[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 324, 74 ] =
XI(Rmap(162,11){6,6|6}_18).
(I) Following is a form readable by MAGMA:
g:=Graph<324|{ {136, 207}, {137, 206}, {138, 209}, {132, 229}, {129, 226}, {137,
237}, {152, 252}, {156, 249}, {136, 238}, {147, 251}, {149, 253}, {138, 230},
{145, 252}, {148, 228}, {149, 229}, {139, 250}, {128, 242}, {140, 249}, {143,
248}, {141, 241}, {142, 243}, {75, 203}, {69, 196}, {126, 255}, {83, 210}, {82,
208}, {115, 241}, {95, 221}, {41, 170}, {42, 169}, {121, 253}, {46, 171}, {80,
213}, {110, 232}, {117, 243}, {116, 242}, {112, 246}, {64, 199}, {101, 226},
{88, 223}, {46, 166}, {115, 251}, {68, 204}, {81, 216}, {118, 255}, {51, 185},
{98, 232}, {71, 205}, {54, 189}, {113, 250}, {82, 217}, {50, 191}, {89, 212},
{48, 190}, {104, 230}, {102, 233}, {37, 180}, {42, 187}, {74, 219}, {101, 247},
{43, 184}, {60, 175}, {41, 188}, {44, 185}, {73, 220}, {34, 181}, {45, 186},
{108, 244}, {109, 245}, {77, 212}, {125, 228}, {55, 173}, {120, 227}, {64, 220},
{99, 255}, {98, 254}, {97, 253}, {96, 252}, {67, 223}, {51, 174}, {32, 190},
{33, 191}, {94, 192}, {76, 211}, {93, 194}, {13, 173}, {18, 178}, {17, 177},
{16, 176}, {15, 175}, {14, 174}, {2, 163}, {127, 222}, {29, 188}, {27, 186},
{25, 184}, {23, 182}, {21, 180}, {10, 171}, {8, 169}, {6, 167}, {4, 165}, {1,
163}, {122, 216}, {97, 195}, {7, 165}, {86, 244}, {87, 245}, {5, 166}, {126,
221}, {114, 209}, {109, 206}, {108, 207}, {26, 185}, {22, 181}, {9, 170}, {83,
240}, {90, 249}, {91, 248}, {1, 165}, {17, 181}, {12, 168}, {2, 166}, {79, 235},
{92, 248}, {95, 251}, {1, 164}, {110, 203}, {26, 191}, {1, 167}, {103, 193},
{24, 190}, {70, 224}, {78, 232}, {92, 250}, {3, 164}, {28, 187}, {11, 172}, {73,
238}, {74, 237}, {5, 173}, {21, 189}, {7, 175}, {6, 174}, {2, 171}, {123, 210},
{2, 168}, {6, 172}, {3, 169}, {72, 226}, {76, 230}, {77, 231}, {16, 187}, {4,
168}, {30, 178}, {29, 177}, {28, 176}, {11, 167}, {71, 235}, {72, 228}, {90,
246}, {17, 188}, {106, 199}, {68, 233}, {93, 240}, {4, 170}, {75, 229}, {79,
225}, {3, 172}, {105, 198}, {24, 183}, {16, 191}, {12, 163}, {7, 168}, {78,
254}, {15, 190}, {20, 165}, {70, 247}, {94, 239}, {67, 241}, {3, 176}, {14,
189}, {8, 187}, {4, 177}, {27, 174}, {9, 188}, {75, 254}, {68, 242}, {69, 243},
{5, 178}, {20, 163}, {19, 164}, {10, 178}, {31, 167}, {30, 166}, {86, 238}, {18,
171}, {123, 194}, {79, 246}, {64, 250}, {122, 192}, {65, 251}, {80, 234}, {87,
237}, {8, 179}, {31, 164}, {12, 183}, {88, 227}, {91, 224}, {5, 184}, {11, 182},
{9, 180}, {7, 186}, {73, 244}, {13, 179}, {103, 217}, {96, 222}, {66, 252}, {81,
239}, {6, 185}, {19, 172}, {10, 181}, {74, 245}, {35, 227}, {52, 244}, {51,
243}, {50, 242}, {49, 241}, {22, 215}, {52, 245}, {24, 220}, {13, 200}, {15,
202}, {61, 248}, {16, 214}, {39, 225}, {38, 224}, {20, 210}, {17, 215}, {63,
249}, {14, 201}, {55, 240}, {30, 217}, {40, 225}, {45, 228}, {43, 226}, {18,
216}, {32, 234}, {19, 217}, {8, 195}, {46, 229}, {12, 199}, {23, 219}, {39,
235}, {35, 239}, {59, 247}, {9, 196}, {33, 236}, {11, 198}, {30, 208}, {57,
247}, {56, 246}, {31, 209}, {10, 197}, {44, 227}, {21, 218}, {49, 225}, {58,
234}, {25, 200}, {54, 231}, {27, 202}, {18, 192}, {97, 179}, {29, 207}, {28,
206}, {27, 201}, {19, 193}, {26, 201}, {46, 253}, {60, 239}, {25, 205}, {37,
240}, {20, 194}, {58, 236}, {59, 236}, {62, 233}, {14, 212}, {15, 213}, {23,
204}, {59, 224}, {22, 203}, {106, 183}, {13, 211}, {57, 231}, {33, 255}, {32,
254}, {105, 182}, {35, 192}, {47, 204}, {43, 200}, {39, 196}, {50, 214}, {60,
216}, {63, 219}, {89, 189}, {36, 193}, {55, 210}, {53, 208}, {48, 213}, {44,
201}, {40, 205}, {38, 195}, {34, 197}, {54, 209}, {45, 202}, {37, 194}, {61,
218}, {36, 204}, {65, 169}, {66, 170}, {62, 215}, {53, 223}, {32, 203}, {56,
211}, {58, 214}, {84, 184}, {40, 197}, {57, 212}, {42, 199}, {59, 214}, {48,
222}, {41, 198}, {58, 213}, {85, 186}, {28, 237}, {65, 176}, {69, 180}, {21,
231}, {47, 221}, {41, 219}, {25, 235}, {24, 234}, {29, 238}, {66, 177}, {36,
208}, {53, 193}, {38, 211}, {26, 236}, {42, 220}, {60, 202}, {31, 230}, {61,
196}, {63, 198}, {84, 173}, {52, 206}, {85, 175}, {52, 207}, {56, 195}, {62,
197}, {33, 221}, {49, 205}, {35, 223}, {34, 222}, {74, 182}, {39, 218}, {22,
232}, {23, 233}, {73, 183}, {37, 218}, {55, 200}, {40, 215}, {76, 179}, {34,
256}, {56, 282}, {63, 284}, {38, 258}, {36, 257}, {51, 277}, {61, 283}, {43,
259}, {48, 280}, {45, 261}, {44, 260}, {50, 281}, {47, 257}, {54, 262}, {53,
260}, {47, 279}, {49, 264}, {57, 258}, {62, 257}, {79, 271}, {126, 318}, {123,
315}, {122, 314}, {80, 272}, {81, 273}, {82, 274}, {83, 275}, {84, 276}, {70,
263}, {78, 271}, {106, 296}, {127, 317}, {77, 270}, {103, 292}, {85, 278}, {72,
268}, {120, 316}, {102, 290}, {72, 269}, {104, 301}, {90, 287}, {67, 260}, {66,
266}, {98, 298}, {95, 279}, {71, 270}, {65, 267}, {120, 306}, {111, 293}, {76,
262}, {95, 276}, {108, 288}, {123, 311}, {104, 293}, {121, 308}, {117, 312},
{71, 265}, {127, 305}, {126, 304}, {105, 295}, {96, 302}, {83, 285}, {92, 275},
{122, 309}, {121, 310}, {110, 289}, {100, 299}, {86, 263}, {124, 301}, {103,
310}, {88, 265}, {93, 268}, {116, 294}, {125, 303}, {89, 266}, {117, 294}, {94,
269}, {78, 282}, {75, 286}, {102, 307}, {90, 271}, {110, 312}, {70, 273}, {119,
288}, {93, 261}, {91, 258}, {124, 293}, {105, 304}, {115, 297}, {106, 305}, {64,
285}, {119, 298}, {94, 259}, {113, 303}, {125, 291}, {116, 298}, {84, 267},
{112, 303}, {87, 264}, {99, 259}, {112, 272}, {111, 270}, {124, 285}, {118,
279}, {116, 277}, {113, 272}, {109, 271}, {113, 275}, {69, 294}, {117, 278},
{100, 256}, {77, 299}, {111, 265}, {101, 258}, {121, 286}, {115, 276}, {107,
268}, {102, 257}, {101, 269}, {67, 297}, {112, 282}, {119, 283}, {100, 265},
{114, 287}, {68, 298}, {119, 281}, {118, 280}, {114, 284}, {107, 261}, {104,
262}, {99, 269}, {124, 275}, {125, 268}, {80, 291}, {88, 299}, {85, 289}, {114,
262}, {107, 287}, {99, 279}, {118, 256}, {89, 302}, {109, 282}, {108, 283},
{107, 284}, {96, 280}, {86, 300}, {91, 288}, {98, 281}, {92, 288}, {120, 260},
{100, 280}, {81, 300}, {111, 274}, {87, 297}, {82, 301}, {127, 256}, {97, 286},
{145, 273}, {156, 284}, {129, 259}, {132, 263}, {150, 274}, {141, 264}, {151,
273}, {160, 295}, {158, 278}, {153, 272}, {161, 296}, {156, 278}, {130, 270},
{135, 267}, {134, 266}, {133, 264}, {133, 277}, {161, 305}, {160, 304}, {151,
263}, {131, 274}, {148, 261}, {152, 266}, {135, 276}, {140, 287}, {143, 283},
{162, 311}, {139, 285}, {147, 267}, {128, 281}, {162, 315}, {132, 286}, {142,
277}, {160, 315}, {162, 319}, {161, 319}, {154, 314}, {130, 291}, {134, 295},
{131, 290}, {144, 306}, {129, 290}, {133, 294}, {128, 292}, {156, 312}, {147,
311}, {144, 308}, {153, 316}, {159, 314}, {155, 318}, {131, 293}, {146, 309},
{155, 316}, {154, 317}, {132, 300}, {134, 302}, {130, 299}, {155, 306}, {146,
312}, {157, 311}, {149, 319}, {148, 318}, {150, 317}, {157, 310}, {155, 304},
{154, 305}, {151, 316}, {133, 297}, {159, 307}, {130, 303}, {135, 296}, {154,
309}, {146, 289}, {148, 295}, {128, 308}, {144, 292}, {138, 319}, {142, 315},
{140, 313}, {143, 313}, {141, 314}, {129, 313}, {134, 318}, {157, 292}, {131,
313}, {153, 291}, {135, 317}, {137, 306}, {150, 301}, {143, 307}, {136, 309},
{159, 290}, {145, 300}, {139, 310}, {150, 296}, {139, 308}, {158, 289}, {145,
302}, {140, 307}, {138, 322}, {136, 321}, {137, 320}, {141, 321}, {142, 323},
{144, 320}, {147, 323}, {149, 324}, {146, 321}, {151, 320}, {153, 320}, {152,
322}, {158, 324}, {152, 324}, {158, 322}, {157, 323}, {159, 321}, {162, 322},
{160, 323}, {161, 324} }>;
(II) A more general form is to represent the graph as the orbit of {136, 207}
under the group generated by the following permutations:
a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20,
31)(22, 33)(24, 36)(25, 38)(27, 41)(29, 44)(30, 42)(32, 47)(34, 50)(35, 52)(37,
54)(39, 57)(40, 59)(43, 56)(45, 63)(46, 65)(48, 68)(49, 70)(51, 66)(53, 73)(55,
76)(58, 62)(60, 74)(61, 77)(64, 82)(67, 86)(69, 89)(71, 91)(72, 90)(75, 95)(78,
99)(79, 101)(80, 102)(81, 87)(83, 104)(84, 97)(85, 105)(88, 108)(92, 111)(93,
114)(94, 109)(96, 116)(98, 118)(100, 119)(103, 106)(110, 126)(112, 129)(113,
131)(115, 132)(117, 134)(120, 136)(121, 135)(122, 137)(123, 138)(125, 140)(127,
128)(130, 143)(133, 145)(139, 150)(141, 151)(142, 152)(144, 154)(146, 155)(147,
149)(148, 156)(153, 159)(157, 161)(158, 160)(163, 164)(165, 167)(166, 169)(168,
172)(170, 174)(171, 176)(173, 179)(175, 182)(177, 185)(178, 187)(180, 189)(181,
191)(183, 193)(184, 195)(186, 198)(188, 201)(190, 204)(192, 206)(194, 209)(196,
212)(197, 214)(199, 217)(200, 211)(202, 219)(203, 221)(205, 224)(207, 227)(208,
220)(210, 230)(213, 233)(215, 236)(216, 237)(218, 231)(222, 242)(223, 244)(225,
247)(226, 246)(228, 249)(229, 251)(232, 255)(234, 257)(235, 258)(238, 260)(239,
245)(240, 262)(241, 263)(243, 266)(248, 270)(250, 274)(252, 277)(253, 267)(254,
279)(256, 281)(259, 282)(261, 284)(264, 273)(265, 288)(268, 287)(269, 271)(272,
290)(275, 293)(276, 286)(278, 295)(280, 298)(283, 299)(285, 301)(289, 304)(291,
307)(292, 305)(294, 302)(296, 310)(297, 300)(303, 313)(306, 309)(308, 317)(311,
319)(312, 318)(314, 320)(315, 322)(316, 321)(323, 324) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17,
27)(19, 30)(21, 32)(23, 35)(24, 37)(26, 40)(28, 43)(29, 45)(31, 46)(33, 49)(34,
51)(36, 53)(38, 56)(39, 58)(41, 60)(42, 55)(44, 62)(47, 67)(48, 69)(50, 71)(52,
72)(54, 75)(57, 78)(59, 79)(61, 80)(63, 81)(64, 83)(65, 84)(66, 85)(68, 88)(70,
90)(73, 93)(74, 94)(76, 97)(77, 98)(82, 103)(86, 107)(87, 99)(89, 110)(91,
112)(92, 113)(95, 115)(96, 117)(100, 116)(101, 109)(102, 120)(104, 121)(105,
122)(106, 123)(108, 125)(111, 128)(114, 132)(118, 133)(119, 130)(124, 139)(126,
141)(127, 142)(129, 137)(131, 144)(134, 146)(135, 147)(136, 148)(138, 149)(140,
151)(143, 153)(145, 156)(150, 157)(152, 158)(154, 160)(155, 159)(161, 162)(164,
166)(165, 168)(167, 171)(169, 173)(170, 175)(172, 178)(174, 181)(176, 184)(177,
186)(180, 190)(182, 192)(183, 194)(185, 197)(187, 200)(188, 202)(189, 203)(191,
205)(193, 208)(195, 211)(196, 213)(198, 216)(199, 210)(201, 215)(204, 223)(206,
226)(207, 228)(209, 229)(212, 232)(214, 235)(218, 234)(219, 239)(220, 240)(221,
241)(222, 243)(224, 246)(225, 236)(227, 233)(230, 253)(231, 254)(237, 259)(238,
261)(242, 265)(244, 268)(245, 269)(247, 271)(248, 272)(249, 273)(250, 275)(251,
276)(252, 278)(255, 264)(256, 277)(257, 260)(258, 282)(262, 286)(263, 287)(266,
289)(270, 281)(274, 292)(279, 297)(280, 294)(283, 291)(284, 300)(288, 303)(290,
306)(293, 308)(295, 309)(296, 311)(298, 299)(301, 310)(302, 312)(304, 314)(305,
315)(307, 316)(313, 320)(317, 323)(318, 321)(322, 324)
c: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 26)(11, 12)(13, 21)(15, 36)(16, 17)(18,
44)(20, 31)(22, 50)(23, 24)(25, 57)(27, 30)(28, 29)(32, 68)(33, 34)(37, 76)(38,
39)(40, 59)(41, 42)(43, 77)(45, 82)(46, 51)(47, 48)(49, 70)(53, 60)(54, 55)(56,
61)(58, 62)(63, 64)(65, 66)(67, 81)(69, 97)(71, 101)(72, 111)(73, 74)(75,
116)(78, 119)(79, 91)(80, 102)(83, 114)(84, 89)(85, 103)(86, 87)(88, 94)(90,
92)(93, 104)(95, 96)(99, 100)(105, 106)(107, 124)(108, 109)(110, 128)(112,
143)(113, 140)(115, 145)(117, 121)(120, 122)(123, 138)(125, 131)(126, 127)(129,
130)(132, 133)(134, 135)(136, 137)(139, 156)(141, 151)(142, 149)(144, 146)(147,
152)(148, 150)(153, 159)(154, 155)(157, 158)(160, 161)(163, 167)(164, 165)(166,
174)(168, 172)(169, 170)(171, 185)(173, 189)(175, 193)(176, 177)(178, 201)(179,
180)(181, 191)(182, 183)(184, 212)(186, 217)(187, 188)(190, 204)(192, 227)(194,
230)(195, 196)(197, 236)(198, 199)(200, 231)(202, 208)(203, 242)(205, 247)(206,
207)(209, 210)(211, 218)(213, 257)(214, 215)(216, 260)(219, 220)(221, 222)(223,
239)(224, 225)(226, 270)(228, 274)(229, 277)(232, 281)(233, 234)(235, 258)(237,
238)(240, 262)(241, 273)(243, 253)(244, 245)(246, 248)(249, 250)(251, 252)(254,
298)(255, 256)(259, 299)(261, 301)(263, 264)(265, 269)(266, 267)(268, 293)(271,
288)(272, 307)(275, 287)(276, 302)(278, 310)(279, 280)(282, 283)(284, 285)(286,
294)(289, 292)(290, 291)(295, 296)(297, 300)(303, 313)(304, 305)(306, 309)(308,
312)(311, 322)(314, 316)(315, 319)(317, 318)(320, 321)(323, 324)
d: (2, 12)(3, 19)(5, 64)(8, 82)(10, 73)(13, 124)(15, 60)(16, 53)(17, 29)(18,
24)(22, 136)(23, 74)(25, 92)(26, 44)(28, 36)(30, 42)(32, 122)(33, 120)(34,
86)(35, 58)(38, 111)(39, 61)(40, 108)(43, 113)(46, 106)(47, 137)(48, 81)(49,
119)(50, 67)(52, 62)(55, 83)(56, 131)(57, 77)(59, 88)(65, 103)(68, 87)(70,
100)(71, 91)(72, 125)(75, 154)(76, 104)(78, 159)(79, 143)(80, 94)(84, 139)(90,
140)(95, 144)(96, 145)(97, 150)(98, 141)(99, 153)(101, 130)(102, 109)(110,
146)(112, 129)(115, 128)(116, 133)(118, 151)(121, 135)(126, 155)(127, 132)(147,
157)(149, 161)(166, 199)(169, 217)(171, 183)(173, 285)(176, 193)(178, 220)(179,
301)(181, 238)(184, 250)(187, 208)(190, 216)(191, 260)(192, 234)(195, 274)(197,
244)(200, 275)(203, 309)(204, 237)(205, 288)(206, 257)(207, 215)(211, 293)(213,
239)(214, 223)(221, 306)(222, 300)(224, 265)(225, 283)(226, 303)(227, 236)(229,
305)(232, 321)(233, 245)(235, 248)(241, 281)(242, 297)(246, 313)(247, 299)(251,
292)(253, 296)(254, 314)(255, 316)(256, 263)(258, 270)(259, 272)(264, 298)(267,
310)(269, 291)(271, 307)(273, 280)(276, 308)(279, 320)(282, 290)(286, 317)
C4[ 324, 74 ]
324
-1 165 167 163 164
-2 166 168 171 163
-3 176 169 172 164
-4 165 177 168 170
-5 166 178 173 184
-6 167 172 174 185
-7 165 168 175 186
-8 187 179 169 195
-9 188 180 170 196
-10 178 181 171 197
-11 198 167 182 172
-12 199 168 183 163
-13 200 211 179 173
-14 189 201 212 174
-15 190 202 213 175
-16 176 187 191 214
-17 177 188 181 215
-18 178 192 171 216
-19 193 172 217 164
-20 165 210 194 163
-21 231 189 180 218
-22 232 181 203 215
-23 233 182 204 219
-24 220 190 234 183
-25 200 235 205 184
-26 201 191 236 185
-27 201 202 174 186
-28 176 187 237 206
-29 177 188 238 207
-30 166 178 217 208
-31 209 167 164 230
-32 254 190 234 203
-33 221 255 191 236
-34 222 256 181 197
-35 223 192 227 239
-36 257 193 204 208
-37 180 194 218 240
-38 211 224 258 195
-39 235 225 196 218
-40 225 215 205 197
-41 198 188 170 219
-42 187 220 199 169
-43 200 226 259 184
-44 201 227 260 185
-45 202 228 261 186
-46 253 166 171 229
-47 221 257 279 204
-48 222 190 213 280
-49 264 225 205 241
-50 242 191 214 281
-51 243 277 174 185
-52 244 245 206 207
-53 223 193 260 208
-54 209 231 189 262
-55 210 200 173 240
-56 211 246 282 195
-57 231 212 247 258
-58 234 213 214 236
-59 224 214 236 247
-60 202 216 239 175
-61 248 283 196 218
-62 233 257 215 197
-63 198 249 284 219
-64 220 199 250 285
-65 176 267 169 251
-66 177 266 170 252
-67 297 223 260 241
-68 242 298 233 204
-69 243 180 294 196
-70 224 247 273 263
-71 265 235 270 205
-72 268 269 226 228
-73 220 244 183 238
-74 245 182 237 219
-75 286 254 203 229
-76 211 179 262 230
-77 231 299 212 270
-78 232 254 271 282
-79 235 246 225 271
-80 234 213 291 272
-81 300 216 239 273
-82 301 217 208 274
-83 275 210 240 285
-84 276 267 173 184
-85 278 289 175 186
-86 244 300 238 263
-87 264 297 245 237
-88 265 299 223 227
-89 189 266 212 302
-90 287 246 249 271
-91 288 224 258 248
-92 275 288 248 250
-93 268 194 261 240
-94 192 269 259 239
-95 221 276 279 251
-96 222 280 302 252
-97 253 286 179 195
-98 232 254 298 281
-99 255 279 269 259
-100 265 299 256 280
-101 247 258 269 226
-102 233 257 290 307
-103 310 193 292 217
-104 301 293 262 230
-105 198 182 304 295
-106 199 183 305 296
-107 287 268 261 284
-108 244 288 283 207
-109 245 271 282 206
-110 232 289 312 203
-111 265 270 293 274
-112 246 303 282 272
-113 275 303 250 272
-114 209 287 262 284
-115 297 276 251 241
-116 242 298 277 294
-117 243 278 312 294
-118 255 256 279 280
-119 298 288 281 283
-120 227 260 316 306
-121 253 286 308 310
-122 309 192 314 216
-123 210 311 194 315
-124 275 301 293 285
-125 268 291 303 228
-126 221 255 304 318
-127 222 256 305 317
-128 242 308 281 292
-129 290 313 226 259
-130 299 291 270 303
-131 290 313 293 274
-132 286 300 229 263
-133 264 297 277 294
-134 266 302 295 318
-135 276 267 317 296
-136 309 321 238 207
-137 320 237 206 306
-138 209 319 322 230
-139 308 310 250 285
-140 287 313 249 307
-141 264 321 314 241
-142 243 277 323 315
-143 313 248 283 307
-144 308 320 292 306
-145 300 302 273 252
-146 309 321 289 312
-147 267 311 323 251
-148 228 261 295 318
-149 253 319 324 229
-150 301 317 274 296
-151 320 316 273 263
-152 266 322 324 252
-153 320 291 272 316
-154 309 314 305 317
-155 304 316 306 318
-156 278 312 249 284
-157 310 311 323 292
-158 278 289 322 324
-159 321 290 314 307
-160 323 304 315 295
-161 319 324 305 296
-162 319 311 322 315
-163 1 12 2 20
-164 1 3 19 31
-165 1 4 7 20
-166 2 46 5 30
-167 11 1 6 31
-168 12 2 4 7
-169 3 8 42 65
-170 66 4 41 9
-171 2 46 18 10
-172 11 3 6 19
-173 55 13 5 84
-174 14 27 6 51
-175 15 60 7 85
-176 3 16 28 65
-177 66 4 17 29
-178 5 18 30 10
-179 13 8 97 76
-180 69 37 9 21
-181 22 34 17 10
-182 11 23 105 74
-183 12 24 73 106
-184 25 5 84 43
-185 44 26 6 51
-186 45 27 7 85
-187 16 28 8 42
-188 17 29 41 9
-189 89 14 21 54
-190 24 15 48 32
-191 33 26 16 50
-192 122 35 94 18
-193 36 103 19 53
-194 123 37 93 20
-195 56 38 8 97
-196 69 39 61 9
-197 34 40 62 10
-198 11 105 41 63
-199 12 106 42 64
-200 55 13 25 43
-201 44 14 26 27
-202 45 15 27 60
-203 22 110 75 32
-204 23 68 36 47
-205 25 49 71 40
-206 137 28 52 109
-207 136 29 52 108
-208 36 82 30 53
-209 114 138 31 54
-210 55 123 83 20
-211 56 13 38 76
-212 77 89 57 14
-213 58 80 15 48
-214 58 59 16 50
-215 22 17 40 62
-216 122 81 60 18
-217 103 82 19 30
-218 37 39 61 21
-219 23 41 63 74
-220 24 73 42 64
-221 33 47 126 95
-222 34 48 127 96
-223 88 67 35 53
-224 91 59 70 38
-225 79 49 39 40
-226 101 72 129 43
-227 44 88 35 120
-228 45 125 148 72
-229 132 46 149 75
-230 104 138 31 76
-231 77 57 21 54
-232 22 110 78 98
-233 23 68 102 62
-234 24 58 80 32
-235 79 25 71 39
-236 33 58 26 59
-237 137 28 74 87
-238 136 29 73 86
-239 35 81 60 94
-240 55 37 93 83
-241 67 49 115 141
-242 68 50 116 128
-243 69 51 117 142
-244 73 52 86 108
-245 52 74 87 109
-246 56 79 90 112
-247 57 101 59 70
-248 143 91 92 61
-249 90 156 63 140
-250 113 92 139 64
-251 147 115 95 65
-252 66 145 96 152
-253 121 46 149 97
-254 78 75 32 98
-255 33 99 126 118
-256 34 100 127 118
-257 36 47 102 62
-258 57 101 91 38
-259 99 94 129 43
-260 44 67 53 120
-261 45 93 148 107
-262 114 104 54 76
-263 132 70 151 86
-264 133 49 141 87
-265 88 100 111 71
-266 66 89 134 152
-267 135 147 84 65
-268 125 93 72 107
-269 99 101 72 94
-270 77 111 71 130
-271 78 79 90 109
-272 112 80 113 153
-273 145 70 81 151
-274 111 82 150 131
-275 113 124 92 83
-276 135 115 84 95
-277 133 116 51 142
-278 156 158 117 85
-279 99 47 95 118
-280 100 48 96 118
-281 50 128 119 98
-282 56 78 112 109
-283 143 61 108 119
-284 156 114 63 107
-285 124 83 139 64
-286 121 132 75 97
-287 90 114 107 140
-288 91 92 108 119
-289 110 146 158 85
-290 102 159 129 131
-291 80 125 130 153
-292 144 157 103 128
-293 111 124 104 131
-294 133 69 116 117
-295 134 148 105 160
-296 135 106 150 161
-297 67 133 115 87
-298 68 116 119 98
-299 77 88 100 130
-300 132 145 81 86
-301 124 82 104 150
-302 89 134 145 96
-303 112 113 125 130
-304 155 126 105 160
-305 154 127 106 161
-306 144 155 137 120
-307 143 102 159 140
-308 121 144 128 139
-309 154 122 146 136
-310 121 157 103 139
-311 123 157 147 162
-312 110 156 146 117
-313 143 129 140 131
-314 154 122 159 141
-315 123 160 162 142
-316 155 151 120 153
-317 154 135 127 150
-318 155 134 126 148
-319 138 149 161 162
-320 144 137 151 153
-321 146 136 159 141
-322 158 138 162 152
-323 157 147 160 142
-324 158 149 161 152
0