-212 55 67 112 30
-213 56 102 147 31
-214 154 57 96 20
-215 13 79 58 38
-216 14 59 85 75
-217 15 92 60 137
-218 16 60 61 149
-219 93 148 17 61
-220 99 94 18 62
-221 95 19 63 96
-222 78 39 64 21
-223 22 40 97 65
-224 66 23 41 98
-225 99 67 24 42
-226 33 49 52 74
-227 35 125 73 129
-228 155 36 157 74
-229 156 37 116 75
-230 38 151 119 76
-231 88 39 51 140
-232 77 40 52 87
-233 78 156 126 41
-234 79 159 42 153
-235 112 80 64 43
-236 44 35 129 98
-237 45 47 80 82
-238 46 81 138 95
-239 48 72 83 117
-240 132 147 84 31
-241 59 85 53 21
-242 22 50 86 119
-243 23 128 152 65
-244 24 145 129 87
-245 88 123 25 39
-246 121 26 40 87
-247 88 27 160 130
-248 89 134 104 28
-249 90 70 103 29
-250 67 91 30 131
-251 111 92 60 32
-252 33 110 60 61
-253 34 93 61 109
-254 35 94 62 128
-255 134 36 95 63
-256 133 57 37 96
-257 77 105 51 73
-258 90 103 115 54
-259 89 92 104 54
-260 55 143 105 162
-261 56 83 160 106
-262 57 146 161 107
-263 58 138 85 108
-264 122 59 119 76
-265 111 90 62 142
-266 68 161 63 131
-267 66 69 114 108
-268 68 113 151 131
-269 101 146 71 116
-270 154 48 117 118
-271 34 86 119 32
-272 33 74 140 120
-273 36 157 93 115
-274 121 37 116 152
-275 122 59 38 151
-276 122 144 156 41
-277 143 123 159 42
-278 112 124 43 120
-279 44 125 73 98
-280 45 47 126 127
-281 46 91 95 153
-282 49 128 141 65
-283 50 129 87 142
-284 88 139 53 130
-285 55 112 91 131
-286 132 56 102 84
-287 103 136 76 109
-288 110 104 105 51
-289 80 82 126 127
-290 80 124 64 120
-291 113 81 136 158
-292 82 105 162 130
-293 56 137 148 83
-294 100 159 84 117
-295 150 85 86 108
-296 89 155 125 141
-297 136 94 97 76
-298 143 79 123 153
-299 78 122 144 126
-300 100 145 135 159
-301 146 147 71 118
-302 154 72 83 118
-303 49 52 140 120
-304 55 143 82 130
-305 57 146 157 149
-306 58 138 150 86
-307 158 62 150 142
-308 113 161 63 151
-309 66 69 127 139
-310 155 93 115 74
-311 121 156 75 152
-312 91 81 138 153
-313 114 127 139 108
-314 144 113 81 114
-315 144 114 136 158
-316 145 135 84 117
-317 124 125 162 141
-318 157 149 161 107
-319 111 90 158 150
-320 137 148 160 106
-321 101 147 116 118
-322 77 110 104 73
-323 89 155 124 162
-324 103 94 97 109
0