C4graphConstructions for C4[ 336, 44 ] = PL(MC3(14,12,1,7,5,0,1),[4^42,14^12])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 336, 44 ]. See Glossary for some detail.

PL(MC3( 14, 12, 1, 7, 5, 0, 1), [4^42, 14^12]) = PL(Curtain_ 42( 1, 13, 29, 41, 42), [4^42, 14^12]) = PL(BC_84({ 0, 42 }, { 1, 13 })

      = PL(ATD[ 6, 1]#DCyc[ 14]) = PL(ATD[ 6, 1]#ATD[ 42, 5]) = PL(ATD[ 12, 5]#DCyc[ 7])

      = PL(ATD[ 12, 5]#DCyc[ 14]) = PL(ATD[ 12, 5]#ATD[ 21, 3]) = PL(ATD[ 12, 5]#ATD[ 42, 5])

      = PL(ATD[ 21, 3]#DCyc[ 4]) = PL(ATD[ 42, 5]#DCyc[ 4]) = XI(Rmap(168, 46) { 6, 28| 4}_ 42)

      = PL(CSI(Octahedron[ 4^ 3], 14)) = PL(CSI(W( 6, 2)[ 4^ 6], 7)) = PL(CSI(W( 6, 2)[ 4^ 6], 14))

      = BGCG(W( 6, 2), C_ 14, {1, 1', 2', 3', 4', 5'}) = PL(CSI(C_ 21(1, 8)[ 14^ 3], 4)) = PL(CS(C_ 42(1, 13)[ 14^ 6], 0))

      = PL(CSI(C_ 42(1, 13)[ 14^ 6], 4)) = BGCG(C_ 42(1, 13), C_ 4, {1', 2, 2'}) = BGCG(KE_42(1,17,14,3,13); K1;1)

     

Cyclic coverings

mod 84:
1234
1 - - 0 1 0 43
2 - - 1 72 43 72
3 0 83 12 83 - -
4 0 41 12 41 - -