C4graphGraph forms for C4 [ 336, 52 ] = UG(ATD[336,1])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 52 ] = UG(ATD[336,1]).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {168, 169}, {280, 281}, {220, 221}, {145, 147}, {261, 263}, {1, 2}, {268, 271}, {65, 66}, {157, 158}, {1, 5}, {272, 276}, {3, 7}, {2, 6}, {329, 332}, {146, 148}, {266, 268}, {328, 335}, {214, 223}, {289, 299}, {325, 335}, {199, 204}, {325, 334}, {279, 284}, {278, 285}, {262, 269}, {2, 14}, {4, 8}, {3, 15}, {69, 75}, {324, 330}, {273, 287}, {145, 158}, {76, 94}, {13, 30}, {265, 282}, {4, 16}, {13, 25}, {12, 24}, {7, 19}, {6, 18}, {5, 17}, {270, 280}, {299, 317}, {297, 319}, {268, 277}, {329, 336}, {294, 319}, {226, 248}, {292, 318}, {166, 189}, {263, 284}, {8, 20}, {77, 81}, {11, 23}, {10, 22}, {9, 21}, {134, 154}, {34, 63}, {33, 62}, {5, 36}, {259, 290}, {29, 60}, {27, 58}, {25, 56}, {23, 54}, {21, 52}, {19, 50}, {17, 48}, {15, 46}, {13, 44}, {11, 42}, {9, 40}, {7, 38}, {31, 61}, {268, 302}, {261, 295}, {216, 250}, {6, 37}, {26, 57}, {22, 53}, {18, 49}, {14, 45}, {10, 41}, {196, 231}, {73, 108}, {148, 177}, {154, 191}, {201, 236}, {202, 239}, {12, 43}, {95, 120}, {92, 123}, {31, 56}, {28, 59}, {27, 60}, {20, 51}, {283, 307}, {66, 107}, {279, 318}, {274, 315}, {70, 111}, {129, 168}, {130, 171}, {156, 182}, {30, 53}, {274, 313}, {71, 108}, {192, 235}, {193, 234}, {79, 99}, {128, 172}, {70, 107}, {267, 294}, {197, 232}, {138, 164}, {212, 250}, {8, 39}, {24, 55}, {21, 37}, {128, 176}, {77, 127}, {209, 227}, {146, 161}, {260, 311}, {136, 188}, {137, 189}, {23, 34}, {214, 227}, {4, 50}, {270, 312}, {156, 170}, {159, 168}, {265, 318}, {218, 237}, {67, 123}, {149, 173}, {73, 112}, {78, 119}, {131, 185}, {152, 162}, {222, 228}, {258, 312}, {286, 290}, {134, 187}, {272, 301}, {30, 32}, {285, 291}, {16, 47}, {283, 292}, {266, 309}, {153, 217}, {159, 223}, {148, 213}, {270, 335}, {258, 323}, {57, 123}, {261, 327}, {61, 127}, {60, 126}, {160, 226}, {163, 225}, {185, 251}, {256, 323}, {27, 95}, {51, 119}, {15, 74}, {48, 117}, {42, 111}, {40, 109}, {34, 103}, {32, 101}, {26, 95}, {24, 93}, {58, 124}, {59, 125}, {163, 229}, {8, 79}, {49, 118}, {41, 110}, {33, 102}, {25, 94}, {16, 87}, {178, 245}, {167, 239}, {17, 88}, {21, 92}, {19, 90}, {176, 249}, {154, 208}, {166, 236}, {256, 330}, {18, 89}, {39, 108}, {35, 104}, {174, 229}, {52, 120}, {153, 213}, {156, 208}, {36, 105}, {55, 122}, {38, 107}, {20, 91}, {267, 324}, {54, 121}, {37, 106}, {46, 126}, {162, 242}, {172, 252}, {175, 255}, {280, 329}, {42, 120}, {273, 323}, {22, 69}, {130, 209}, {173, 254}, {129, 212}, {147, 198}, {173, 248}, {191, 234}, {3, 85}, {182, 224}, {50, 101}, {190, 233}, {14, 86}, {53, 109}, {167, 255}, {274, 331}, {43, 112}, {47, 116}, {175, 244}, {46, 114}, {160, 252}, {44, 113}, {46, 115}, {282, 324}, {7, 88}, {282, 325}, {271, 336}, {45, 114}, {162, 253}, {51, 83}, {59, 91}, {58, 90}, {57, 89}, {148, 244}, {151, 246}, {154, 248}, {155, 249}, {35, 64}, {302, 333}, {150, 245}, {54, 82}, {153, 252}, {291, 326}, {171, 206}, {136, 238}, {137, 239}, {155, 253}, {156, 250}, {157, 251}, {170, 204}, {56, 80}, {151, 255}, {181, 221}, {186, 210}, {23, 126}, {150, 255}, {186, 211}, {62, 84}, {131, 233}, {134, 236}, {135, 237}, {294, 333}, {142, 226}, {295, 331}, {146, 254}, {167, 203}, {35, 77}, {132, 234}, {133, 235}, {153, 247}, {33, 78}, {304, 320}, {309, 327}, {315, 329}, {172, 216}, {306, 326}, {292, 336}, {12, 121}, {308, 321}, {310, 321}, {179, 203}, {189, 197}, {151, 237}, {310, 332}, {184, 194}, {1, 122}, {304, 331}, {31, 100}, {27, 96}, {139, 240}, {4, 120}, {142, 242}, {143, 243}, {149, 233}, {11, 118}, {30, 99}, {28, 97}, {140, 241}, {150, 235}, {169, 215}, {314, 324}, {29, 98}, {304, 335}, {187, 196}, {68, 197}, {112, 241}, {39, 165}, {78, 204}, {75, 201}, {74, 200}, {65, 195}, {64, 194}, {43, 169}, {69, 198}, {71, 196}, {56, 189}, {58, 191}, {69, 195}, {77, 203}, {76, 202}, {57, 190}, {87, 208}, {67, 196}, {10, 130}, {93, 213}, {49, 185}, {48, 184}, {47, 166}, {90, 211}, {88, 209}, {86, 220}, {43, 160}, {89, 210}, {55, 188}, {44, 161}, {107, 230}, {72, 197}, {52, 186}, {102, 232}, {95, 209}, {53, 187}, {72, 199}, {125, 242}, {111, 224}, {91, 212}, {36, 180}, {38, 183}, {116, 229}, {114, 227}, {113, 224}, {112, 225}, {39, 182}, {54, 164}, {100, 246}, {83, 193}, {38, 181}, {113, 226}, {125, 232}, {115, 228}, {79, 214}, {106, 243}, {86, 207}, {84, 205}, {45, 183}, {85, 206}, {124, 231}, {123, 230}, {116, 234}, {111, 240}, {22, 183}, {2, 167}, {61, 152}, {118, 222}, {5, 172}, {106, 195}, {98, 200}, {63, 147}, {94, 240}, {32, 144}, {109, 220}, {110, 223}, {104, 219}, {110, 221}, {109, 222}, {16, 164}, {99, 215}, {98, 214}, {79, 251}, {40, 157}, {115, 198}, {105, 220}, {42, 159}, {45, 155}, {41, 158}, {106, 221}, {67, 251}, {9, 179}, {47, 149}, {117, 206}, {25, 165}, {100, 216}, {91, 231}, {103, 218}, {24, 166}, {96, 222}, {63, 129}, {62, 128}, {102, 217}, {70, 134}, {76, 140}, {75, 139}, {74, 138}, {73, 137}, {72, 136}, {71, 135}, {66, 131}, {68, 133}, {64, 130}, {51, 240}, {34, 230}, {87, 147}, {72, 140}, {96, 165}, {126, 187}, {116, 177}, {114, 180}, {67, 132}, {122, 178}, {68, 141}, {110, 164}, {28, 215}, {97, 170}, {70, 138}, {71, 139}, {76, 129}, {99, 173}, {62, 241}, {97, 174}, {82, 135}, {127, 170}, {85, 128}, {83, 133}, {121, 174}, {119, 175}, {84, 143}, {83, 142}, {31, 193}, {119, 169}, {29, 194}, {82, 141}, {81, 142}, {101, 132}, {81, 178}, {115, 144}, {117, 144}, {40, 206}, {1, 232}, {12, 231}, {13, 230}, {29, 243}, {94, 177}, {28, 236}, {50, 195}, {75, 186}, {32, 210}, {81, 163}, {96, 149}, {97, 151}, {66, 184}, {52, 207}, {59, 192}, {63, 193}, {80, 174}, {65, 325}, {48, 319}, {6, 279}, {85, 327}, {15, 281}, {17, 265}, {88, 320}, {37, 317}, {26, 256}, {14, 277}, {20, 264}, {35, 316}, {33, 257}, {55, 278}, {19, 305}, {10, 297}, {60, 287}, {36, 263}, {49, 281}, {61, 276}, {98, 334}, {104, 327}, {118, 330}, {3, 317}, {11, 308}, {44, 275}, {92, 286}, {92, 287}, {9, 320}, {93, 276}, {87, 285}, {100, 296}, {124, 306}, {125, 307}, {18, 322}, {122, 298}, {103, 311}, {65, 273}, {26, 328}, {93, 271}, {80, 259}, {68, 272}, {73, 285}, {64, 277}, {117, 288}, {82, 264}, {80, 269}, {127, 289}, {105, 267}, {41, 330}, {78, 296}, {113, 278}, {84, 316}, {102, 270}, {101, 269}, {121, 275}, {90, 308}, {86, 313}, {74, 314}, {89, 297}, {105, 287}, {103, 272}, {108, 276}, {104, 273}, {124, 262}, {194, 322}, {145, 275}, {152, 284}, {180, 305}, {182, 307}, {205, 328}, {163, 293}, {181, 306}, {143, 263}, {185, 305}, {188, 309}, {141, 262}, {184, 308}, {190, 306}, {160, 302}, {161, 303}, {145, 286}, {162, 304}, {191, 300}, {217, 322}, {190, 288}, {131, 290}, {133, 292}, {165, 260}, {135, 293}, {228, 326}, {140, 303}, {141, 296}, {143, 297}, {132, 291}, {139, 300}, {161, 262}, {176, 279}, {171, 258}, {138, 288}, {179, 281}, {238, 323}, {136, 294}, {137, 295}, {155, 299}, {176, 256}, {177, 257}, {178, 258}, {253, 333}, {181, 260}, {152, 298}, {158, 300}, {159, 301}, {247, 320}, {249, 334}, {146, 298}, {249, 321}, {171, 274}, {175, 278}, {179, 266}, {245, 332}, {246, 333}, {150, 299}, {188, 257}, {238, 336}, {244, 331}, {253, 322}, {211, 275}, {205, 266}, {242, 309}, {244, 318}, {245, 319}, {200, 260}, {198, 264}, {199, 265}, {241, 289}, {248, 296}, {203, 282}, {199, 277}, {223, 269}, {238, 317}, {254, 301}, {247, 289}, {235, 316}, {239, 312}, {225, 315}, {254, 293}, {157, 321}, {144, 334}, {215, 311}, {216, 312}, {217, 313}, {219, 314}, {233, 264}, {219, 313}, {224, 259}, {200, 300}, {201, 301}, {202, 302}, {211, 311}, {192, 295}, {228, 259}, {252, 283}, {210, 314}, {213, 316}, {218, 307}, {219, 305}, {201, 290}, {243, 280}, {237, 257}, {168, 326}, {192, 303}, {202, 293}, {207, 288}, {246, 261}, {250, 271}, {204, 315}, {180, 332}, {207, 310}, {218, 291}, {205, 310}, {247, 267}, {225, 284}, {227, 286}, {212, 298}, {229, 283}, {183, 328}, {208, 303} }>;

(II) A more general form is to represent the graph as the orbit of {168, 169} under the group generated by the following permutations:

a: (2, 5)(3, 9)(6, 17)(7, 21)(8, 16)(10, 29)(11, 32)(12, 28)(13, 34)(14, 36)(15, 40)(18, 48)(19, 52)(20, 47)(22, 60)(23, 30)(24, 59)(25, 63)(26, 65)(27, 69)(31, 76)(33, 81)(35, 84)(37, 88)(38, 92)(39, 87)(41, 98)(42, 101)(43, 97)(44, 103)(45, 105)(46, 109)(49, 117)(50, 120)(51, 116)(53, 126)(54, 99)(55, 125)(56, 129)(57, 66)(58, 75)(61, 140)(62, 77)(64, 143)(67, 70)(68, 146)(71, 154)(72, 152)(73, 156)(74, 157)(78, 163)(79, 164)(80, 168)(82, 173)(83, 177)(85, 179)(86, 180)(89, 184)(90, 186)(91, 166)(93, 192)(94, 193)(95, 195)(96, 198)(100, 202)(102, 178)(104, 205)(106, 209)(107, 123)(108, 208)(110, 214)(111, 132)(112, 170)(113, 218)(114, 220)(115, 222)(118, 144)(119, 229)(121, 215)(122, 232)(124, 201)(127, 241)(128, 203)(130, 243)(131, 190)(133, 148)(134, 196)(135, 248)(136, 162)(137, 250)(138, 251)(139, 191)(141, 254)(142, 257)(145, 260)(147, 165)(149, 264)(150, 153)(151, 160)(155, 267)(158, 200)(159, 269)(161, 272)(167, 172)(169, 174)(171, 280)(175, 283)(176, 282)(181, 286)(182, 285)(183, 287)(185, 288)(188, 242)(189, 212)(194, 297)(197, 298)(199, 284)(204, 225)(206, 281)(207, 305)(210, 308)(213, 235)(216, 239)(217, 245)(219, 310)(221, 227)(224, 291)(226, 237)(231, 236)(234, 240)(238, 304)(244, 292)(246, 302)(247, 299)(249, 324)(252, 255)(253, 294)(256, 325)(258, 270)(259, 326)(261, 268)(262, 301)(263, 277)(265, 279)(266, 327)(271, 295)(273, 328)(274, 329)(275, 311)(276, 303)(278, 307)(290, 306)(293, 296)(313, 332)(314, 321)(317, 320)(319, 322)(323, 335)(330, 334)(331, 336)
b: (1, 2, 6, 18, 49, 118, 11, 23, 54, 121, 12, 24, 55, 122)(3, 10, 19, 53, 4, 13, 20, 56, 119, 61, 33, 77, 128, 64)(5, 14, 37, 89, 185, 222, 42, 34, 82, 174, 43, 93, 188, 178)(7, 22, 50, 30, 8, 25, 51, 31, 78, 127, 62, 35, 85, 130)(9, 26, 66, 115, 223, 311, 71, 116, 226, 250, 72, 150, 263, 313)(15, 41, 90, 187, 16, 44, 91, 189, 175, 152, 102, 203, 176, 194)(17, 45, 106, 210, 251, 96, 111, 63, 141, 97, 112, 213, 309, 258)(21, 57, 131, 228, 159, 103, 135, 229, 160, 271, 136, 245, 36, 86)(27, 70, 147, 262, 28, 73, 148, 242, 312, 265, 155, 243, 314, 157)(29, 74, 158, 58, 134, 87, 161, 59, 137, 244, 162, 270, 282, 249)(32, 79, 165, 240, 193, 296, 170, 241, 316, 327, 171, 88, 183, 195)(38, 69, 101, 99, 39, 94, 83, 100, 204, 289, 84, 104, 206, 209)(40, 95, 107, 198, 269, 215, 108, 177, 142, 216, 199, 299, 143, 219)(46, 110, 211, 196, 47, 113, 212, 197, 255, 284, 217, 179, 256, 184)(48, 114, 221, 186, 67, 149, 224, 129, 68, 151, 225, 153, 266, 323)(52, 123, 233, 259, 168, 272, 237, 163, 252, 268, 238, 319, 180, 220)(60, 138, 145, 124, 236, 285, 146, 125, 239, 318, 253, 280, 324, 321)(65, 144, 214, 260, 139, 234, 248, 156, 140, 235, 261, 274, 320, 328)(75, 132, 173, 182, 76, 133, 246, 315, 247, 205, 273, 117, 227, 181)(80, 169, 276, 257, 81, 172, 277, 317, 297, 305, 109, 120, 230, 264)(92, 190, 290, 326, 301, 218, 293, 283, 302, 336, 294, 332, 105, 207)(98, 200, 300, 191, 154, 208, 303, 192, 295, 331, 304, 335, 325, 334)(126, 164, 275, 231, 166, 278, 298, 232, 167, 279, 322, 281, 330, 308)(201, 291, 254, 307, 202, 292, 333, 329, 267, 310, 287, 288, 286, 306)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 52 ]
336
-1 122 232 2 5
-2 1 167 14 6
-3 15 7 85 317
-4 16 50 8 120
-5 1 36 17 172
-6 2 37 279 18
-7 88 3 38 19
-8 79 4 39 20
-9 320 179 40 21
-10 22 297 41 130
-11 308 23 118 42
-12 121 231 24 43
-13 44 25 30 230
-14 45 2 277 86
-15 46 3 281 74
-16 47 4 87 164
-17 88 265 48 5
-18 89 322 49 6
-19 90 50 7 305
-20 264 91 51 8
-21 37 92 52 9
-22 69 183 53 10
-23 11 34 126 54
-24 55 12 166 93
-25 165 56 13 94
-26 57 256 95 328
-27 58 60 95 96
-28 59 236 215 97
-29 243 60 194 98
-30 99 13 53 32
-31 56 100 61 193
-32 144 210 101 30
-33 78 102 257 62
-34 23 103 63 230
-35 77 104 316 64
-36 180 5 105 263
-37 6 106 317 21
-38 181 7 183 107
-39 165 182 8 108
-40 157 206 9 109
-41 110 330 158 10
-42 11 111 159 120
-43 12 112 169 160
-44 275 13 113 161
-45 155 14 114 183
-46 15 114 115 126
-47 166 16 116 149
-48 319 17 117 184
-49 281 18 118 185
-50 101 4 19 195
-51 83 20 119 240
-52 207 21 120 186
-53 22 187 30 109
-54 121 23 82 164
-55 122 188 24 278
-56 189 25 80 31
-57 89 123 190 26
-58 90 124 191 27
-59 91 125 192 28
-60 287 27 126 29
-61 276 127 31 152
-62 33 84 128 241
-63 34 147 193 129
-64 35 277 194 130
-65 66 325 195 273
-66 107 184 65 131
-67 132 123 196 251
-68 133 272 141 197
-69 22 198 195 75
-70 111 134 138 107
-71 135 139 108 196
-72 199 136 140 197
-73 112 137 108 285
-74 200 15 138 314
-75 69 201 139 186
-76 202 94 129 140
-77 35 81 203 127
-78 33 204 119 296
-79 99 214 8 251
-80 56 269 259 174
-81 77 178 163 142
-82 264 135 141 54
-83 133 193 51 142
-84 143 62 205 316
-85 3 128 206 327
-86 220 14 313 207
-87 147 16 208 285
-88 209 320 17 7
-89 297 210 57 18
-90 308 211 58 19
-91 231 212 59 20
-92 286 287 123 21
-93 276 24 213 271
-94 177 25 240 76
-95 209 26 27 120
-96 165 222 27 149
-97 170 28 151 174
-98 200 334 214 29
-99 79 215 30 173
-100 246 216 31 296
-101 132 269 50 32
-102 33 232 270 217
-103 34 311 272 218
-104 35 327 273 219
-105 220 287 36 267
-106 221 243 37 195
-107 66 70 38 230
-108 276 71 39 73
-109 220 222 40 53
-110 221 223 41 164
-111 70 224 42 240
-112 225 73 43 241
-113 44 278 224 226
-114 45 46 180 227
-115 198 144 46 228
-116 177 47 234 229
-117 144 288 48 206
-118 11 330 222 49
-119 78 169 51 175
-120 4 95 52 42
-121 275 12 174 54
-122 55 1 298 178
-123 67 57 92 230
-124 231 58 262 306
-125 242 232 59 307
-126 187 23 46 60
-127 77 289 170 61
-128 176 62 172 85
-129 168 212 63 76
-130 209 171 64 10
-131 66 233 290 185
-132 67 101 234 291
-133 68 235 83 292
-134 154 187 70 236
-135 71 82 237 293
-136 188 72 238 294
-137 189 73 239 295
-138 288 70 74 164
-139 300 71 75 240
-140 72 303 76 241
-141 68 82 262 296
-142 242 81 83 226
-143 297 243 84 263
-144 334 115 117 32
-145 275 286 147 158
-146 254 298 148 161
-147 198 145 63 87
-148 177 244 146 213
-149 233 47 96 173
-150 255 299 245 235
-151 255 246 237 97
-152 298 61 162 284
-153 213 247 217 252
-154 134 191 248 208
-155 253 45 299 249
-156 170 182 250 208
-157 321 158 40 251
-158 145 157 300 41
-159 168 223 301 42
-160 302 226 43 252
-161 44 146 303 262
-162 242 253 304 152
-163 81 225 293 229
-164 110 16 138 54
-165 25 39 260 96
-166 24 189 47 236
-167 2 255 203 239
-168 169 159 326 129
-169 168 215 119 43
-170 156 127 204 97
-171 258 206 130 274
-172 5 128 216 252
-173 99 254 149 248
-174 121 80 97 229
-175 244 255 278 119
-176 256 279 128 249
-177 257 148 94 116
-178 122 245 81 258
-179 266 203 281 9
-180 332 36 114 305
-181 221 38 260 306
-182 156 224 39 307
-183 22 45 38 328
-184 66 308 48 194
-185 49 305 251 131
-186 210 211 52 75
-187 134 126 53 196
-188 55 309 136 257
-189 56 166 137 197
-190 57 233 288 306
-191 154 58 234 300
-192 59 235 303 295
-193 234 83 63 31
-194 322 29 184 64
-195 69 50 106 65
-196 187 231 67 71
-197 232 68 189 72
-198 264 69 147 115
-199 265 277 72 204
-200 300 260 74 98
-201 290 301 236 75
-202 302 293 239 76
-203 77 167 179 282
-204 78 199 170 315
-205 266 310 84 328
-206 171 40 117 85
-207 288 310 52 86
-208 154 156 303 87
-209 88 95 227 130
-210 89 314 32 186
-211 275 90 311 186
-212 298 91 129 250
-213 93 148 316 153
-214 79 223 227 98
-215 99 311 169 28
-216 100 312 172 250
-217 102 322 313 153
-218 103 291 237 307
-219 104 313 314 305
-220 221 105 86 109
-221 110 220 181 106
-222 96 118 228 109
-223 110 159 214 269
-224 111 113 182 259
-225 112 315 163 284
-226 113 160 248 142
-227 209 286 114 214
-228 222 115 259 326
-229 116 283 163 174
-230 34 13 123 107
-231 12 91 124 196
-232 1 102 125 197
-233 264 190 149 131
-234 132 191 116 193
-235 133 192 150 316
-236 166 134 201 28
-237 135 257 151 218
-238 136 323 336 317
-239 167 202 312 137
-240 111 94 51 139
-241 112 289 62 140
-242 309 125 162 142
-243 143 280 29 106
-244 331 148 175 318
-245 319 178 332 150
-246 100 333 151 261
-247 320 267 289 153
-248 154 226 173 296
-249 176 155 321 334
-250 156 212 216 271
-251 67 79 157 185
-252 160 172 283 153
-253 155 322 333 162
-254 146 301 293 173
-255 167 150 151 175
-256 176 330 26 323
-257 33 177 188 237
-258 178 312 323 171
-259 80 224 290 228
-260 165 200 311 181
-261 246 327 295 263
-262 124 269 161 141
-263 143 36 261 284
-264 198 233 82 20
-265 199 17 282 318
-266 309 179 268 205
-267 247 324 105 294
-268 266 277 302 271
-269 101 80 223 262
-270 102 312 280 335
-271 268 93 336 250
-272 276 68 103 301
-273 287 323 104 65
-274 331 313 171 315
-275 44 121 145 211
-276 93 61 272 108
-277 199 14 268 64
-278 55 113 175 285
-279 176 6 284 318
-280 243 270 281 329
-281 179 15 49 280
-282 265 203 324 325
-283 292 229 252 307
-284 279 225 152 263
-285 278 291 73 87
-286 145 92 290 227
-287 92 60 105 273
-288 190 138 117 207
-289 299 247 127 241
-290 286 201 259 131
-291 132 326 218 285
-292 133 336 283 318
-293 254 135 202 163
-294 319 267 333 136
-295 331 137 192 261
-296 78 100 248 141
-297 143 319 89 10
-298 122 146 212 152
-299 155 289 150 317
-300 200 158 191 139
-301 254 201 159 272
-302 333 202 268 160
-303 192 161 140 208
-304 320 331 335 162
-305 180 19 185 219
-306 124 190 181 326
-307 125 182 283 218
-308 11 90 321 184
-309 242 188 266 327
-310 321 332 205 207
-311 211 103 215 260
-312 258 270 216 239
-313 217 86 219 274
-314 210 324 74 219
-315 225 204 274 329
-316 35 213 235 84
-317 299 3 37 238
-318 265 244 279 292
-319 297 245 48 294
-320 88 247 304 9
-321 308 310 157 249
-322 253 18 194 217
-323 256 258 238 273
-324 330 267 314 282
-325 334 335 282 65
-326 168 291 228 306
-327 309 104 85 261
-328 26 335 183 205
-329 332 280 336 315
-330 256 324 41 118
-331 244 304 295 274
-332 310 245 180 329
-333 253 246 302 294
-334 144 325 249 98
-335 270 325 304 328
-336 292 238 271 329
0

**************