[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 336, 21 ]. See Glossary for some
detail.
PS( 12, 56; 5) = PS( 12, 56; 11) = PS( 12, 56; 17)
= PS( 12, 56; 23) = MSZ ( 12, 28, 5, 11) = MSZ ( 24, 14, 5, 3)
= MSZ ( 24, 14, 7, 3) = UG(ATD[336, 17]) = UG(ATD[336, 18])
= MG(Cmap(336, 45) { 12, 24| 6}_ 56) = MG(Cmap(336, 50) { 12, 24| 6}_ 56) =
HT[336, 9]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 23 | 0 | - | - | - | - | - | - | - | - | - | 0 | - | - |
2 | 0 | - | - | 1 | - | 1 | 1 | - | - | - | - | - | - | - |
3 | - | - | - | 0 | - | - | 22 | - | - | - | 0 | 2 | - | - |
4 | - | 23 | 0 | - | - | - | 9 | - | - | 11 | - | - | - | - |
5 | - | - | - | - | - | - | 12 | 0 | - | 0 | - | - | 0 | - |
6 | - | 23 | - | - | - | - | - | - | - | - | - | 15 | 1 15 | - |
7 | - | 23 | 2 | 15 | 12 | - | - | - | - | - | - | - | - | - |
8 | - | - | - | - | 0 | - | - | 1 23 | 13 | - | - | - | - | - |
9 | - | - | - | - | - | - | - | 11 | - | - | 11 | - | 3 | 1 |
10 | - | - | - | 13 | 0 | - | - | - | - | - | 21 | - | - | 9 |
11 | - | - | 0 | - | - | - | - | - | 13 | 3 | - | - | - | 23 |
12 | 0 | - | 22 | - | - | 9 | - | - | - | - | - | - | - | 11 |
13 | - | - | - | - | 0 | 9 23 | - | - | 21 | - | - | - | - | - |
14 | - | - | - | - | - | - | - | - | 23 | 15 | 1 | 13 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | - | - | - | - | - | - | 0 | 0 |
2 | - | - | 0 | 22 | - | - | - | - | - | - | 2 | 20 |
3 | 0 | 0 | - | - | 0 | 0 | - | - | - | - | - | - |
4 | 0 | 6 | - | - | 16 | 18 | - | - | - | - | - | - |
5 | - | - | 0 | 12 | - | - | 6 | 6 | - | - | - | - |
6 | - | - | 0 | 10 | - | - | 10 | 0 | - | - | - | - |
7 | - | - | - | - | 22 | 18 | - | - | 20 | 20 | - | - |
8 | - | - | - | - | 22 | 0 | - | - | 0 | 22 | - | - |
9 | - | - | - | - | - | - | 8 | 0 | - | - | 7 | 1 |
10 | - | - | - | - | - | - | 8 | 6 | - | - | 23 | 19 |
11 | 0 | 26 | - | - | - | - | - | - | 21 | 5 | - | - |
12 | 0 | 8 | - | - | - | - | - | - | 27 | 9 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | - | - | 0 | - | - | 0 | 0 |
2 | - | - | - | - | 0 | 0 | - | - | - | 0 | 12 | - |
3 | - | - | - | - | - | 0 | 0 | - | 0 | 12 | - | - |
4 | - | - | - | - | - | - | 0 | 4 | 12 | - | - | 20 |
5 | 0 | 0 | - | - | - | - | - | - | - | - | 21 | 1 |
6 | - | 0 | 0 | - | - | - | - | - | 25 | - | - | 25 |
7 | - | - | 0 | 0 | - | - | - | - | 21 | 13 | - | - |
8 | 0 | - | - | 24 | - | - | - | - | - | 5 | 25 | - |
9 | - | - | 0 | 16 | - | 3 | 7 | - | - | - | - | - |
10 | - | 0 | 16 | - | - | - | 15 | 23 | - | - | - | - |
11 | 0 | 16 | - | - | 7 | - | - | 3 | - | - | - | - |
12 | 0 | - | - | 8 | 27 | 3 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | - | - | - | - | - | - | - | - | 0 11 |
2 | 0 27 | - | 0 5 | - | - | - | - | - | - | - | - | - |
3 | - | 0 23 | - | 22 25 | - | - | - | - | - | - | - | - |
4 | - | - | 3 6 | - | 1 16 | - | - | - | - | - | - | - |
5 | - | - | - | 12 27 | - | 2 21 | - | - | - | - | - | - |
6 | - | - | - | - | 7 26 | - | 7 24 | - | - | - | - | - |
7 | - | - | - | - | - | 4 21 | - | 22 23 | - | - | - | - |
8 | - | - | - | - | - | - | 5 6 | - | 0 5 | - | - | - |
9 | - | - | - | - | - | - | - | 0 23 | - | 22 25 | - | - |
10 | - | - | - | - | - | - | - | - | 3 6 | - | 1 16 | - |
11 | - | - | - | - | - | - | - | - | - | 12 27 | - | 3 22 |
12 | 0 17 | - | - | - | - | - | - | - | - | - | 6 25 | - |