C4graphGraph forms for C4 [ 324, 97 ] = BGCG(UG(ATD[162,29]);K1;{2,3})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 324, 97 ] = BGCG(UG(ATD[162,29]);K1;{2,3}).

(I) Following is a form readable by MAGMA:

g:=Graph<324|{ {162, 164}, {160, 186}, {128, 163}, {157, 190}, {158, 186}, {150, 179}, {145, 183}, {137, 174}, {139, 172}, {151, 191}, {152, 176}, {141, 164}, {135, 173}, {149, 190}, {135, 183}, {140, 189}, {128, 179}, {132, 177}, {136, 191}, {134, 191}, {137, 178}, {149, 174}, {143, 179}, {142, 177}, {151, 168}, {137, 201}, {138, 202}, {140, 205}, {144, 211}, {150, 211}, {141, 203}, {147, 213}, {134, 193}, {147, 219}, {159, 213}, {133, 206}, {130, 206}, {155, 215}, {131, 207}, {159, 209}, {142, 193}, {128, 209}, {159, 206}, {139, 217}, {154, 200}, {148, 198}, {139, 216}, {133, 209}, {129, 212}, {151, 193}, {161, 246}, {141, 212}, {145, 200}, {157, 192}, {145, 207}, {148, 203}, {155, 196}, {153, 198}, {130, 226}, {146, 242}, {132, 229}, {152, 250}, {157, 248}, {146, 248}, {137, 226}, {143, 228}, {147, 255}, {161, 205}, {133, 235}, {144, 255}, {150, 228}, {154, 238}, {140, 250}, {136, 240}, {134, 255}, {136, 243}, {160, 219}, {156, 231}, {133, 249}, {143, 240}, {73, 201}, {94, 222}, {53, 180}, {69, 196}, {87, 214}, {91, 218}, {100, 229}, {97, 227}, {58, 185}, {127, 252}, {84, 215}, {99, 224}, {47, 171}, {48, 180}, {102, 226}, {59, 190}, {88, 223}, {124, 251}, {120, 255}, {56, 176}, {102, 238}, {103, 239}, {34, 171}, {61, 180}, {46, 165}, {72, 195}, {71, 204}, {62, 181}, {112, 251}, {80, 222}, {124, 242}, {40, 167}, {39, 183}, {125, 237}, {71, 214}, {76, 221}, {107, 249}, {53, 166}, {76, 223}, {40, 188}, {51, 167}, {49, 164}, {115, 230}, {63, 170}, {105, 252}, {97, 247}, {118, 224}, {98, 244}, {112, 230}, {35, 187}, {46, 182}, {101, 252}, {53, 175}, {84, 206}, {87, 204}, {126, 229}, {122, 225}, {36, 185}, {90, 199}, {110, 243}, {81, 207}, {125, 227}, {48, 175}, {119, 232}, {75, 212}, {110, 241}, {6, 166}, {70, 230}, {94, 254}, {13, 172}, {123, 218}, {83, 242}, {107, 202}, {10, 168}, {116, 214}, {72, 234}, {11, 169}, {18, 177}, {106, 201}, {82, 246}, {82, 247}, {12, 170}, {113, 215}, {85, 243}, {31, 184}, {119, 208}, {74, 237}, {98, 197}, {28, 180}, {73, 225}, {24, 177}, {117, 220}, {74, 227}, {83, 250}, {95, 246}, {108, 197}, {16, 186}, {66, 233}, {115, 216}, {114, 217}, {93, 241}, {125, 209}, {17, 188}, {69, 232}, {77, 224}, {2, 172}, {67, 236}, {127, 208}, {92, 243}, {23, 167}, {27, 171}, {86, 230}, {110, 222}, {20, 165}, {68, 245}, {28, 173}, {90, 235}, {102, 215}, {15, 189}, {79, 253}, {68, 247}, {64, 244}, {81, 228}, {113, 196}, {90, 239}, {17, 167}, {111, 217}, {80, 231}, {22, 174}, {104, 208}, {4, 189}, {69, 252}, {80, 233}, {94, 231}, {101, 220}, {71, 253}, {121, 195}, {84, 238}, {127, 196}, {21, 169}, {5, 184}, {103, 217}, {126, 192}, {5, 186}, {65, 254}, {13, 178}, {29, 221}, {114, 178}, {47, 239}, {19, 210}, {52, 245}, {37, 231}, {54, 244}, {44, 238}, {30, 221}, {109, 169}, {37, 224}, {63, 249}, {96, 166}, {34, 235}, {33, 235}, {118, 188}, {98, 168}, {25, 210}, {126, 181}, {39, 236}, {97, 170}, {16, 220}, {45, 225}, {100, 169}, {9, 199}, {115, 189}, {42, 228}, {10, 197}, {62, 241}, {55, 248}, {25, 201}, {120, 168}, {115, 163}, {60, 237}, {100, 181}, {104, 185}, {1, 211}, {119, 165}, {32, 242}, {36, 247}, {41, 250}, {112, 163}, {1, 213}, {60, 232}, {18, 198}, {13, 216}, {122, 175}, {21, 192}, {20, 194}, {57, 239}, {38, 240}, {29, 203}, {20, 195}, {52, 227}, {108, 187}, {30, 198}, {33, 249}, {99, 187}, {116, 173}, {1, 219}, {54, 236}, {106, 176}, {19, 200}, {26, 193}, {25, 194}, {4, 216}, {54, 234}, {41, 245}, {17, 205}, {113, 172}, {5, 219}, {40, 246}, {3, 220}, {99, 188}, {10, 234}, {69, 165}, {62, 222}, {85, 181}, {86, 182}, {31, 254}, {59, 218}, {42, 200}, {47, 204}, {83, 176}, {92, 191}, {41, 205}, {24, 253}, {34, 199}, {10, 236}, {35, 197}, {23, 241}, {81, 183}, {94, 184}, {26, 253}, {43, 195}, {70, 174}, {86, 190}, {35, 202}, {74, 163}, {66, 171}, {56, 210}, {58, 208}, {61, 214}, {82, 185}, {46, 194}, {50, 223}, {55, 218}, {34, 204}, {68, 170}, {67, 173}, {50, 221}, {8, 248}, {70, 182}, {5, 244}, {27, 233}, {45, 223}, {8, 251}, {27, 232}, {22, 226}, {33, 213}, {11, 254}, {63, 202}, {38, 211}, {78, 187}, {27, 237}, {31, 233}, {18, 229}, {22, 225}, {88, 175}, {64, 184}, {74, 179}, {15, 245}, {56, 194}, {49, 203}, {59, 192}, {73, 178}, {50, 207}, {58, 199}, {89, 164}, {14, 240}, {72, 182}, {44, 210}, {20, 234}, {4, 251}, {43, 212}, {89, 166}, {18, 275}, {65, 320}, {55, 310}, {54, 311}, {63, 317}, {28, 280}, {59, 319}, {55, 319}, {12, 261}, {4, 270}, {46, 292}, {11, 257}, {79, 324}, {15, 259}, {44, 289}, {52, 314}, {31, 272}, {77, 322}, {50, 290}, {56, 297}, {7, 277}, {51, 289}, {44, 318}, {14, 285}, {61, 302}, {87, 324}, {7, 275}, {38, 306}, {32, 309}, {7, 273}, {57, 303}, {47, 313}, {13, 282}, {32, 311}, {21, 258}, {3, 283}, {15, 279}, {48, 298}, {61, 295}, {52, 302}, {95, 324}, {9, 277}, {40, 308}, {26, 262}, {33, 316}, {43, 310}, {9, 278}, {95, 320}, {37, 261}, {60, 285}, {42, 264}, {43, 265}, {6, 293}, {16, 308}, {39, 259}, {38, 258}, {30, 314}, {14, 296}, {60, 282}, {101, 323}, {2, 293}, {57, 286}, {29, 314}, {8, 288}, {24, 304}, {17, 312}, {53, 284}, {39, 269}, {3, 296}, {22, 317}, {21, 318}, {58, 278}, {49, 287}, {29, 306}, {12, 317}, {32, 273}, {2, 304}, {62, 268}, {28, 302}, {19, 289}, {19, 288}, {57, 266}, {45, 286}, {8, 316}, {48, 260}, {45, 281}, {23, 291}, {6, 307}, {30, 299}, {14, 315}, {23, 289}, {42, 284}, {35, 276}, {49, 262}, {51, 267}, {123, 323}, {12, 309}, {9, 307}, {16, 298}, {24, 292}, {6, 312}, {51, 269}, {41, 279}, {26, 292}, {25, 294}, {1, 321}, {64, 256}, {3, 323}, {78, 270}, {80, 272}, {108, 300}, {109, 301}, {111, 303}, {92, 285}, {120, 313}, {113, 304}, {105, 296}, {77, 271}, {2, 321}, {106, 297}, {7, 323}, {122, 319}, {88, 286}, {64, 264}, {65, 265}, {79, 263}, {91, 274}, {91, 273}, {96, 298}, {11, 320}, {108, 295}, {85, 281}, {106, 294}, {75, 262}, {81, 284}, {67, 269}, {91, 277}, {78, 257}, {97, 302}, {84, 260}, {125, 301}, {87, 263}, {93, 269}, {78, 287}, {75, 280}, {116, 295}, {75, 287}, {98, 311}, {93, 267}, {66, 282}, {85, 268}, {100, 318}, {104, 307}, {121, 290}, {76, 272}, {124, 288}, {70, 283}, {107, 309}, {66, 285}, {117, 298}, {36, 324}, {102, 263}, {117, 276}, {99, 257}, {82, 305}, {122, 281}, {90, 313}, {36, 320}, {71, 291}, {83, 311}, {96, 260}, {109, 265}, {111, 267}, {76, 297}, {111, 266}, {77, 299}, {37, 322}, {88, 319}, {92, 315}, {114, 282}, {123, 275}, {118, 287}, {123, 274}, {89, 307}, {120, 274}, {65, 301}, {116, 280}, {72, 292}, {79, 291}, {103, 267}, {109, 257}, {95, 305}, {107, 261}, {121, 278}, {121, 265}, {101, 279}, {105, 283}, {73, 317}, {89, 303}, {124, 266}, {110, 281}, {119, 256}, {67, 315}, {118, 270}, {103, 286}, {117, 268}, {86, 300}, {96, 284}, {126, 258}, {104, 277}, {114, 271}, {68, 314}, {112, 270}, {93, 291}, {105, 279}, {127, 256}, {135, 259}, {139, 271}, {130, 263}, {130, 260}, {162, 293}, {142, 262}, {152, 273}, {153, 275}, {158, 276}, {162, 303}, {149, 283}, {140, 259}, {158, 268}, {131, 272}, {156, 271}, {134, 274}, {150, 258}, {141, 280}, {161, 308}, {129, 278}, {146, 266}, {145, 264}, {161, 312}, {156, 261}, {162, 312}, {138, 276}, {136, 296}, {160, 256}, {131, 290}, {132, 294}, {129, 290}, {159, 316}, {154, 318}, {138, 300}, {148, 306}, {153, 305}, {160, 264}, {131, 297}, {158, 308}, {157, 310}, {128, 301}, {152, 309}, {138, 295}, {146, 316}, {151, 313}, {132, 305}, {129, 310}, {156, 299}, {149, 300}, {154, 288}, {135, 315}, {143, 306}, {142, 304}, {155, 293}, {148, 299}, {153, 294}, {144, 321}, {147, 322}, {144, 322}, {155, 321} }>;

(II) A more general form is to represent the graph as the orbit of {162, 164} under the group generated by the following permutations:

a: (1, 2, 13, 66, 34, 33)(3, 23, 68, 54, 53, 78)(4, 14, 71, 63, 5, 6)(7, 19, 29, 72, 122, 11)(8, 38, 24, 73, 31, 9)(10, 48, 99, 101, 51, 52)(12, 64, 89, 112, 136, 79)(15, 67, 61, 35, 16, 17)(18, 25, 76, 121, 55, 21)(20, 88, 109, 123, 44, 30)(22, 94, 104, 124, 143, 26)(27, 90, 159, 144, 113, 114)(28, 108, 117, 40, 41, 39)(32, 42, 49, 70, 110, 36)(37, 127, 111, 74, 151, 130)(43, 59, 100, 153, 56, 50)(45, 65, 91, 154, 148, 46)(47, 133, 147, 155, 139, 60)(57, 128, 134, 102, 156, 119)(58, 146, 150, 142, 137, 80)(62, 82, 83, 81, 75, 149)(69, 103, 125, 120, 84, 77)(85, 95, 152, 145, 141, 86)(87, 107, 160, 162, 115, 92)(93, 97, 98, 96, 118, 105)(106, 131, 129, 157, 126, 132)(116, 138, 158, 161, 140, 135)(163, 191, 263, 261, 256, 303)(164, 230, 243, 324, 309, 264)(165, 286, 301, 274, 238, 299)(166, 270, 296, 291, 170, 244)(167, 245, 236, 180, 187, 220)(168, 260, 224, 252, 267, 227)(169, 275, 210, 221, 195, 319)(171, 235, 213, 321, 172, 282)(173, 295, 276, 308, 205, 259)(174, 222, 185, 242, 228, 262)(175, 257, 323, 289, 314, 234)(176, 207, 212, 190, 181, 305)(177, 201, 272, 278, 248, 258)(178, 233, 199, 316, 211, 304)(179, 193, 226, 231, 208, 266)(182, 281, 320, 273, 200, 203)(183, 280, 300, 268, 246, 250)(184, 307, 251, 240, 253, 317)(186, 312, 189, 315, 214, 202)(188, 279, 269, 302, 197, 298)(192, 229, 294, 297, 290, 310)(194, 223, 265, 218, 318, 198)(196, 217, 237, 313, 206, 322)(204, 249, 219, 293, 216, 285)(209, 255, 215, 271, 232, 239)(225, 254, 277, 288, 306, 292)(241, 247, 311, 284, 287, 283)
b: (2, 38)(3, 4)(5, 33)(6, 21)(7, 78)(8, 16)(9, 11)(10, 12)(13, 14)(15, 70)(17, 59)(18, 49)(19, 48)(20, 97)(22, 39)(23, 88)(24, 29)(25, 28)(26, 30)(31, 34)(32, 35)(36, 121)(37, 120)(40, 55)(41, 86)(42, 84)(43, 82)(44, 53)(45, 93)(46, 52)(47, 80)(50, 79)(51, 122)(54, 63)(56, 61)(57, 62)(58, 65)(64, 133)(67, 73)(68, 72)(69, 74)(71, 76)(75, 153)(77, 134)(81, 102)(83, 138)(85, 111)(87, 131)(89, 100)(90, 94)(91, 99)(92, 114)(95, 129)(96, 154)(98, 107)(101, 112)(103, 110)(104, 109)(105, 115)(106, 116)(108, 152)(113, 143)(117, 124)(118, 123)(119, 125)(126, 162)(127, 128)(130, 145)(132, 141)(135, 137)(136, 139)(140, 149)(142, 148)(146, 158)(150, 155)(151, 156)(157, 161)(159, 160)(163, 252)(164, 229)(165, 227)(166, 318)(167, 319)(168, 261)(169, 307)(170, 234)(171, 233)(172, 240)(173, 201)(174, 259)(175, 289)(176, 295)(177, 203)(178, 315)(179, 196)(180, 210)(181, 303)(182, 245)(183, 226)(184, 235)(185, 265)(186, 316)(187, 273)(188, 218)(189, 283)(190, 205)(191, 271)(192, 312)(193, 299)(194, 302)(195, 247)(197, 309)(198, 262)(199, 254)(200, 260)(202, 311)(204, 272)(206, 264)(207, 263)(208, 301)(209, 256)(211, 321)(212, 305)(213, 219)(214, 297)(215, 228)(216, 296)(217, 243)(220, 251)(221, 253)(222, 239)(223, 291)(224, 274)(225, 269)(230, 279)(231, 313)(232, 237)(236, 317)(238, 284)(241, 286)(242, 276)(244, 249)(246, 310)(248, 308)(250, 300)(255, 322)(257, 277)(258, 293)(266, 268)(267, 281)(270, 323)(275, 287)(278, 320)(280, 294)(282, 285)(288, 298)(290, 324)(292, 314)(304, 306)
c: (2, 33)(3, 11)(4, 9)(5, 38)(6, 8)(7, 78)(10, 30)(12, 26)(13, 34)(14, 31)(15, 121)(16, 21)(17, 55)(18, 35)(19, 53)(20, 52)(22, 79)(23, 122)(24, 63)(25, 61)(27, 60)(28, 56)(29, 54)(32, 49)(36, 70)(37, 134)(39, 50)(40, 59)(41, 43)(44, 48)(45, 93)(46, 97)(47, 114)(51, 88)(57, 111)(58, 115)(62, 85)(64, 143)(65, 105)(67, 76)(68, 72)(69, 125)(71, 73)(74, 119)(75, 152)(77, 120)(80, 92)(81, 145)(82, 86)(83, 141)(87, 137)(89, 124)(90, 139)(91, 118)(94, 136)(95, 149)(96, 154)(98, 148)(99, 123)(100, 117)(101, 109)(102, 130)(104, 112)(106, 116)(107, 142)(108, 153)(113, 133)(126, 158)(127, 128)(129, 140)(131, 135)(132, 138)(144, 147)(146, 162)(150, 160)(151, 156)(155, 159)(157, 161)(163, 208)(164, 242)(165, 227)(166, 288)(167, 319)(168, 299)(169, 220)(170, 292)(171, 282)(172, 235)(173, 297)(174, 324)(175, 289)(176, 280)(177, 202)(178, 204)(179, 256)(180, 210)(181, 268)(182, 247)(183, 207)(184, 240)(185, 230)(186, 258)(187, 275)(188, 218)(189, 278)(190, 246)(191, 231)(192, 308)(193, 261)(194, 302)(195, 245)(196, 209)(197, 198)(199, 216)(200, 284)(201, 214)(203, 311)(205, 310)(206, 215)(211, 219)(212, 250)(213, 321)(217, 239)(221, 236)(222, 243)(223, 269)(224, 274)(225, 291)(226, 263)(228, 264)(229, 276)(232, 237)(233, 285)(234, 314)(238, 260)(241, 281)(244, 306)(248, 312)(249, 304)(251, 307)(252, 301)(253, 317)(254, 296)(255, 322)(257, 323)(259, 290)(262, 309)(265, 279)(266, 303)(267, 286)(270, 277)(271, 313)(272, 315)(273, 287)(283, 320)(293, 316)(294, 295)(298, 318)(300, 305)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 324, 97 ]
324
-1 211 321 213 219
-2 321 172 293 304
-3 220 323 283 296
-4 189 270 216 251
-5 244 184 186 219
-6 166 312 293 307
-7 275 277 323 273
-8 288 248 316 251
-9 199 277 278 307
-10 168 234 236 197
-11 254 320 169 257
-12 309 170 261 317
-13 178 172 216 282
-14 315 240 285 296
-15 189 245 279 259
-16 220 308 298 186
-17 188 167 312 205
-18 198 275 177 229
-19 210 200 288 289
-20 165 234 194 195
-21 169 192 258 318
-22 225 226 174 317
-23 167 289 291 241
-24 253 177 292 304
-25 210 201 194 294
-26 253 193 292 262
-27 232 233 171 237
-28 180 280 302 173
-29 221 203 314 306
-30 198 221 299 314
-31 254 233 184 272
-32 242 309 311 273
-33 213 235 249 316
-34 199 235 171 204
-35 187 276 202 197
-36 320 247 324 185
-37 231 322 224 261
-38 211 258 240 306
-39 236 269 259 183
-40 308 188 167 246
-41 245 279 205 250
-42 264 200 228 284
-43 265 310 212 195
-44 210 289 238 318
-45 286 223 225 281
-46 165 182 292 194
-47 313 171 204 239
-48 298 180 260 175
-49 287 203 262 164
-50 221 223 290 207
-51 167 267 289 269
-52 245 302 314 227
-53 166 180 284 175
-54 244 234 311 236
-55 319 310 248 218
-56 176 297 210 194
-57 286 266 303 239
-58 199 278 185 208
-59 319 190 192 218
-60 232 237 282 285
-61 180 214 302 295
-62 222 268 181 241
-63 202 170 249 317
-64 264 244 256 184
-65 254 265 320 301
-66 233 171 282 285
-67 236 269 315 173
-68 245 170 247 314
-69 165 232 196 252
-70 182 283 174 230
-71 253 214 291 204
-72 234 182 292 195
-73 178 201 225 317
-74 179 237 227 163
-75 287 212 280 262
-76 297 221 223 272
-77 299 322 224 271
-78 187 287 257 270
-79 253 291 324 263
-80 231 222 233 272
-81 183 228 207 284
-82 246 247 305 185
-83 176 242 311 250
-84 215 238 260 206
-85 243 268 181 281
-86 190 300 182 230
-87 214 324 204 263
-88 286 319 223 175
-89 166 303 164 307
-90 199 235 313 239
-91 277 218 273 274
-92 243 191 315 285
-93 267 269 291 241
-94 231 254 222 184
-95 320 246 324 305
-96 166 298 260 284
-97 170 247 302 227
-98 244 168 311 197
-99 187 188 224 257
-100 169 181 229 318
-101 220 279 323 252
-102 215 226 238 263
-103 286 267 217 239
-104 277 185 208 307
-105 279 283 252 296
-106 176 297 201 294
-107 309 202 249 261
-108 187 300 295 197
-109 265 169 257 301
-110 243 222 281 241
-111 266 267 303 217
-112 270 163 251 230
-113 215 172 304 196
-114 178 271 282 217
-115 189 216 163 230
-116 214 280 173 295
-117 220 276 298 268
-118 188 287 224 270
-119 165 232 256 208
-120 255 168 313 274
-121 265 278 290 195
-122 319 225 281 175
-123 275 323 218 274
-124 242 266 288 251
-125 209 301 237 227
-126 181 192 258 229
-127 256 196 208 252
-128 209 179 301 163
-129 310 212 278 290
-130 226 260 206 263
-131 297 290 272 207
-132 177 294 305 229
-133 209 235 249 206
-134 255 191 193 274
-135 259 183 315 173
-136 243 191 240 296
-137 178 201 226 174
-138 276 300 202 295
-139 172 216 271 217
-140 189 259 205 250
-141 212 203 280 164
-142 177 193 304 262
-143 179 228 240 306
-144 211 255 321 322
-145 264 200 183 207
-146 242 266 248 316
-147 255 322 213 219
-148 198 299 203 306
-149 190 300 283 174
-150 211 179 258 228
-151 168 191 313 193
-152 176 309 250 273
-153 198 275 294 305
-154 200 288 238 318
-155 321 215 293 196
-156 231 299 271 261
-157 310 190 192 248
-158 308 276 268 186
-159 209 213 206 316
-160 264 256 186 219
-161 308 246 312 205
-162 312 303 293 164
-163 112 115 128 74
-164 89 49 162 141
-165 46 69 20 119
-166 89 6 96 53
-167 23 17 40 51
-168 151 10 98 120
-169 11 100 21 109
-170 12 68 63 97
-171 66 34 47 27
-172 2 13 113 139
-173 67 135 28 116
-174 22 70 137 149
-175 88 122 48 53
-176 56 83 106 152
-177 132 24 18 142
-178 13 114 137 73
-179 143 128 150 74
-180 48 28 61 53
-181 100 126 62 85
-182 46 70 72 86
-183 145 135 81 39
-184 5 94 31 64
-185 36 58 82 104
-186 158 5 16 160
-187 99 78 35 108
-188 99 17 40 118
-189 4 15 115 140
-190 157 59 149 86
-191 134 92 136 151
-192 157 59 126 21
-193 134 26 151 142
-194 56 46 25 20
-195 121 72 20 43
-196 155 69 113 127
-197 35 108 10 98
-198 148 18 30 153
-199 34 90 58 9
-200 154 145 19 42
-201 25 137 73 106
-202 35 138 63 107
-203 49 148 29 141
-204 34 47 71 87
-205 17 161 41 140
-206 133 159 84 130
-207 145 81 50 131
-208 58 104 127 119
-209 133 125 159 128
-210 44 56 25 19
-211 1 144 38 150
-212 129 75 141 43
-213 33 1 147 159
-214 71 61 116 87
-215 155 102 113 84
-216 13 4 115 139
-217 111 103 114 139
-218 55 123 91 59
-219 1 147 5 160
-220 101 3 16 117
-221 50 29 30 76
-222 110 80 94 62
-223 88 45 50 76
-224 77 99 37 118
-225 22 45 122 73
-226 22 102 137 130
-227 125 52 74 97
-228 143 81 150 42
-229 132 100 126 18
-230 112 70 115 86
-231 156 80 37 94
-232 69 27 60 119
-233 66 80 27 31
-234 72 20 10 54
-235 33 34 133 90
-236 67 39 10 54
-237 125 27 60 74
-238 44 154 102 84
-239 57 90 47 103
-240 143 14 136 38
-241 110 23 93 62
-242 124 146 83 32
-243 110 92 136 85
-244 5 64 54 98
-245 68 15 41 52
-246 82 40 95 161
-247 68 36 82 97
-248 55 146 157 8
-249 33 133 63 107
-250 83 41 140 152
-251 112 124 4 8
-252 101 69 105 127
-253 24 79 26 71
-254 11 94 31 65
-255 144 134 147 120
-256 127 160 64 119
-257 11 99 78 109
-258 38 126 150 21
-259 135 15 39 140
-260 48 84 96 130
-261 12 156 37 107
-262 26 49 75 142
-263 79 102 130 87
-264 145 160 42 64
-265 121 43 65 109
-266 111 57 124 146
-267 111 103 93 51
-268 158 62 117 85
-269 67 93 39 51
-270 78 112 4 118
-271 77 156 114 139
-272 80 31 76 131
-273 91 7 152 32
-274 123 134 91 120
-275 123 7 18 153
-276 35 158 138 117
-277 91 104 7 9
-278 121 58 129 9
-279 101 15 105 41
-280 28 116 75 141
-281 110 45 122 85
-282 66 13 114 60
-283 3 70 105 149
-284 81 96 42 53
-285 66 14 92 60
-286 88 45 57 103
-287 78 49 118 75
-288 154 124 8 19
-289 44 23 51 19
-290 121 50 129 131
-291 23 79 71 93
-292 24 46 26 72
-293 155 2 6 162
-294 132 25 106 153
-295 61 116 138 108
-296 3 14 136 105
-297 56 106 76 131
-298 48 16 117 96
-299 77 156 148 30
-300 138 149 86 108
-301 125 128 65 109
-302 28 61 52 97
-303 89 111 57 162
-304 2 24 113 142
-305 132 82 95 153
-306 143 38 148 29
-307 89 104 6 9
-308 158 16 40 161
-309 12 107 152 32
-310 55 157 129 43
-311 83 32 54 98
-312 6 17 161 162
-313 90 47 151 120
-314 68 29 30 52
-315 67 14 135 92
-316 33 146 159 8
-317 22 12 73 63
-318 44 154 100 21
-319 55 88 122 59
-320 11 36 95 65
-321 1 144 155 2
-322 77 144 37 147
-323 101 123 3 7
-324 79 36 95 87
0

**************