[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 328, 2 ] =
C_328(1,81).
(I) Following is a form readable by MAGMA:
g:=Graph<328|{ {2, 3}, {326, 327}, {324, 325}, {322, 323}, {320, 321}, {318,
319}, {316, 317}, {314, 315}, {312, 313}, {310, 311}, {308, 309}, {306, 307},
{304, 305}, {302, 303}, {300, 301}, {298, 299}, {296, 297}, {294, 295}, {292,
293}, {290, 291}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280, 281},
{278, 279}, {276, 277}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128,
129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117},
{114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102,
103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89},
{86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {4, 5},
{6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22,
23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38,
39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54,
55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70,
71}, {72, 73}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148,
149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161},
{162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174,
175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187},
{188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200,
201}, {202, 203}, {204, 205}, {206, 207}, {208, 209}, {210, 211}, {212, 213},
{214, 215}, {216, 217}, {218, 219}, {220, 221}, {222, 223}, {224, 225}, {226,
227}, {228, 229}, {230, 231}, {232, 233}, {234, 235}, {236, 237}, {238, 239},
{240, 241}, {242, 243}, {244, 245}, {246, 247}, {248, 249}, {250, 251}, {252,
253}, {254, 255}, {256, 257}, {258, 259}, {260, 261}, {262, 263}, {264, 265},
{266, 267}, {268, 269}, {270, 271}, {272, 273}, {274, 275}, {1, 2}, {325, 326},
{321, 322}, {317, 318}, {313, 314}, {309, 310}, {305, 306}, {301, 302}, {297,
298}, {293, 294}, {289, 290}, {285, 286}, {281, 282}, {277, 278}, {137, 138},
{133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109,
110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82},
{77, 78}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30},
{33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62},
{65, 66}, {69, 70}, {73, 74}, {141, 142}, {145, 146}, {149, 150}, {153, 154},
{157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181,
182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201, 202}, {205, 206},
{209, 210}, {213, 214}, {217, 218}, {221, 222}, {225, 226}, {229, 230}, {233,
234}, {237, 238}, {241, 242}, {245, 246}, {249, 250}, {253, 254}, {257, 258},
{261, 262}, {265, 266}, {269, 270}, {273, 274}, {3, 4}, {323, 324}, {315, 316},
{307, 308}, {299, 300}, {291, 292}, {283, 284}, {275, 276}, {131, 132}, {123,
124}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {11, 12},
{19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {67, 68}, {139,
140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188},
{195, 196}, {203, 204}, {211, 212}, {219, 220}, {227, 228}, {235, 236}, {243,
244}, {251, 252}, {259, 260}, {267, 268}, {7, 8}, {327, 328}, {311, 312}, {295,
296}, {279, 280}, {135, 136}, {119, 120}, {103, 104}, {87, 88}, {23, 24}, {39,
40}, {55, 56}, {71, 72}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {215,
216}, {231, 232}, {247, 248}, {263, 264}, {15, 16}, {303, 304}, {111, 112}, {79,
80}, {47, 48}, {143, 144}, {175, 176}, {207, 208}, {239, 240}, {271, 272}, {31,
32}, {287, 288}, {95, 96}, {159, 160}, {223, 224}, {2, 83}, {136, 217}, {134,
215}, {132, 213}, {130, 211}, {128, 209}, {4, 85}, {6, 87}, {8, 89}, {10, 91},
{12, 93}, {14, 95}, {32, 113}, {34, 115}, {36, 117}, {38, 119}, {40, 121}, {42,
123}, {44, 125}, {46, 127}, {138, 219}, {140, 221}, {142, 223}, {160, 241},
{162, 243}, {164, 245}, {166, 247}, {168, 249}, {170, 251}, {172, 253}, {174,
255}, {1, 82}, {133, 214}, {129, 210}, {5, 86}, {9, 90}, {13, 94}, {33, 114},
{37, 118}, {41, 122}, {45, 126}, {137, 218}, {141, 222}, {161, 242}, {165, 246},
{169, 250}, {173, 254}, {3, 84}, {131, 212}, {11, 92}, {35, 116}, {43, 124},
{139, 220}, {163, 244}, {171, 252}, {7, 88}, {135, 216}, {39, 120}, {167, 248},
{15, 96}, {31, 112}, {143, 224}, {159, 240}, {16, 97}, {18, 99}, {20, 101}, {22,
103}, {24, 105}, {26, 107}, {28, 109}, {30, 111}, {144, 225}, {146, 227}, {148,
229}, {150, 231}, {152, 233}, {154, 235}, {156, 237}, {158, 239}, {17, 98}, {21,
102}, {25, 106}, {29, 110}, {145, 226}, {149, 230}, {153, 234}, {157, 238}, {19,
100}, {27, 108}, {147, 228}, {155, 236}, {23, 104}, {319, 320}, {63, 64}, {151,
232}, {191, 192}, {47, 128}, {127, 208}, {111, 192}, {63, 144}, {48, 129}, {126,
207}, {124, 205}, {122, 203}, {120, 201}, {118, 199}, {116, 197}, {114, 195},
{112, 193}, {50, 131}, {52, 133}, {54, 135}, {56, 137}, {58, 139}, {60, 141},
{62, 143}, {49, 130}, {125, 206}, {121, 202}, {117, 198}, {113, 194}, {53, 134},
{57, 138}, {61, 142}, {51, 132}, {123, 204}, {115, 196}, {59, 140}, {55, 136},
{119, 200}, {64, 145}, {110, 191}, {108, 189}, {106, 187}, {104, 185}, {102,
183}, {100, 181}, {98, 179}, {96, 177}, {78, 159}, {76, 157}, {74, 155}, {66,
147}, {68, 149}, {70, 151}, {72, 153}, {65, 146}, {109, 190}, {105, 186}, {101,
182}, {97, 178}, {77, 158}, {69, 150}, {73, 154}, {67, 148}, {107, 188}, {99,
180}, {75, 156}, {71, 152}, {103, 184}, {79, 160}, {95, 176}, {80, 161}, {94,
175}, {92, 173}, {90, 171}, {88, 169}, {86, 167}, {84, 165}, {82, 163}, {81,
162}, {93, 174}, {89, 170}, {85, 166}, {8, 255}, {91, 172}, {83, 164}, {1, 248},
{3, 250}, {5, 252}, {7, 254}, {2, 249}, {6, 253}, {4, 251}, {127, 128}, {87,
168}, {9, 256}, {79, 326}, {77, 324}, {75, 322}, {73, 320}, {11, 258}, {13,
260}, {15, 262}, {25, 272}, {27, 274}, {29, 276}, {31, 278}, {41, 288}, {43,
290}, {45, 292}, {47, 294}, {57, 304}, {59, 306}, {61, 308}, {63, 310}, {10,
257}, {78, 325}, {74, 321}, {14, 261}, {26, 273}, {30, 277}, {42, 289}, {46,
293}, {58, 305}, {62, 309}, {12, 259}, {76, 323}, {28, 275}, {44, 291}, {60,
307}, {16, 263}, {80, 327}, {24, 271}, {48, 295}, {56, 303}, {17, 264}, {81,
328}, {19, 266}, {21, 268}, {23, 270}, {49, 296}, {51, 298}, {53, 300}, {55,
302}, {18, 265}, {22, 269}, {50, 297}, {54, 301}, {20, 267}, {52, 299}, {32,
279}, {40, 287}, {33, 280}, {35, 282}, {37, 284}, {39, 286}, {34, 281}, {38,
285}, {36, 283}, {1, 328}, {64, 311}, {72, 319}, {65, 312}, {67, 314}, {69,
316}, {71, 318}, {66, 313}, {70, 317}, {68, 315}, {175, 256}, {191, 272}, {239,
320}, {176, 257}, {178, 259}, {180, 261}, {182, 263}, {184, 265}, {186, 267},
{188, 269}, {190, 271}, {240, 321}, {242, 323}, {244, 325}, {246, 327}, {177,
258}, {181, 262}, {185, 266}, {189, 270}, {241, 322}, {245, 326}, {179, 260},
{187, 268}, {243, 324}, {183, 264}, {247, 328}, {192, 273}, {194, 275}, {196,
277}, {198, 279}, {200, 281}, {202, 283}, {204, 285}, {206, 287}, {224, 305},
{226, 307}, {228, 309}, {230, 311}, {232, 313}, {234, 315}, {236, 317}, {238,
319}, {193, 274}, {197, 278}, {201, 282}, {205, 286}, {225, 306}, {229, 310},
{233, 314}, {237, 318}, {195, 276}, {203, 284}, {227, 308}, {235, 316}, {199,
280}, {231, 312}, {207, 288}, {223, 304}, {208, 289}, {210, 291}, {212, 293},
{214, 295}, {216, 297}, {218, 299}, {220, 301}, {222, 303}, {209, 290}, {213,
294}, {217, 298}, {221, 302}, {211, 292}, {219, 300}, {215, 296}, {255, 256}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308,
309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,
325, 326, 327, 328) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 82)(3, 163)(4, 244)(5, 325)(6, 78)(7, 159)(8, 240)(9, 321)(10, 74)(11,
155)(12, 236)(13, 317)(14, 70)(15, 151)(16, 232)(17, 313)(18, 66)(19, 147)(20,
228)(21, 309)(22, 62)(23, 143)(24, 224)(25, 305)(26, 58)(27, 139)(28, 220)(29,
301)(30, 54)(31, 135)(32, 216)(33, 297)(34, 50)(35, 131)(36, 212)(37, 293)(38,
46)(39, 127)(40, 208)(41, 289)(43, 123)(44, 204)(45, 285)(47, 119)(48, 200)(49,
281)(51, 115)(52, 196)(53, 277)(55, 111)(56, 192)(57, 273)(59, 107)(60, 188)(61,
269)(63, 103)(64, 184)(65, 265)(67, 99)(68, 180)(69, 261)(71, 95)(72, 176)(73,
257)(75, 91)(76, 172)(77, 253)(79, 87)(80, 168)(81, 249)(84, 164)(85, 245)(86,
326)(88, 160)(89, 241)(90, 322)(92, 156)(93, 237)(94, 318)(96, 152)(97, 233)(98,
314)(100, 148)(101, 229)(102, 310)(104, 144)(105, 225)(106, 306)(108, 140)(109,
221)(110, 302)(112, 136)(113, 217)(114, 298)(116, 132)(117, 213)(118, 294)(120,
128)(121, 209)(122, 290)(125, 205)(126, 286)(129, 201)(130, 282)(133, 197)(134,
278)(137, 193)(138, 274)(141, 189)(142, 270)(145, 185)(146, 266)(149, 181)(150,
262)(153, 177)(154, 258)(157, 173)(158, 254)(161, 169)(162, 250)(166, 246)(167,
327)(170, 242)(171, 323)(174, 238)(175, 319)(178, 234)(179, 315)(182, 230)(183,
311)(186, 226)(187, 307)(190, 222)(191, 303)(194, 218)(195, 299)(198, 214)(199,
295)(202, 210)(203, 291)(207, 287)(211, 283)(215, 279)(219, 275)(223, 271)(227,
267)(231, 263)(235, 259)(239, 255)(243, 251)(248, 328)(252, 324)(256, 320)(260,
316)(264, 312)(268, 308)(272, 304)(276, 300)(280, 296)(284, 292)
c: (2, 248)(3, 167)(4, 86)(6, 252)(7, 171)(8, 90)(10, 256)(11, 175)(12, 94)(14,
260)(15, 179)(16, 98)(18, 264)(19, 183)(20, 102)(22, 268)(23, 187)(24, 106)(26,
272)(27, 191)(28, 110)(30, 276)(31, 195)(32, 114)(34, 280)(35, 199)(36, 118)(38,
284)(39, 203)(40, 122)(42, 288)(43, 207)(44, 126)(46, 292)(47, 211)(48, 130)(50,
296)(51, 215)(52, 134)(54, 300)(55, 219)(56, 138)(58, 304)(59, 223)(60, 142)(62,
308)(63, 227)(64, 146)(66, 312)(67, 231)(68, 150)(70, 316)(71, 235)(72, 154)(74,
320)(75, 239)(76, 158)(78, 324)(79, 243)(80, 162)(82, 328)(83, 247)(84, 166)(87,
251)(88, 170)(91, 255)(92, 174)(95, 259)(96, 178)(99, 263)(100, 182)(103,
267)(104, 186)(107, 271)(108, 190)(111, 275)(112, 194)(115, 279)(116, 198)(119,
283)(120, 202)(123, 287)(124, 206)(127, 291)(128, 210)(131, 295)(132, 214)(135,
299)(136, 218)(139, 303)(140, 222)(143, 307)(144, 226)(147, 311)(148, 230)(151,
315)(152, 234)(155, 319)(156, 238)(159, 323)(160, 242)(163, 327)(164, 246)(168,
250)(172, 254)(176, 258)(180, 262)(184, 266)(188, 270)(192, 274)(196, 278)(200,
282)(204, 286)(208, 290)(212, 294)(216, 298)(220, 302)(224, 306)(228, 310)(232,
314)(236, 318)(240, 322)(244, 326)
C4[ 328, 2 ]
328
-1 2 82 248 328
-2 1 3 83 249
-3 2 4 84 250
-4 3 5 85 251
-5 4 6 86 252
-6 253 5 7 87
-7 88 254 6 8
-8 89 255 7 9
-9 90 256 8 10
-10 11 91 257 9
-11 12 92 258 10
-12 11 13 93 259
-13 12 14 94 260
-14 13 15 95 261
-15 14 16 96 262
-16 15 17 97 263
-17 264 16 18 98
-18 99 265 17 19
-19 100 266 18 20
-20 101 267 19 21
-21 22 102 268 20
-22 23 103 269 21
-23 22 24 104 270
-24 23 25 105 271
-25 24 26 106 272
-26 25 27 107 273
-27 26 28 108 274
-28 275 27 29 109
-29 110 276 28 30
-30 111 277 29 31
-31 112 278 30 32
-32 33 113 279 31
-33 34 114 280 32
-34 33 35 115 281
-35 34 36 116 282
-36 35 37 117 283
-37 36 38 118 284
-38 37 39 119 285
-39 286 38 40 120
-40 121 287 39 41
-41 122 288 40 42
-42 123 289 41 43
-43 44 124 290 42
-44 45 125 291 43
-45 44 46 126 292
-46 45 47 127 293
-47 46 48 128 294
-48 47 49 129 295
-49 48 50 130 296
-50 297 49 51 131
-51 132 298 50 52
-52 133 299 51 53
-53 134 300 52 54
-54 55 135 301 53
-55 56 136 302 54
-56 55 57 137 303
-57 56 58 138 304
-58 57 59 139 305
-59 58 60 140 306
-60 59 61 141 307
-61 308 60 62 142
-62 143 309 61 63
-63 144 310 62 64
-64 145 311 63 65
-65 66 146 312 64
-66 67 147 313 65
-67 66 68 148 314
-68 67 69 149 315
-69 68 70 150 316
-70 69 71 151 317
-71 70 72 152 318
-72 319 71 73 153
-73 154 320 72 74
-74 155 321 73 75
-75 156 322 74 76
-76 77 157 323 75
-77 78 158 324 76
-78 77 79 159 325
-79 78 80 160 326
-80 79 81 161 327
-81 80 82 162 328
-82 1 81 83 163
-83 2 82 84 164
-84 165 3 83 85
-85 166 4 84 86
-86 167 5 85 87
-87 88 168 6 86
-88 89 169 7 87
-89 88 90 170 8
-90 89 91 171 9
-91 90 92 172 10
-92 11 91 93 173
-93 12 92 94 174
-94 13 93 95 175
-95 176 14 94 96
-96 177 15 95 97
-97 178 16 96 98
-98 99 179 17 97
-99 100 180 18 98
-100 99 101 181 19
-101 100 102 182 20
-102 101 103 183 21
-103 22 102 104 184
-104 23 103 105 185
-105 24 104 106 186
-106 187 25 105 107
-107 188 26 106 108
-108 189 27 107 109
-109 110 190 28 108
-110 111 191 29 109
-111 110 112 192 30
-112 111 113 193 31
-113 112 114 194 32
-114 33 113 115 195
-115 34 114 116 196
-116 35 115 117 197
-117 198 36 116 118
-118 199 37 117 119
-119 200 38 118 120
-120 121 201 39 119
-121 122 202 40 120
-122 121 123 203 41
-123 122 124 204 42
-124 123 125 205 43
-125 44 124 126 206
-126 45 125 127 207
-127 46 126 128 208
-128 209 47 127 129
-129 210 48 128 130
-130 211 49 129 131
-131 132 212 50 130
-132 133 213 51 131
-133 132 134 214 52
-134 133 135 215 53
-135 134 136 216 54
-136 55 135 137 217
-137 56 136 138 218
-138 57 137 139 219
-139 220 58 138 140
-140 221 59 139 141
-141 222 60 140 142
-142 143 223 61 141
-143 144 224 62 142
-144 143 145 225 63
-145 144 146 226 64
-146 145 147 227 65
-147 66 146 148 228
-148 67 147 149 229
-149 68 148 150 230
-150 231 69 149 151
-151 232 70 150 152
-152 233 71 151 153
-153 154 234 72 152
-154 155 235 73 153
-155 154 156 236 74
-156 155 157 237 75
-157 156 158 238 76
-158 77 157 159 239
-159 78 158 160 240
-160 79 159 161 241
-161 242 80 160 162
-162 243 81 161 163
-163 244 82 162 164
-164 165 245 83 163
-165 166 246 84 164
-166 165 167 247 85
-167 166 168 248 86
-168 167 169 249 87
-169 88 168 170 250
-170 89 169 171 251
-171 90 170 172 252
-172 253 91 171 173
-173 254 92 172 174
-174 255 93 173 175
-175 176 256 94 174
-176 177 257 95 175
-177 176 178 258 96
-178 177 179 259 97
-179 178 180 260 98
-180 99 179 181 261
-181 100 180 182 262
-182 101 181 183 263
-183 264 102 182 184
-184 265 103 183 185
-185 266 104 184 186
-186 187 267 105 185
-187 188 268 106 186
-188 187 189 269 107
-189 188 190 270 108
-190 189 191 271 109
-191 110 190 192 272
-192 111 191 193 273
-193 112 192 194 274
-194 275 113 193 195
-195 276 114 194 196
-196 277 115 195 197
-197 198 278 116 196
-198 199 279 117 197
-199 198 200 280 118
-200 199 201 281 119
-201 200 202 282 120
-202 121 201 203 283
-203 122 202 204 284
-204 123 203 205 285
-205 286 124 204 206
-206 287 125 205 207
-207 288 126 206 208
-208 209 289 127 207
-209 210 290 128 208
-210 209 211 291 129
-211 210 212 292 130
-212 211 213 293 131
-213 132 212 214 294
-214 133 213 215 295
-215 134 214 216 296
-216 297 135 215 217
-217 298 136 216 218
-218 299 137 217 219
-219 220 300 138 218
-220 221 301 139 219
-221 220 222 302 140
-222 221 223 303 141
-223 222 224 304 142
-224 143 223 225 305
-225 144 224 226 306
-226 145 225 227 307
-227 308 146 226 228
-228 309 147 227 229
-229 310 148 228 230
-230 231 311 149 229
-231 232 312 150 230
-232 231 233 313 151
-233 232 234 314 152
-234 233 235 315 153
-235 154 234 236 316
-236 155 235 237 317
-237 156 236 238 318
-238 319 157 237 239
-239 320 158 238 240
-240 321 159 239 241
-241 242 322 160 240
-242 243 323 161 241
-243 242 244 324 162
-244 243 245 325 163
-245 244 246 326 164
-246 165 245 247 327
-247 166 246 248 328
-248 1 167 247 249
-249 2 168 248 250
-250 3 169 249 251
-251 4 170 250 252
-252 253 5 171 251
-253 254 6 172 252
-254 253 255 7 173
-255 254 256 8 174
-256 255 257 9 175
-257 176 256 258 10
-258 11 177 257 259
-259 12 178 258 260
-260 13 179 259 261
-261 14 180 260 262
-262 15 181 261 263
-263 264 16 182 262
-264 265 17 183 263
-265 264 266 18 184
-266 265 267 19 185
-267 266 268 20 186
-268 187 267 269 21
-269 22 188 268 270
-270 23 189 269 271
-271 24 190 270 272
-272 25 191 271 273
-273 26 192 272 274
-274 275 27 193 273
-275 276 28 194 274
-276 275 277 29 195
-277 276 278 30 196
-278 277 279 31 197
-279 198 278 280 32
-280 33 199 279 281
-281 34 200 280 282
-282 35 201 281 283
-283 36 202 282 284
-284 37 203 283 285
-285 286 38 204 284
-286 287 39 205 285
-287 286 288 40 206
-288 287 289 41 207
-289 288 290 42 208
-290 209 289 291 43
-291 44 210 290 292
-292 45 211 291 293
-293 46 212 292 294
-294 47 213 293 295
-295 48 214 294 296
-296 297 49 215 295
-297 298 50 216 296
-298 297 299 51 217
-299 298 300 52 218
-300 299 301 53 219
-301 220 300 302 54
-302 55 221 301 303
-303 56 222 302 304
-304 57 223 303 305
-305 58 224 304 306
-306 59 225 305 307
-307 308 60 226 306
-308 309 61 227 307
-309 308 310 62 228
-310 309 311 63 229
-311 310 312 64 230
-312 231 311 313 65
-313 66 232 312 314
-314 67 233 313 315
-315 68 234 314 316
-316 69 235 315 317
-317 70 236 316 318
-318 319 71 237 317
-319 320 72 238 318
-320 319 321 73 239
-321 320 322 74 240
-322 321 323 75 241
-323 242 322 324 76
-324 77 243 323 325
-325 78 244 324 326
-326 79 245 325 327
-327 80 246 326 328
-328 1 81 247 327
0