C4graphGraph forms for C4 [ 336, 47 ] = PL(Curtain_42(1,9,1,14,23),[4^42,28^6])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 47 ] = PL(Curtain_42(1,9,1,14,23),[4^42,28^6]).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {163, 172}, {162, 182}, {142, 173}, {156, 185}, {149, 179}, {159, 185}, {150, 176}, {141, 170}, {159, 182}, {128, 173}, {142, 181}, {145, 209}, {141, 204}, {145, 211}, {138, 206}, {162, 230}, {137, 206}, {139, 195}, {150, 223}, {155, 209}, {155, 208}, {134, 202}, {138, 198}, {151, 217}, {156, 210}, {165, 234}, {132, 213}, {154, 203}, {128, 212}, {168, 252}, {160, 244}, {148, 194}, {153, 207}, {153, 206}, {164, 243}, {131, 219}, {158, 199}, {132, 222}, {130, 217}, {167, 252}, {135, 219}, {166, 251}, {163, 253}, {142, 238}, {144, 240}, {157, 252}, {150, 244}, {153, 251}, {132, 231}, {133, 230}, {137, 234}, {146, 244}, {155, 253}, {149, 243}, {166, 207}, {161, 203}, {138, 225}, {165, 206}, {143, 228}, {128, 238}, {129, 238}, {135, 247}, {140, 252}, {147, 227}, {162, 208}, {163, 208}, {166, 210}, {167, 211}, {149, 224}, {167, 210}, {165, 211}, {145, 233}, {168, 208}, {156, 229}, {159, 229}, {168, 210}, {136, 243}, {137, 247}, {152, 230}, {135, 248}, {65, 192}, {93, 220}, {99, 226}, {64, 194}, {63, 188}, {94, 221}, {63, 187}, {99, 231}, {126, 250}, {96, 229}, {111, 233}, {117, 243}, {35, 171}, {79, 199}, {78, 198}, {92, 213}, {48, 186}, {50, 184}, {50, 185}, {82, 217}, {113, 250}, {38, 170}, {56, 180}, {80, 221}, {92, 209}, {103, 234}, {127, 242}, {89, 215}, {124, 242}, {55, 184}, {83, 220}, {107, 228}, {114, 253}, {85, 196}, {90, 203}, {56, 171}, {86, 195}, {72, 222}, {76, 218}, {100, 242}, {118, 224}, {119, 225}, {67, 212}, {111, 248}, {120, 239}, {35, 187}, {41, 177}, {115, 234}, {118, 239}, {109, 247}, {70, 221}, {84, 207}, {81, 202}, {110, 245}, {67, 223}, {68, 216}, {119, 235}, {122, 230}, {48, 173}, {73, 212}, {125, 227}, {9, 169}, {106, 202}, {127, 222}, {28, 190}, {69, 231}, {98, 192}, {17, 178}, {90, 254}, {104, 204}, {113, 213}, {27, 190}, {23, 177}, {81, 247}, {80, 246}, {68, 226}, {94, 248}, {27, 188}, {1, 169}, {87, 255}, {81, 249}, {80, 248}, {73, 225}, {72, 224}, {6, 174}, {74, 227}, {118, 223}, {87, 253}, {91, 241}, {2, 174}, {3, 174}, {4, 169}, {123, 214}, {1, 174}, {78, 225}, {28, 179}, {16, 191}, {66, 242}, {84, 228}, {102, 214}, {119, 199}, {3, 178}, {95, 238}, {14, 188}, {68, 246}, {15, 189}, {9, 186}, {67, 240}, {112, 195}, {10, 190}, {92, 232}, {15, 186}, {105, 220}, {99, 213}, {108, 218}, {109, 219}, {116, 194}, {5, 178}, {78, 249}, {71, 240}, {10, 189}, {7, 191}, {77, 245}, {73, 241}, {8, 177}, {8, 178}, {97, 219}, {5, 190}, {18, 169}, {23, 171}, {88, 228}, {111, 211}, {2, 191}, {72, 245}, {1, 191}, {20, 170}, {2, 189}, {75, 244}, {14, 177}, {101, 218}, {121, 198}, {5, 197}, {54, 246}, {24, 216}, {23, 214}, {45, 236}, {122, 187}, {29, 223}, {104, 170}, {11, 200}, {53, 241}, {9, 204}, {12, 201}, {117, 176}, {3, 197}, {60, 250}, {17, 215}, {117, 179}, {125, 187}, {4, 205}, {30, 215}, {14, 196}, {52, 254}, {10, 193}, {1, 205}, {13, 193}, {8, 196}, {4, 200}, {122, 182}, {15, 194}, {52, 249}, {42, 231}, {33, 239}, {55, 249}, {49, 255}, {6, 201}, {61, 237}, {127, 175}, {125, 172}, {126, 175}, {26, 200}, {61, 239}, {59, 233}, {126, 172}, {40, 251}, {19, 197}, {31, 199}, {49, 233}, {45, 245}, {20, 205}, {109, 180}, {27, 192}, {21, 201}, {63, 227}, {38, 250}, {105, 181}, {28, 193}, {61, 224}, {113, 172}, {18, 204}, {54, 232}, {105, 183}, {41, 246}, {58, 229}, {46, 241}, {11, 235}, {37, 197}, {32, 192}, {12, 236}, {12, 237}, {88, 185}, {86, 183}, {84, 181}, {56, 217}, {46, 207}, {31, 254}, {34, 198}, {82, 182}, {51, 215}, {44, 200}, {57, 220}, {93, 184}, {11, 237}, {82, 180}, {75, 173}, {54, 209}, {50, 218}, {4, 237}, {6, 236}, {93, 183}, {38, 205}, {47, 196}, {18, 254}, {86, 186}, {22, 251}, {90, 183}, {88, 181}, {66, 175}, {29, 240}, {39, 201}, {65, 175}, {64, 176}, {25, 232}, {66, 179}, {41, 216}, {30, 236}, {17, 226}, {48, 195}, {45, 222}, {31, 235}, {76, 184}, {35, 214}, {94, 171}, {29, 235}, {43, 221}, {76, 180}, {6, 255}, {46, 212}, {75, 176}, {3, 255}, {36, 216}, {30, 226}, {20, 232}, {55, 202}, {65, 188}, {64, 189}, {52, 203}, {62, 193}, {71, 327}, {15, 270}, {44, 301}, {58, 312}, {10, 271}, {58, 319}, {47, 297}, {9, 270}, {61, 314}, {57, 318}, {39, 288}, {37, 290}, {25, 286}, {69, 333}, {22, 287}, {62, 308}, {8, 259}, {77, 326}, {60, 311}, {36, 303}, {27, 272}, {19, 280}, {16, 283}, {42, 294}, {78, 322}, {2, 271}, {74, 327}, {40, 295}, {70, 329}, {44, 291}, {33, 305}, {53, 293}, {40, 312}, {80, 321}, {17, 259}, {26, 264}, {13, 281}, {51, 295}, {45, 313}, {5, 272}, {81, 324}, {22, 256}, {34, 308}, {25, 271}, {24, 270}, {23, 256}, {91, 332}, {57, 302}, {16, 264}, {83, 331}, {37, 316}, {87, 334}, {43, 306}, {62, 292}, {91, 321}, {39, 316}, {7, 283}, {14, 274}, {51, 302}, {58, 295}, {7, 281}, {28, 258}, {21, 267}, {42, 309}, {59, 292}, {60, 284}, {36, 261}, {106, 331}, {34, 256}, {21, 305}, {43, 271}, {42, 270}, {116, 336}, {26, 319}, {96, 326}, {25, 318}, {30, 313}, {37, 269}, {110, 326}, {13, 292}, {41, 256}, {100, 333}, {20, 318}, {62, 276}, {49, 283}, {39, 269}, {33, 267}, {29, 311}, {107, 321}, {44, 263}, {59, 272}, {100, 328}, {102, 330}, {110, 322}, {111, 323}, {63, 274}, {101, 328}, {57, 279}, {16, 319}, {47, 287}, {112, 320}, {19, 290}, {53, 260}, {35, 273}, {120, 330}, {124, 328}, {21, 288}, {43, 286}, {12, 314}, {24, 303}, {46, 281}, {32, 280}, {104, 336}, {26, 291}, {51, 266}, {48, 265}, {50, 264}, {11, 311}, {56, 260}, {55, 267}, {114, 334}, {120, 324}, {32, 285}, {34, 287}, {24, 294}, {123, 325}, {65, 257}, {71, 263}, {66, 258}, {13, 335}, {75, 265}, {106, 296}, {102, 293}, {70, 258}, {107, 303}, {64, 261}, {97, 292}, {100, 289}, {103, 290}, {108, 298}, {110, 296}, {77, 266}, {7, 335}, {95, 279}, {114, 314}, {120, 304}, {124, 308}, {85, 287}, {102, 300}, {121, 307}, {76, 263}, {79, 260}, {96, 299}, {87, 283}, {84, 281}, {121, 308}, {115, 317}, {88, 264}, {90, 266}, {89, 265}, {97, 304}, {114, 291}, {31, 333}, {79, 284}, {101, 305}, {127, 299}, {83, 262}, {98, 311}, {93, 267}, {112, 294}, {107, 316}, {22, 335}, {108, 309}, {94, 260}, {103, 317}, {67, 280}, {99, 312}, {113, 298}, {85, 265}, {86, 266}, {73, 276}, {108, 305}, {82, 268}, {123, 293}, {18, 333}, {19, 332}, {96, 319}, {118, 297}, {36, 325}, {95, 318}, {115, 274}, {74, 297}, {85, 310}, {77, 302}, {119, 276}, {69, 289}, {72, 300}, {101, 257}, {103, 259}, {105, 269}, {112, 278}, {40, 335}, {47, 327}, {121, 273}, {124, 276}, {95, 310}, {71, 301}, {79, 293}, {109, 263}, {116, 286}, {33, 330}, {122, 273}, {32, 332}, {106, 262}, {38, 331}, {115, 285}, {116, 282}, {89, 310}, {69, 309}, {117, 261}, {49, 320}, {97, 272}, {104, 282}, {70, 306}, {91, 303}, {52, 322}, {92, 298}, {54, 321}, {60, 331}, {53, 332}, {74, 307}, {59, 320}, {125, 262}, {68, 312}, {83, 302}, {89, 295}, {98, 284}, {123, 261}, {98, 285}, {126, 257}, {161, 289}, {141, 268}, {148, 277}, {131, 257}, {158, 284}, {142, 269}, {146, 278}, {145, 279}, {156, 282}, {154, 275}, {148, 286}, {153, 277}, {155, 279}, {140, 259}, {160, 304}, {158, 268}, {161, 307}, {159, 268}, {134, 274}, {151, 258}, {128, 280}, {139, 275}, {164, 317}, {134, 285}, {138, 277}, {136, 296}, {147, 307}, {152, 313}, {144, 306}, {152, 315}, {157, 313}, {143, 298}, {163, 262}, {158, 315}, {130, 299}, {148, 317}, {133, 300}, {147, 314}, {139, 294}, {134, 296}, {140, 290}, {130, 301}, {132, 299}, {147, 291}, {161, 273}, {162, 275}, {167, 278}, {164, 277}, {129, 306}, {165, 278}, {131, 304}, {143, 316}, {141, 315}, {129, 310}, {152, 288}, {149, 300}, {143, 309}, {151, 301}, {154, 289}, {168, 275}, {166, 282}, {157, 288}, {133, 315}, {150, 297}, {136, 329}, {129, 323}, {130, 326}, {135, 323}, {139, 334}, {136, 322}, {131, 328}, {137, 324}, {157, 336}, {133, 330}, {146, 320}, {144, 323}, {154, 334}, {144, 327}, {146, 325}, {140, 336}, {151, 329}, {160, 324}, {160, 325}, {164, 329} }>;

(II) A more general form is to represent the graph as the orbit of {163, 172} under the group generated by the following permutations:

a: (3, 7)(5, 13)(6, 16)(8, 22)(9, 20)(12, 26)(14, 34)(15, 25)(17, 40)(18, 38)(19, 46)(21, 50)(24, 54)(27, 62)(30, 58)(31, 60)(32, 73)(33, 76)(36, 80)(37, 84)(39, 88)(42, 92)(43, 64)(44, 61)(45, 96)(48, 95)(52, 106)(56, 102)(57, 86)(63, 121)(65, 124)(69, 113)(70, 117)(71, 118)(72, 130)(75, 129)(78, 134)(82, 133)(83, 90)(94, 123)(98, 119)(100, 126)(103, 153)(109, 120)(111, 146)(112, 145)(115, 138)(125, 161)(135, 160)(139, 155)(140, 166)(144, 150)(149, 151)(152, 159)(154, 163)(156, 157)(169, 205)(170, 204)(171, 214)(172, 289)(173, 238)(174, 191)(175, 242)(176, 306)(177, 256)(178, 335)(179, 258)(180, 330)(181, 269)(182, 230)(183, 220)(184, 267)(185, 288)(186, 318)(187, 273)(188, 308)(189, 271)(190, 193)(192, 276)(194, 286)(195, 279)(196, 287)(197, 281)(198, 274)(199, 284)(200, 237)(201, 264)(202, 249)(203, 262)(206, 234)(207, 290)(208, 275)(209, 294)(210, 252)(211, 278)(212, 280)(213, 231)(215, 295)(216, 246)(217, 300)(218, 305)(219, 304)(221, 261)(222, 299)(223, 240)(224, 301)(225, 285)(226, 312)(227, 307)(228, 316)(229, 313)(232, 270)(233, 320)(235, 311)(236, 319)(239, 263)(241, 332)(243, 329)(244, 323)(245, 326)(247, 324)(248, 325)(250, 333)(251, 259)(253, 334)(254, 331)(255, 283)(257, 328)(260, 293)(265, 310)(266, 302)(268, 315)(272, 292)(277, 317)(282, 336)(291, 314)(296, 322)(297, 327)(298, 309)(303, 321)
b: (2, 4)(3, 38)(5, 60)(6, 20)(7, 18)(8, 106)(9, 16)(10, 11)(12, 25)(13, 31)(14, 134)(15, 26)(17, 83)(19, 126)(21, 54)(22, 52)(23, 81)(24, 50)(27, 98)(28, 29)(30, 57)(32, 65)(33, 80)(34, 78)(35, 137)(36, 76)(37, 113)(39, 92)(40, 90)(41, 55)(42, 88)(43, 61)(44, 64)(45, 95)(46, 100)(47, 136)(48, 96)(49, 141)(53, 131)(56, 160)(58, 86)(59, 158)(62, 119)(63, 115)(66, 67)(68, 93)(69, 84)(70, 118)(71, 117)(72, 129)(73, 124)(74, 164)(75, 130)(77, 89)(79, 97)(82, 146)(85, 110)(87, 104)(91, 101)(94, 120)(99, 105)(102, 135)(103, 125)(107, 108)(109, 123)(111, 133)(112, 159)(114, 116)(121, 138)(122, 165)(127, 128)(132, 142)(139, 156)(140, 163)(144, 149)(145, 152)(147, 148)(150, 151)(153, 161)(154, 166)(155, 157)(162, 167)(169, 191)(170, 255)(171, 324)(172, 290)(173, 299)(174, 205)(175, 280)(176, 301)(177, 202)(178, 331)(179, 240)(180, 325)(181, 231)(182, 278)(183, 312)(184, 216)(185, 294)(186, 319)(187, 234)(188, 285)(189, 200)(190, 311)(193, 235)(194, 291)(195, 229)(196, 296)(197, 250)(199, 292)(201, 232)(203, 251)(204, 283)(206, 273)(207, 289)(208, 252)(209, 288)(210, 275)(211, 230)(212, 242)(213, 269)(214, 247)(215, 302)(217, 244)(218, 303)(219, 293)(220, 226)(221, 239)(222, 238)(223, 258)(224, 306)(225, 308)(227, 317)(228, 309)(233, 315)(236, 318)(237, 271)(241, 328)(243, 327)(245, 310)(246, 267)(248, 330)(249, 256)(253, 336)(254, 335)(257, 332)(259, 262)(260, 304)(261, 263)(264, 270)(265, 326)(266, 295)(268, 320)(272, 284)(277, 307)(279, 313)(281, 333)(282, 334)(286, 314)(287, 322)(297, 329)(298, 316)(300, 323)(305, 321)
c: (1, 2)(3, 16)(4, 10)(5, 26)(6, 7)(8, 50)(9, 15)(11, 28)(12, 13)(14, 76)(17, 88)(18, 64)(19, 96)(20, 25)(21, 22)(23, 55)(24, 86)(27, 44)(29, 66)(30, 84)(31, 117)(32, 130)(33, 34)(35, 81)(36, 90)(37, 58)(38, 43)(39, 40)(41, 93)(42, 48)(45, 46)(47, 101)(49, 87)(51, 107)(52, 123)(53, 110)(54, 57)(56, 134)(59, 114)(60, 70)(61, 62)(63, 109)(65, 71)(67, 127)(68, 105)(69, 75)(72, 73)(74, 131)(77, 91)(78, 102)(79, 136)(80, 83)(82, 115)(85, 108)(89, 143)(92, 95)(94, 106)(97, 147)(98, 151)(99, 142)(100, 150)(103, 159)(104, 116)(111, 163)(112, 139)(113, 129)(118, 124)(119, 149)(120, 121)(122, 137)(125, 135)(126, 144)(128, 132)(133, 138)(140, 156)(141, 148)(145, 155)(146, 154)(152, 153)(157, 166)(158, 164)(160, 161)(162, 165)(167, 168)(169, 189)(170, 286)(171, 202)(172, 323)(173, 231)(174, 191)(175, 240)(176, 333)(177, 184)(178, 264)(179, 235)(180, 274)(181, 226)(182, 234)(183, 216)(185, 259)(186, 270)(187, 247)(188, 263)(190, 200)(192, 301)(193, 237)(194, 204)(195, 294)(196, 218)(197, 319)(198, 330)(199, 243)(201, 335)(203, 325)(205, 271)(206, 230)(207, 313)(208, 211)(209, 279)(210, 252)(212, 222)(213, 238)(214, 249)(215, 228)(217, 285)(219, 227)(220, 246)(221, 331)(223, 242)(224, 276)(225, 300)(229, 290)(232, 318)(233, 253)(236, 281)(239, 308)(241, 245)(244, 289)(248, 262)(250, 306)(251, 288)(254, 261)(255, 283)(256, 267)(257, 327)(258, 311)(260, 296)(265, 309)(266, 303)(268, 317)(269, 312)(272, 291)(273, 324)(275, 278)(277, 315)(280, 299)(282, 336)(284, 329)(287, 305)(292, 314)(293, 322)(295, 316)(297, 328)(298, 310)(302, 321)(304, 307)(320, 334)(326, 332)
d: (1, 3)(2, 6)(4, 5)(7, 87)(8, 18)(9, 17)(10, 12)(11, 27)(13, 114)(14, 31)(15, 30)(16, 49)(19, 38)(20, 37)(21, 43)(22, 154)(23, 52)(24, 51)(25, 39)(26, 59)(28, 61)(29, 65)(32, 60)(33, 70)(34, 161)(35, 78)(36, 77)(40, 139)(41, 90)(42, 89)(44, 97)(45, 64)(46, 163)(47, 100)(48, 99)(50, 111)(53, 106)(54, 105)(55, 94)(56, 81)(57, 107)(58, 112)(62, 147)(63, 119)(66, 118)(67, 126)(68, 86)(69, 85)(71, 131)(72, 117)(73, 125)(74, 124)(75, 132)(76, 135)(79, 134)(80, 93)(82, 137)(83, 91)(84, 155)(88, 145)(92, 142)(95, 143)(96, 146)(101, 144)(102, 136)(103, 141)(104, 140)(108, 129)(110, 123)(113, 128)(115, 158)(116, 157)(120, 151)(122, 138)(127, 150)(130, 160)(133, 164)(148, 152)(153, 162)(156, 167)(159, 165)(166, 168)(169, 178)(170, 290)(171, 249)(172, 212)(173, 213)(175, 223)(176, 222)(177, 254)(179, 224)(180, 247)(181, 209)(182, 206)(183, 246)(184, 248)(185, 211)(186, 226)(187, 225)(188, 235)(189, 236)(190, 237)(191, 255)(192, 311)(193, 314)(194, 313)(195, 312)(196, 333)(197, 205)(198, 273)(199, 274)(200, 272)(201, 271)(202, 260)(203, 256)(204, 259)(207, 208)(214, 322)(215, 270)(216, 266)(217, 324)(218, 323)(219, 263)(220, 321)(221, 267)(227, 276)(228, 279)(229, 278)(230, 277)(231, 265)(232, 269)(233, 264)(234, 268)(238, 298)(239, 258)(240, 257)(241, 262)(242, 297)(243, 300)(244, 299)(245, 261)(250, 280)(251, 275)(252, 282)(253, 281)(284, 285)(286, 288)(287, 289)(291, 292)(293, 296)(294, 295)(301, 304)(302, 303)(305, 306)(307, 308)(309, 310)(315, 317)(316, 318)(319, 320)(325, 326)(327, 328)(329, 330)(331, 332)(334, 335)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 47 ]
336
-1 169 191 205 174
-2 189 191 271 174
-3 178 255 174 197
-4 200 169 237 205
-5 178 190 272 197
-6 255 201 236 174
-7 191 335 281 283
-8 177 178 259 196
-9 169 204 270 186
-10 189 190 193 271
-11 200 311 235 237
-12 201 236 237 314
-13 335 193 281 292
-14 177 188 196 274
-15 189 270 194 186
-16 264 319 191 283
-17 178 215 226 259
-18 254 333 169 204
-19 332 290 280 197
-20 232 170 205 318
-21 288 201 267 305
-22 287 256 335 251
-23 177 256 214 171
-24 270 303 216 294
-25 286 232 271 318
-26 264 319 200 291
-27 188 190 192 272
-28 179 190 258 193
-29 223 311 235 240
-30 236 313 215 226
-31 199 254 333 235
-32 332 192 280 285
-33 330 267 239 305
-34 198 308 287 256
-35 187 214 171 273
-36 303 325 216 261
-37 290 269 316 197
-38 331 170 205 250
-39 288 201 269 316
-40 312 335 251 295
-41 177 256 246 216
-42 231 309 270 294
-43 286 221 271 306
-44 200 301 291 263
-45 222 245 236 313
-46 212 281 207 241
-47 297 287 327 196
-48 265 173 195 186
-49 320 233 255 283
-50 264 184 185 218
-51 266 302 215 295
-52 254 322 203 249
-53 332 260 293 241
-54 209 232 321 246
-55 267 202 249 184
-56 180 171 260 217
-57 220 279 302 318
-58 319 312 229 295
-59 320 233 292 272
-60 331 311 250 284
-61 224 237 314 239
-62 308 276 193 292
-63 187 188 227 274
-64 176 189 194 261
-65 188 257 192 175
-66 242 179 258 175
-67 212 223 280 240
-68 246 312 226 216
-69 231 309 289 333
-70 221 258 306 329
-71 301 327 240 263
-72 222 245 300 224
-73 276 212 225 241
-74 297 227 327 307
-75 176 265 244 173
-76 180 184 218 263
-77 266 245 302 326
-78 198 322 225 249
-79 199 260 293 284
-80 221 321 246 248
-81 202 247 324 249
-82 180 268 182 217
-83 220 331 302 262
-84 181 281 228 207
-85 265 287 310 196
-86 266 183 195 186
-87 253 255 334 283
-88 264 181 228 185
-89 265 310 215 295
-90 254 266 203 183
-91 321 332 303 241
-92 209 232 298 213
-93 220 267 183 184
-94 221 171 248 260
-95 310 279 238 318
-96 319 299 326 229
-97 292 304 272 219
-98 311 192 284 285
-99 231 213 312 226
-100 242 289 333 328
-101 257 305 218 328
-102 330 300 214 293
-103 234 290 259 317
-104 170 204 336 282
-105 220 181 269 183
-106 331 202 262 296
-107 321 303 228 316
-108 298 309 305 218
-109 180 247 219 263
-110 245 322 326 296
-111 211 233 323 248
-112 320 278 195 294
-113 298 213 172 250
-114 253 334 291 314
-115 234 317 274 285
-116 286 336 194 282
-117 176 243 179 261
-118 297 223 224 239
-119 199 276 235 225
-120 330 324 304 239
-121 198 308 273 307
-122 187 182 273 230
-123 214 325 293 261
-124 242 308 276 328
-125 187 172 227 262
-126 257 172 250 175
-127 242 222 299 175
-128 212 280 238 173
-129 310 323 238 306
-130 299 301 326 217
-131 257 304 328 219
-132 231 222 299 213
-133 330 300 315 230
-134 202 274 285 296
-135 323 247 248 219
-136 243 322 296 329
-137 234 247 324 206
-138 198 277 225 206
-139 275 334 195 294
-140 290 259 336 252
-141 268 170 204 315
-142 181 269 238 173
-143 298 309 228 316
-144 323 327 240 306
-145 209 211 233 279
-146 320 244 278 325
-147 291 314 227 307
-148 286 277 194 317
-149 243 179 300 224
-150 176 297 244 223
-151 301 258 217 329
-152 288 313 315 230
-153 277 206 207 251
-154 275 289 334 203
-155 209 253 279 208
-156 210 282 185 229
-157 288 313 336 252
-158 199 268 315 284
-159 268 182 185 229
-160 244 324 325 304
-161 289 203 273 307
-162 275 182 208 230
-163 253 172 262 208
-164 243 277 317 329
-165 211 234 278 206
-166 210 282 207 251
-167 210 211 278 252
-168 275 210 208 252
-169 1 4 18 9
-170 38 104 20 141
-171 23 56 35 94
-172 113 125 126 163
-173 48 128 75 142
-174 1 2 3 6
-175 66 126 127 65
-176 117 150 64 75
-177 23 14 8 41
-178 3 5 17 8
-179 66 28 149 117
-180 56 82 76 109
-181 88 105 84 142
-182 122 82 159 162
-183 90 93 105 86
-184 55 93 50 76
-185 88 156 159 50
-186 15 48 9 86
-187 122 35 125 63
-188 14 27 63 65
-189 2 15 64 10
-190 5 27 28 10
-191 1 2 16 7
-192 27 32 65 98
-193 13 28 62 10
-194 15 148 116 64
-195 112 48 139 86
-196 14 47 8 85
-197 3 37 5 19
-198 121 34 78 138
-199 79 158 31 119
-200 11 44 4 26
-201 12 6 39 21
-202 55 134 81 106
-203 154 90 161 52
-204 104 18 9 141
-205 1 4 38 20
-206 165 137 138 153
-207 166 46 84 153
-208 155 168 162 163
-209 155 145 92 54
-210 166 156 167 168
-211 165 111 145 167
-212 67 46 73 128
-213 99 132 113 92
-214 23 35 123 102
-215 89 17 51 30
-216 24 68 36 41
-217 56 82 151 130
-218 101 50 108 76
-219 135 97 109 131
-220 57 93 83 105
-221 80 70 94 43
-222 132 45 72 127
-223 67 29 150 118
-224 61 72 149 118
-225 78 138 73 119
-226 99 68 17 30
-227 125 147 63 74
-228 88 143 84 107
-229 156 58 159 96
-230 122 133 162 152
-231 99 132 69 42
-232 25 92 20 54
-233 111 145 59 49
-234 165 103 115 137
-235 11 29 31 119
-236 12 45 6 30
-237 11 12 4 61
-238 95 128 129 142
-239 33 61 118 120
-240 67 144 71 29
-241 46 91 73 53
-242 66 100 124 127
-243 136 149 117 164
-244 146 160 150 75
-245 77 110 45 72
-246 68 80 41 54
-247 135 81 137 109
-248 111 80 135 94
-249 55 78 81 52
-250 113 38 60 126
-251 22 166 40 153
-252 167 157 168 140
-253 155 114 163 87
-254 90 18 52 31
-255 3 49 6 87
-256 22 23 34 41
-257 101 126 65 131
-258 66 70 28 151
-259 103 17 8 140
-260 56 79 94 53
-261 123 36 117 64
-262 125 83 106 163
-263 44 71 76 109
-264 88 26 16 50
-265 89 48 85 75
-266 77 90 51 86
-267 33 55 93 21
-268 158 82 159 141
-269 37 39 105 142
-270 24 15 9 42
-271 2 25 10 43
-272 59 5 27 97
-273 121 122 35 161
-274 134 14 115 63
-275 154 168 139 162
-276 124 62 73 119
-277 148 138 153 164
-278 165 112 167 146
-279 155 57 145 95
-280 67 128 19 32
-281 13 46 7 84
-282 166 156 104 116
-283 16 49 7 87
-284 79 158 60 98
-285 134 115 32 98
-286 25 148 116 43
-287 22 34 47 85
-288 157 39 152 21
-289 154 100 69 161
-290 37 103 19 140
-291 44 26 114 147
-292 13 59 62 97
-293 79 123 102 53
-294 24 112 139 42
-295 89 58 40 51
-296 110 134 136 106
-297 47 150 74 118
-298 143 113 92 108
-299 132 127 96 130
-300 133 102 72 149
-301 44 71 151 130
-302 77 57 83 51
-303 24 36 91 107
-304 160 97 120 131
-305 33 101 108 21
-306 144 70 129 43
-307 121 147 161 74
-308 121 34 124 62
-309 143 69 42 108
-310 89 95 85 129
-311 11 60 29 98
-312 99 68 58 40
-313 45 157 30 152
-314 12 114 147 61
-315 133 158 141 152
-316 143 37 39 107
-317 103 115 148 164
-318 57 25 95 20
-319 58 26 16 96
-320 112 146 59 49
-321 80 91 107 54
-322 110 78 136 52
-323 111 144 135 129
-324 81 137 160 120
-325 123 36 146 160
-326 77 110 96 130
-327 144 47 71 74
-328 100 101 124 131
-329 70 136 151 164
-330 33 133 102 120
-331 38 60 83 106
-332 91 19 53 32
-333 100 69 18 31
-334 154 114 139 87
-335 22 13 7 40
-336 157 104 116 140
0

**************