C4graphGraph forms for C4 [ 336, 54 ] = UG(ATD[336,5])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 54 ] = UG(ATD[336,5]).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {97, 99}, {169, 171}, {1, 2}, {52, 55}, {17, 18}, {1, 5}, {299, 303}, {114, 118}, {3, 7}, {2, 6}, {51, 54}, {115, 117}, {50, 53}, {328, 335}, {216, 223}, {19, 26}, {83, 90}, {35, 42}, {182, 191}, {21, 30}, {130, 137}, {193, 202}, {240, 251}, {2, 14}, {4, 8}, {3, 15}, {151, 155}, {242, 255}, {177, 191}, {179, 188}, {289, 305}, {65, 80}, {295, 310}, {290, 304}, {32, 51}, {106, 121}, {100, 119}, {98, 113}, {4, 16}, {297, 317}, {64, 84}, {13, 25}, {12, 24}, {7, 19}, {6, 18}, {5, 17}, {198, 210}, {325, 336}, {175, 185}, {239, 248}, {168, 176}, {203, 211}, {234, 243}, {263, 286}, {101, 127}, {163, 185}, {237, 247}, {8, 20}, {266, 278}, {11, 23}, {10, 22}, {9, 21}, {196, 217}, {46, 48}, {298, 308}, {207, 208}, {288, 319}, {235, 244}, {78, 110}, {270, 302}, {146, 178}, {259, 291}, {30, 63}, {283, 314}, {263, 294}, {138, 168}, {281, 315}, {148, 182}, {20, 55}, {29, 62}, {24, 59}, {143, 172}, {8, 44}, {89, 125}, {26, 62}, {16, 52}, {11, 47}, {10, 46}, {9, 45}, {141, 169}, {19, 54}, {282, 319}, {279, 306}, {25, 60}, {142, 171}, {27, 61}, {286, 312}, {278, 304}, {18, 53}, {80, 120}, {86, 126}, {153, 177}, {203, 227}, {209, 249}, {31, 53}, {87, 125}, {5, 41}, {7, 43}, {6, 42}, {21, 56}, {23, 58}, {197, 235}, {22, 57}, {287, 304}, {152, 183}, {137, 184}, {271, 318}, {264, 313}, {273, 291}, {94, 106}, {201, 253}, {67, 117}, {210, 229}, {277, 290}, {259, 308}, {154, 162}, {89, 99}, {28, 39}, {77, 118}, {196, 255}, {12, 48}, {15, 51}, {14, 50}, {13, 49}, {204, 241}, {84, 106}, {212, 234}, {218, 228}, {37, 101}, {261, 325}, {261, 324}, {269, 332}, {13, 79}, {128, 194}, {181, 247}, {257, 323}, {267, 328}, {17, 85}, {38, 99}, {191, 250}, {257, 324}, {152, 222}, {271, 329}, {33, 102}, {164, 227}, {169, 225}, {172, 229}, {185, 243}, {265, 322}, {40, 100}, {155, 214}, {49, 127}, {265, 327}, {264, 326}, {145, 223}, {183, 249}, {166, 233}, {186, 245}, {15, 95}, {44, 124}, {43, 123}, {42, 122}, {41, 121}, {38, 119}, {283, 330}, {47, 126}, {136, 217}, {144, 193}, {36, 118}, {184, 234}, {24, 75}, {46, 125}, {170, 255}, {287, 330}, {34, 116}, {35, 117}, {160, 246}, {176, 230}, {187, 237}, {280, 321}, {175, 245}, {22, 74}, {27, 71}, {31, 64}, {39, 120}, {149, 245}, {295, 327}, {180, 212}, {32, 65}, {301, 332}, {40, 73}, {38, 71}, {36, 69}, {34, 67}, {177, 211}, {289, 323}, {33, 66}, {298, 329}, {37, 70}, {294, 322}, {31, 122}, {292, 321}, {178, 215}, {183, 210}, {14, 104}, {11, 108}, {300, 331}, {35, 68}, {45, 69}, {312, 336}, {1, 107}, {37, 79}, {27, 112}, {29, 113}, {296, 324}, {31, 115}, {30, 114}, {146, 255}, {299, 326}, {291, 334}, {157, 240}, {188, 209}, {61, 83}, {144, 254}, {39, 72}, {131, 243}, {132, 244}, {133, 245}, {40, 89}, {135, 246}, {158, 239}, {173, 220}, {27, 105}, {57, 75}, {56, 74}, {138, 248}, {139, 249}, {142, 252}, {143, 253}, {174, 221}, {179, 199}, {41, 92}, {176, 197}, {25, 111}, {59, 77}, {58, 76}, {140, 250}, {141, 251}, {16, 103}, {314, 333}, {313, 334}, {159, 232}, {17, 105}, {20, 108}, {19, 107}, {18, 106}, {156, 228}, {187, 195}, {23, 110}, {162, 219}, {175, 213}, {22, 109}, {315, 320}, {146, 238}, {306, 335}, {316, 321}, {28, 98}, {173, 211}, {136, 247}, {147, 236}, {35, 163}, {70, 198}, {127, 254}, {44, 175}, {113, 242}, {111, 236}, {107, 232}, {116, 240}, {33, 164}, {110, 235}, {108, 233}, {53, 176}, {49, 183}, {119, 241}, {109, 234}, {120, 242}, {50, 185}, {52, 186}, {105, 231}, {104, 230}, {104, 231}, {115, 252}, {114, 253}, {96, 241}, {38, 181}, {68, 208}, {112, 228}, {73, 223}, {63, 167}, {120, 224}, {70, 222}, {98, 251}, {117, 236}, {64, 218}, {124, 230}, {65, 219}, {95, 195}, {126, 226}, {115, 239}, {114, 238}, {113, 237}, {66, 220}, {79, 209}, {78, 208}, {67, 221}, {43, 139}, {62, 159}, {103, 196}, {88, 254}, {109, 199}, {46, 133}, {90, 241}, {82, 254}, {103, 203}, {101, 201}, {97, 204}, {123, 213}, {81, 224}, {93, 236}, {47, 157}, {92, 238}, {83, 225}, {74, 248}, {84, 231}, {89, 237}, {122, 206}, {54, 128}, {63, 137}, {62, 136}, {55, 129}, {91, 226}, {12, 182}, {95, 229}, {94, 228}, {61, 135}, {60, 134}, {57, 131}, {56, 130}, {85, 232}, {6, 184}, {59, 133}, {58, 132}, {20, 170}, {86, 233}, {92, 227}, {72, 136}, {98, 162}, {97, 161}, {96, 160}, {95, 159}, {94, 158}, {93, 157}, {79, 143}, {101, 164}, {103, 166}, {88, 155}, {102, 165}, {81, 149}, {83, 151}, {82, 150}, {11, 205}, {69, 130}, {100, 163}, {91, 156}, {96, 169}, {64, 138}, {76, 134}, {69, 143}, {68, 142}, {65, 139}, {14, 194}, {107, 167}, {85, 152}, {87, 154}, {66, 140}, {67, 141}, {78, 129}, {123, 180}, {86, 153}, {112, 160}, {4, 215}, {84, 135}, {32, 244}, {1, 212}, {92, 137}, {85, 128}, {3, 214}, {70, 144}, {71, 145}, {2, 213}, {86, 129}, {25, 192}, {102, 191}, {72, 146}, {78, 148}, {76, 150}, {73, 147}, {93, 134}, {5, 217}, {75, 149}, {82, 140}, {50, 208}, {51, 209}, {44, 207}, {4, 224}, {60, 216}, {55, 211}, {54, 210}, {9, 239}, {63, 217}, {41, 206}, {90, 189}, {45, 199}, {33, 202}, {56, 212}, {68, 168}, {59, 215}, {58, 214}, {57, 213}, {104, 152}, {23, 230}, {96, 145}, {93, 174}, {91, 173}, {47, 216}, {73, 190}, {48, 200}, {127, 134}, {34, 216}, {126, 132}, {123, 128}, {49, 205}, {88, 165}, {124, 129}, {16, 238}, {125, 131}, {52, 202}, {28, 226}, {81, 336}, {43, 296}, {77, 329}, {36, 291}, {8, 258}, {48, 318}, {42, 293}, {80, 325}, {28, 267}, {9, 273}, {87, 335}, {32, 313}, {3, 281}, {12, 279}, {26, 260}, {39, 263}, {61, 285}, {26, 315}, {34, 256}, {60, 280}, {29, 310}, {40, 262}, {7, 305}, {10, 306}, {30, 294}, {13, 311}, {15, 308}, {94, 284}, {88, 285}, {100, 290}, {116, 307}, {10, 323}, {21, 327}, {122, 302}, {29, 328}, {90, 268}, {124, 292}, {121, 288}, {24, 324}, {82, 270}, {66, 284}, {76, 300}, {112, 272}, {111, 270}, {36, 322}, {71, 288}, {91, 307}, {99, 266}, {121, 272}, {75, 289}, {102, 268}, {45, 326}, {110, 261}, {109, 262}, {118, 283}, {37, 330}, {72, 295}, {105, 282}, {108, 280}, {77, 312}, {74, 317}, {119, 256}, {81, 296}, {111, 276}, {87, 297}, {97, 287}, {80, 303}, {116, 267}, {167, 295}, {174, 302}, {181, 309}, {186, 314}, {179, 311}, {172, 298}, {153, 286}, {139, 258}, {162, 299}, {190, 311}, {190, 309}, {193, 333}, {182, 312}, {197, 331}, {130, 274}, {147, 256}, {151, 260}, {178, 294}, {148, 257}, {150, 259}, {157, 264}, {159, 266}, {180, 289}, {170, 316}, {149, 258}, {158, 265}, {188, 299}, {142, 279}, {156, 263}, {221, 326}, {144, 268}, {153, 261}, {154, 262}, {177, 301}, {140, 273}, {218, 327}, {135, 281}, {150, 264}, {131, 290}, {179, 274}, {145, 307}, {151, 308}, {165, 259}, {171, 269}, {181, 275}, {190, 280}, {226, 325}, {168, 257}, {225, 328}, {156, 310}, {164, 270}, {165, 271}, {189, 279}, {132, 303}, {160, 267}, {171, 256}, {161, 269}, {184, 276}, {231, 331}, {161, 268}, {187, 278}, {163, 269}, {227, 333}, {154, 309}, {186, 277}, {229, 330}, {158, 302}, {253, 333}, {189, 271}, {250, 329}, {161, 277}, {133, 304}, {166, 275}, {147, 293}, {166, 272}, {248, 320}, {249, 321}, {250, 322}, {170, 275}, {138, 305}, {173, 272}, {141, 306}, {174, 273}, {252, 323}, {194, 258}, {246, 310}, {252, 317}, {220, 286}, {222, 285}, {192, 262}, {195, 260}, {242, 309}, {247, 319}, {198, 266}, {223, 275}, {155, 331}, {204, 285}, {192, 274}, {206, 284}, {251, 297}, {200, 283}, {220, 265}, {204, 282}, {243, 293}, {203, 284}, {232, 319}, {148, 332}, {206, 276}, {207, 277}, {233, 307}, {235, 305}, {201, 274}, {197, 281}, {198, 282}, {224, 316}, {244, 296}, {201, 276}, {193, 287}, {200, 278}, {225, 318}, {240, 303}, {221, 317}, {205, 300}, {218, 315}, {172, 334}, {178, 336}, {200, 298}, {207, 301}, {196, 288}, {192, 293}, {194, 292}, {167, 320}, {202, 301}, {219, 316}, {205, 292}, {219, 311}, {215, 314}, {199, 297}, {214, 313}, {189, 332}, {188, 334}, {222, 300}, {246, 260}, {180, 320}, {187, 335}, {195, 318} }>;

(II) A more general form is to represent the graph as the orbit of {97, 99} under the group generated by the following permutations:

a: (2, 5)(3, 9)(6, 17)(7, 21)(8, 16)(10, 29)(11, 33)(12, 28)(13, 37)(14, 41)(15, 45)(19, 56)(20, 52)(22, 62)(23, 66)(24, 39)(25, 70)(26, 74)(27, 35)(30, 43)(31, 84)(32, 36)(34, 90)(38, 100)(40, 99)(42, 105)(44, 103)(46, 113)(47, 102)(48, 98)(49, 101)(50, 121)(51, 69)(53, 106)(54, 130)(57, 136)(58, 140)(59, 120)(60, 144)(61, 117)(63, 123)(65, 118)(67, 83)(68, 112)(71, 163)(72, 75)(73, 97)(76, 82)(77, 80)(78, 173)(81, 178)(85, 184)(86, 177)(87, 187)(88, 93)(91, 148)(92, 194)(94, 176)(95, 199)(96, 171)(104, 206)(107, 212)(108, 202)(109, 159)(110, 220)(111, 222)(114, 139)(115, 135)(116, 189)(122, 231)(124, 203)(125, 237)(126, 191)(128, 137)(129, 211)(131, 247)(132, 250)(133, 242)(134, 254)(138, 218)(141, 225)(142, 160)(143, 209)(145, 269)(146, 149)(147, 204)(151, 221)(152, 276)(154, 278)(155, 174)(156, 257)(157, 165)(158, 197)(161, 223)(162, 200)(164, 205)(166, 207)(167, 180)(168, 228)(170, 186)(172, 188)(175, 196)(179, 229)(181, 290)(182, 226)(183, 201)(185, 288)(190, 287)(192, 198)(193, 280)(195, 297)(208, 272)(210, 274)(213, 217)(214, 273)(215, 224)(216, 268)(219, 283)(227, 292)(230, 284)(232, 234)(233, 301)(235, 265)(236, 285)(238, 258)(239, 281)(240, 271)(241, 256)(243, 319)(244, 322)(245, 255)(246, 252)(248, 315)(249, 253)(251, 318)(259, 264)(260, 317)(261, 286)(262, 266)(263, 324)(267, 279)(270, 300)(275, 277)(282, 293)(289, 295)(291, 313)(294, 296)(298, 299)(302, 331)(303, 329)(304, 309)(305, 327)(306, 328)(307, 332)(308, 326)(310, 323)(311, 330)(312, 325)(314, 316)(321, 333)
b: (1, 2, 6, 18, 53, 31, 64, 138, 248, 320, 180, 212)(3, 10, 30, 54, 131, 92, 152, 163, 284, 331, 142, 265)(4, 13, 38, 55, 134, 96, 153, 264, 328, 336, 188, 237)(5, 14, 42, 106, 176, 115, 218, 305, 74, 167, 123, 234)(7, 22, 63, 128, 243, 41, 104, 35, 94, 197, 252, 327)(8, 25, 71, 129, 93, 160, 261, 326, 29, 81, 179, 247)(9, 26, 75, 130, 232, 175, 276, 105, 208, 302, 135, 257)(11, 34, 91, 132, 251, 39, 65, 154, 255, 321, 73, 166)(12, 36, 95, 133, 253, 198, 277, 164, 285, 332, 140, 151)(15, 46, 114, 210, 290, 227, 222, 269, 66, 155, 279, 322)(16, 49, 119, 211, 76, 169, 286, 313, 335, 178, 209, 89)(17, 50, 122, 84, 168, 239, 315, 289, 56, 107, 213, 184)(19, 57, 137, 85, 185, 206, 231, 68, 158, 281, 323, 21)(20, 60, 145, 86, 157, 267, 325, 299, 113, 224, 311, 181)(23, 67, 156, 244, 297, 72, 139, 262, 196, 292, 147, 272)(24, 69, 159, 245, 201, 282, 207, 270, 61, 148, 273, 260)(27, 78, 174, 246, 324, 45, 62, 149, 274, 319, 44, 111)(28, 80, 162, 242, 316, 190, 275, 108, 216, 307, 126, 240)(32, 87, 146, 249, 40, 103, 205, 256, 173, 58, 141, 263)(33, 88, 189, 250, 308, 48, 118, 229, 304, 333, 70, 161)(37, 97, 202, 254, 90, 191, 259, 318, 77, 172, 278, 314)(43, 109, 217, 194, 293, 121, 230, 117, 228, 235, 317, 295)(47, 116, 226, 303, 98, 120, 219, 309, 170, 280, 223, 233)(51, 125, 238, 183, 100, 203, 300, 171, 220, 214, 306, 294)(52, 127, 241, 177, 150, 225, 312, 334, 187, 215, 79, 99)(59, 143, 266, 186, 101, 204, 301, 82, 83, 182, 291, 195)(102, 165, 271, 329, 298, 200, 283, 330, 287, 193, 144, 268)(110, 221, 310, 296, 199, 136, 258, 192, 288, 124, 236, 112)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 54 ]
336
-1 2 212 5 107
-2 1 14 213 6
-3 15 214 281 7
-4 224 16 215 8
-5 1 17 41 217
-6 2 18 184 42
-7 3 19 305 43
-8 44 4 258 20
-9 45 239 273 21
-10 22 46 323 306
-11 23 47 205 108
-12 24 48 279 182
-13 79 25 311 49
-14 2 104 50 194
-15 308 3 51 95
-16 4 103 238 52
-17 5 105 18 85
-18 6 17 106 53
-19 26 7 107 54
-20 55 170 8 108
-21 56 30 327 9
-22 57 74 10 109
-23 11 110 58 230
-24 12 59 324 75
-25 111 13 60 192
-26 62 260 315 19
-27 112 71 61 105
-28 267 39 226 98
-29 310 113 62 328
-30 114 63 294 21
-31 122 115 53 64
-32 244 313 51 65
-33 66 102 202 164
-34 67 256 116 216
-35 68 117 42 163
-36 69 322 291 118
-37 330 79 101 70
-38 99 71 181 119
-39 28 72 120 263
-40 89 100 73 262
-41 121 92 5 206
-42 122 35 6 293
-43 123 7 139 296
-44 124 8 207 175
-45 199 69 326 9
-46 133 48 125 10
-47 11 157 126 216
-48 12 46 200 318
-49 13 127 183 205
-50 14 53 185 208
-51 209 15 32 54
-52 55 202 16 186
-53 176 50 18 31
-54 210 51 128 19
-55 211 52 129 20
-56 212 74 130 21
-57 22 213 75 131
-58 132 23 214 76
-59 77 133 24 215
-60 134 25 280 216
-61 135 27 83 285
-62 26 136 159 29
-63 167 137 30 217
-64 138 84 31 218
-65 80 139 32 219
-66 33 220 140 284
-67 34 221 117 141
-68 35 168 142 208
-69 143 45 36 130
-70 198 144 222 37
-71 145 288 27 38
-72 146 136 39 295
-73 190 223 147 40
-74 22 56 248 317
-75 24 57 289 149
-76 134 58 300 150
-77 59 312 118 329
-78 110 148 129 208
-79 143 209 13 37
-80 303 325 65 120
-81 224 149 336 296
-82 254 270 150 140
-83 90 225 61 151
-84 231 135 106 64
-85 232 17 128 152
-86 233 126 129 153
-87 154 297 125 335
-88 165 155 254 285
-89 99 125 237 40
-90 189 268 83 241
-91 156 226 173 307
-92 137 227 238 41
-93 134 157 236 174
-94 158 106 228 284
-95 15 159 195 229
-96 145 169 160 241
-97 99 287 204 161
-98 113 28 162 251
-99 89 266 38 97
-100 290 40 119 163
-101 201 37 127 164
-102 33 165 191 268
-103 166 16 203 196
-104 231 14 152 230
-105 231 27 17 282
-106 121 94 18 84
-107 1 232 167 19
-108 11 233 280 20
-109 22 199 234 262
-110 23 78 235 261
-111 276 25 236 270
-112 27 160 228 272
-113 242 237 29 98
-114 253 238 30 118
-115 117 239 31 252
-116 34 267 240 307
-117 67 35 115 236
-118 77 36 114 283
-119 100 256 38 241
-120 242 80 224 39
-121 288 106 41 272
-122 302 206 31 42
-123 180 213 128 43
-124 44 292 129 230
-125 89 46 87 131
-126 132 47 226 86
-127 254 101 134 49
-128 123 194 85 54
-129 55 78 124 86
-130 56 69 137 274
-131 243 57 125 290
-132 244 58 126 303
-133 46 245 59 304
-134 60 93 127 76
-135 246 61 281 84
-136 247 72 62 217
-137 92 63 184 130
-138 168 248 305 64
-139 258 249 43 65
-140 66 82 250 273
-141 67 169 251 306
-142 68 279 171 252
-143 253 79 69 172
-144 254 70 268 193
-145 223 71 96 307
-146 178 255 72 238
-147 256 236 73 293
-148 78 332 257 182
-149 245 81 258 75
-150 264 82 259 76
-151 308 155 83 260
-152 222 104 183 85
-153 286 177 261 86
-154 309 162 262 87
-155 88 331 214 151
-156 310 91 228 263
-157 264 47 93 240
-158 265 302 94 239
-159 232 266 62 95
-160 112 267 246 96
-161 277 268 269 97
-162 154 299 98 219
-163 100 35 269 185
-164 33 101 270 227
-165 88 102 259 271
-166 275 233 103 272
-167 320 63 107 295
-168 176 68 257 138
-169 225 171 96 141
-170 275 255 316 20
-171 256 169 269 142
-172 143 298 334 229
-173 220 211 91 272
-174 221 93 302 273
-175 44 245 213 185
-176 168 53 197 230
-177 211 191 301 153
-178 146 215 336 294
-179 188 199 311 274
-180 320 123 212 289
-181 275 309 38 247
-182 12 191 312 148
-183 210 49 249 152
-184 276 234 137 6
-185 243 50 163 175
-186 277 245 314 52
-187 278 335 237 195
-188 209 299 179 334
-189 90 332 279 271
-190 309 311 280 73
-191 177 102 182 250
-192 25 293 262 274
-193 144 287 333 202
-194 14 258 292 128
-195 187 95 260 318
-196 255 288 103 217
-197 176 331 235 281
-198 210 266 70 282
-199 297 45 179 109
-200 298 278 48 283
-201 253 276 101 274
-202 33 301 193 52
-203 211 103 227 284
-204 282 97 241 285
-205 11 300 49 292
-206 122 276 41 284
-207 44 277 301 208
-208 78 68 50 207
-209 188 79 51 249
-210 198 183 229 54
-211 55 177 203 173
-212 1 56 234 180
-213 2 57 123 175
-214 155 3 58 313
-215 178 4 59 314
-216 34 47 223 60
-217 136 5 63 196
-218 315 228 327 64
-219 311 162 316 65
-220 66 286 265 173
-221 67 326 174 317
-222 300 70 152 285
-223 275 145 73 216
-224 4 81 316 120
-225 169 83 328 318
-226 91 126 28 325
-227 333 92 203 164
-228 112 156 94 218
-229 330 210 95 172
-230 176 23 124 104
-231 331 104 105 84
-232 319 159 85 107
-233 166 86 108 307
-234 243 212 184 109
-235 110 244 305 197
-236 111 147 93 117
-237 187 89 113 247
-238 146 92 114 16
-239 158 115 248 9
-240 157 116 303 251
-241 90 204 96 119
-242 309 255 113 120
-243 234 293 185 131
-244 132 235 32 296
-245 133 149 175 186
-246 310 135 160 260
-247 319 136 181 237
-248 320 138 74 239
-249 209 321 139 183
-250 322 191 140 329
-251 297 141 240 98
-252 323 115 317 142
-253 143 201 333 114
-254 88 144 82 127
-255 242 146 170 196
-256 34 147 171 119
-257 168 323 148 324
-258 149 139 194 8
-259 165 308 291 150
-260 26 246 151 195
-261 110 324 325 153
-262 154 192 40 109
-263 286 156 39 294
-264 157 313 150 326
-265 220 322 158 327
-266 99 198 278 159
-267 28 116 160 328
-268 144 90 102 161
-269 332 171 161 163
-270 111 82 302 164
-271 165 189 318 329
-272 121 166 112 173
-273 291 140 9 174
-274 179 201 192 130
-275 166 223 170 181
-276 111 201 184 206
-277 290 161 207 186
-278 187 200 266 304
-279 12 189 306 142
-280 321 190 60 108
-281 3 135 315 197
-282 198 319 105 204
-283 330 200 314 118
-284 66 203 94 206
-285 88 222 61 204
-286 220 312 153 263
-287 330 193 304 97
-288 121 319 71 196
-289 180 323 305 75
-290 100 277 304 131
-291 36 334 259 273
-292 321 124 194 205
-293 243 147 192 42
-294 178 322 30 263
-295 167 310 72 327
-296 244 81 324 43
-297 199 251 317 87
-298 308 200 172 329
-299 188 303 326 162
-300 331 222 205 76
-301 177 332 202 207
-302 122 158 270 174
-303 132 299 80 240
-304 133 287 278 290
-305 289 235 138 7
-306 279 335 141 10
-307 145 233 91 116
-308 298 15 259 151
-309 154 242 190 181
-310 156 246 29 295
-311 13 179 190 219
-312 77 286 182 336
-313 264 334 214 32
-314 333 215 283 186
-315 320 26 281 218
-316 321 224 170 219
-317 297 221 74 252
-318 48 225 271 195
-319 232 288 247 282
-320 167 180 248 315
-321 280 292 249 316
-322 265 36 250 294
-323 289 257 10 252
-324 24 257 261 296
-325 80 226 336 261
-326 264 45 221 299
-327 265 218 295 21
-328 267 225 335 29
-329 77 298 271 250
-330 287 37 283 229
-331 231 155 300 197
-332 189 301 148 269
-333 253 193 314 227
-334 188 291 313 172
-335 187 306 328 87
-336 178 81 312 325
0

**************