C4graphGraph forms for C4 [ 336, 55 ] = UG(ATD[336,7])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 55 ] = UG(ATD[336,7]).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {1, 2}, {1, 5}, {304, 308}, {3, 7}, {2, 6}, {195, 199}, {208, 214}, {194, 197}, {259, 260}, {65, 73}, {66, 72}, {4, 8}, {213, 217}, {2, 15}, {86, 88}, {246, 248}, {22, 25}, {42, 59}, {3, 16}, {11, 24}, {7, 20}, {4, 23}, {78, 90}, {300, 312}, {108, 120}, {239, 251}, {4, 17}, {41, 60}, {14, 27}, {12, 25}, {6, 19}, {198, 211}, {225, 244}, {5, 18}, {99, 116}, {98, 117}, {13, 26}, {232, 255}, {237, 250}, {236, 244}, {303, 311}, {238, 247}, {100, 126}, {296, 306}, {207, 212}, {299, 304}, {203, 215}, {206, 210}, {8, 21}, {10, 23}, {70, 88}, {207, 209}, {9, 22}, {132, 155}, {86, 119}, {270, 303}, {133, 164}, {135, 166}, {134, 165}, {194, 230}, {262, 290}, {24, 61}, {26, 63}, {3, 36}, {25, 62}, {16, 55}, {8, 47}, {5, 44}, {21, 60}, {19, 58}, {17, 56}, {7, 46}, {13, 39}, {6, 45}, {18, 57}, {212, 255}, {90, 118}, {20, 59}, {207, 224}, {223, 240}, {208, 225}, {210, 227}, {214, 231}, {215, 230}, {20, 38}, {259, 305}, {150, 164}, {141, 190}, {142, 189}, {143, 188}, {209, 226}, {219, 232}, {256, 309}, {10, 60}, {149, 163}, {131, 180}, {211, 228}, {31, 39}, {66, 122}, {9, 48}, {65, 120}, {15, 54}, {13, 52}, {11, 50}, {10, 49}, {14, 53}, {219, 224}, {209, 237}, {67, 126}, {210, 239}, {12, 51}, {263, 327}, {271, 335}, {269, 333}, {267, 331}, {2, 67}, {164, 229}, {165, 228}, {175, 238}, {265, 330}, {162, 230}, {166, 227}, {269, 328}, {262, 323}, {167, 226}, {161, 231}, {278, 336}, {129, 198}, {176, 248}, {258, 330}, {257, 329}, {12, 69}, {261, 332}, {14, 68}, {155, 208}, {261, 334}, {257, 333}, {11, 70}, {132, 202}, {188, 243}, {260, 331}, {148, 196}, {151, 199}, {183, 229}, {284, 334}, {9, 92}, {161, 244}, {9, 95}, {282, 332}, {286, 329}, {140, 213}, {156, 197}, {284, 326}, {27, 64}, {5, 88}, {62, 99}, {35, 126}, {30, 67}, {28, 65}, {32, 126}, {33, 127}, {29, 66}, {61, 98}, {55, 104}, {153, 198}, {15, 111}, {302, 334}, {301, 333}, {21, 117}, {20, 116}, {19, 115}, {18, 114}, {17, 113}, {16, 112}, {23, 118}, {59, 90}, {29, 124}, {27, 122}, {25, 120}, {40, 74}, {41, 75}, {26, 121}, {30, 125}, {32, 68}, {35, 71}, {34, 70}, {33, 69}, {4, 97}, {309, 336}, {60, 89}, {42, 76}, {43, 77}, {190, 216}, {28, 123}, {56, 82}, {134, 234}, {37, 72}, {39, 73}, {40, 70}, {135, 233}, {185, 215}, {24, 119}, {183, 199}, {52, 66}, {43, 83}, {316, 324}, {31, 102}, {310, 335}, {137, 240}, {48, 75}, {133, 249}, {167, 219}, {22, 105}, {314, 325}, {82, 209}, {31, 152}, {120, 255}, {52, 188}, {68, 205}, {117, 252}, {115, 250}, {110, 231}, {119, 254}, {123, 242}, {100, 239}, {118, 253}, {114, 249}, {82, 222}, {109, 224}, {124, 241}, {30, 144}, {38, 168}, {55, 184}, {116, 251}, {44, 190}, {56, 172}, {108, 248}, {103, 243}, {102, 242}, {101, 241}, {100, 240}, {63, 171}, {1, 148}, {30, 137}, {113, 235}, {78, 213}, {104, 244}, {107, 247}, {106, 246}, {105, 245}, {93, 192}, {96, 253}, {68, 228}, {95, 255}, {91, 251}, {69, 229}, {6, 167}, {7, 166}, {125, 220}, {34, 128}, {38, 132}, {35, 129}, {64, 227}, {44, 136}, {57, 157}, {47, 139}, {46, 138}, {45, 137}, {54, 147}, {36, 130}, {55, 145}, {54, 144}, {37, 131}, {63, 152}, {79, 232}, {78, 233}, {10, 162}, {84, 252}, {62, 151}, {121, 208}, {11, 161}, {57, 147}, {56, 146}, {28, 182}, {43, 128}, {111, 196}, {61, 150}, {15, 163}, {28, 176}, {8, 165}, {87, 250}, {80, 253}, {42, 135}, {40, 133}, {58, 148}, {85, 251}, {73, 231}, {72, 230}, {59, 149}, {41, 134}, {86, 249}, {36, 149}, {79, 254}, {58, 136}, {34, 150}, {104, 221}, {33, 151}, {114, 196}, {127, 201}, {83, 235}, {87, 239}, {86, 238}, {85, 237}, {84, 236}, {32, 153}, {80, 233}, {37, 156}, {53, 143}, {94, 228}, {81, 234}, {39, 155}, {49, 140}, {51, 142}, {92, 226}, {93, 227}, {50, 141}, {13, 205}, {14, 206}, {12, 207}, {44, 232}, {94, 154}, {35, 234}, {102, 175}, {100, 173}, {3, 201}, {123, 177}, {101, 174}, {78, 130}, {96, 172}, {124, 178}, {125, 179}, {109, 191}, {72, 155}, {113, 162}, {112, 163}, {76, 159}, {16, 196}, {17, 197}, {73, 156}, {75, 158}, {29, 203}, {29, 202}, {103, 176}, {74, 157}, {71, 144}, {38, 241}, {105, 177}, {110, 182}, {109, 181}, {108, 180}, {107, 179}, {106, 178}, {64, 153}, {58, 224}, {89, 130}, {61, 225}, {62, 226}, {71, 154}, {115, 173}, {77, 146}, {22, 246}, {97, 128}, {42, 206}, {76, 168}, {48, 216}, {95, 182}, {53, 223}, {74, 160}, {48, 219}, {31, 243}, {49, 220}, {82, 191}, {77, 160}, {64, 173}, {51, 222}, {79, 161}, {40, 199}, {50, 221}, {41, 198}, {75, 187}, {105, 153}, {104, 152}, {101, 149}, {87, 167}, {69, 180}, {84, 165}, {80, 162}, {102, 148}, {91, 169}, {81, 163}, {85, 166}, {91, 168}, {45, 216}, {94, 171}, {92, 169}, {47, 218}, {26, 236}, {110, 152}, {46, 217}, {93, 170}, {83, 164}, {103, 156}, {106, 151}, {107, 150}, {96, 159}, {119, 136}, {33, 291}, {36, 289}, {43, 302}, {37, 290}, {74, 322}, {45, 292}, {54, 319}, {47, 291}, {23, 281}, {76, 323}, {1, 272}, {53, 295}, {50, 289}, {52, 301}, {92, 321}, {94, 320}, {49, 272}, {63, 283}, {51, 281}, {21, 292}, {32, 273}, {57, 266}, {19, 293}, {34, 277}, {18, 296}, {46, 277}, {27, 294}, {24, 295}, {95, 285}, {115, 305}, {108, 302}, {103, 293}, {118, 308}, {79, 267}, {77, 264}, {116, 306}, {117, 307}, {101, 290}, {112, 313}, {127, 310}, {88, 274}, {89, 275}, {123, 305}, {81, 282}, {98, 297}, {83, 287}, {106, 294}, {90, 276}, {113, 319}, {124, 306}, {125, 307}, {122, 309}, {87, 263}, {110, 318}, {109, 317}, {111, 318}, {97, 307}, {121, 298}, {81, 260}, {99, 310}, {98, 311}, {71, 287}, {112, 296}, {80, 266}, {84, 265}, {85, 264}, {93, 315}, {114, 283}, {96, 268}, {111, 259}, {89, 308}, {97, 271}, {91, 298}, {67, 305}, {99, 278}, {65, 312}, {121, 256}, {107, 273}, {122, 257}, {127, 258}, {204, 332}, {129, 259}, {132, 262}, {138, 264}, {139, 265}, {142, 268}, {143, 269}, {192, 322}, {193, 323}, {203, 329}, {147, 272}, {157, 286}, {158, 285}, {206, 333}, {138, 270}, {139, 271}, {189, 312}, {193, 324}, {130, 260}, {131, 261}, {140, 266}, {141, 267}, {184, 318}, {185, 319}, {192, 329}, {193, 328}, {204, 325}, {144, 282}, {145, 283}, {154, 273}, {159, 276}, {197, 334}, {183, 315}, {200, 324}, {158, 275}, {137, 263}, {146, 284}, {157, 274}, {175, 288}, {200, 327}, {172, 317}, {222, 335}, {159, 269}, {211, 321}, {168, 316}, {181, 288}, {214, 323}, {143, 280}, {183, 302}, {184, 289}, {186, 291}, {179, 297}, {191, 293}, {202, 336}, {160, 315}, {185, 290}, {217, 322}, {129, 285}, {188, 288}, {146, 271}, {174, 304}, {140, 275}, {141, 274}, {145, 270}, {180, 299}, {187, 292}, {154, 314}, {229, 325}, {170, 264}, {171, 265}, {139, 303}, {178, 278}, {142, 299}, {245, 336}, {225, 324}, {177, 279}, {136, 288}, {189, 276}, {147, 313}, {176, 284}, {177, 285}, {178, 286}, {179, 287}, {190, 275}, {169, 263}, {171, 280}, {174, 282}, {245, 321}, {175, 283}, {160, 277}, {172, 281}, {254, 328}, {128, 311}, {247, 320}, {181, 268}, {173, 279}, {174, 276}, {131, 312}, {252, 327}, {189, 262}, {134, 314}, {250, 326}, {170, 279}, {182, 267}, {169, 278}, {195, 258}, {203, 266}, {218, 281}, {133, 320}, {135, 322}, {138, 335}, {201, 270}, {213, 274}, {216, 272}, {221, 277}, {241, 313}, {242, 318}, {246, 315}, {223, 273}, {243, 317}, {247, 295}, {253, 301}, {254, 300}, {204, 287}, {245, 294}, {211, 256}, {158, 331}, {205, 280}, {242, 293}, {212, 268}, {235, 307}, {240, 297}, {145, 330}, {236, 311}, {237, 310}, {195, 286}, {234, 308}, {202, 298}, {218, 314}, {200, 297}, {200, 298}, {220, 319}, {223, 316}, {192, 294}, {193, 295}, {204, 299}, {233, 257}, {218, 304}, {195, 296}, {170, 326}, {210, 316}, {215, 313}, {235, 261}, {194, 301}, {248, 279}, {186, 330}, {221, 303}, {184, 331}, {185, 332}, {238, 280}, {205, 309}, {212, 300}, {217, 289}, {220, 292}, {191, 326}, {186, 320}, {187, 321}, {214, 300}, {201, 306}, {249, 258}, {187, 327}, {252, 256}, {181, 328}, {222, 291}, {186, 325}, {194, 317} }>;

(II) A more general form is to represent the graph as the orbit of {1, 2} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 13)(6, 18)(7, 22)(8, 26)(10, 31)(11, 35)(12, 38)(14, 43)(15, 44)(16, 48)(17, 52)(19, 57)(20, 25)(21, 63)(23, 39)(24, 71)(27, 77)(28, 78)(29, 82)(30, 86)(32, 34)(33, 91)(36, 95)(37, 96)(40, 100)(41, 104)(42, 108)(45, 114)(46, 105)(47, 121)(49, 102)(50, 129)(51, 132)(53, 83)(54, 136)(55, 75)(56, 66)(58, 147)(59, 120)(60, 152)(61, 154)(62, 116)(64, 160)(65, 90)(67, 88)(68, 128)(69, 168)(70, 126)(72, 172)(73, 118)(74, 173)(76, 180)(79, 81)(80, 103)(85, 106)(87, 195)(89, 110)(92, 201)(94, 98)(97, 205)(101, 212)(109, 215)(111, 190)(112, 219)(113, 188)(115, 157)(117, 171)(119, 144)(122, 146)(123, 213)(124, 209)(125, 238)(127, 169)(130, 182)(131, 159)(133, 240)(134, 244)(135, 248)(137, 249)(138, 245)(139, 256)(140, 242)(141, 259)(142, 262)(143, 235)(145, 187)(148, 272)(149, 255)(150, 273)(151, 251)(153, 277)(155, 281)(156, 253)(158, 184)(161, 234)(162, 243)(163, 232)(164, 223)(165, 236)(166, 246)(167, 296)(170, 192)(174, 300)(175, 220)(176, 233)(177, 217)(178, 237)(179, 247)(181, 185)(183, 210)(186, 200)(191, 203)(193, 204)(196, 216)(197, 301)(198, 221)(199, 239)(202, 222)(206, 302)(207, 241)(208, 218)(211, 303)(214, 304)(224, 313)(225, 314)(226, 306)(227, 315)(228, 311)(229, 316)(230, 317)(231, 308)(250, 286)(252, 265)(254, 282)(257, 284)(258, 263)(260, 267)(261, 269)(264, 294)(266, 293)(268, 290)(270, 321)(271, 309)(274, 305)(275, 318)(276, 312)(278, 310)(279, 322)(280, 307)(283, 292)(285, 289)(287, 295)(288, 319)(291, 298)(297, 320)(299, 323)(324, 325)(326, 329)(327, 330)(328, 332)(333, 334)(335, 336)
b: (1, 2, 6, 19, 58, 148)(3, 10, 32, 62, 156, 24)(4, 14, 33, 72, 150, 20)(5, 15, 45, 115, 224, 102)(7, 23, 68, 151, 37, 61)(8, 27, 69, 155, 34, 59)(9, 28, 79, 184, 275, 129)(11, 36, 60, 153, 25, 73)(12, 39, 70, 149, 21, 64)(13, 40, 101, 117, 227, 51)(16, 49, 126, 226, 103, 119)(17, 53, 127, 230, 107, 116)(18, 54, 137, 250, 109, 175)(22, 65, 161, 289, 89, 198)(26, 74, 174, 252, 93, 142)(29, 83, 168, 271, 333, 186)(30, 87, 191, 288, 114, 147)(31, 88, 163, 292, 173, 207)(35, 92, 176, 254, 55, 140)(38, 97, 206, 291, 66, 164)(41, 105, 120, 231, 50, 130)(42, 47, 122, 229, 132, 128)(43, 76, 139, 257, 325, 202)(44, 111, 216, 305, 219, 242)(46, 118, 228, 106, 131, 225)(48, 123, 232, 318, 190, 259)(52, 133, 241, 307, 210, 222)(56, 143, 258, 215, 179, 251)(57, 144, 263, 326, 181, 283)(63, 157, 282, 327, 170, 268)(67, 167, 293, 136, 196, 272)(71, 169, 284, 328, 145, 266)(75, 177, 255, 110, 141, 260)(77, 159, 265, 329, 204, 298)(78, 134, 245, 108, 214, 221)(80, 154, 278, 334, 193, 270)(81, 187, 279, 212, 152, 274)(82, 188, 249, 313, 125, 239)(84, 192, 299, 121, 160, 276)(85, 172, 280, 195, 185, 297)(86, 112, 220, 100, 209, 243)(90, 165, 294, 180, 208, 277)(91, 146, 269, 330, 203, 287)(94, 178, 261, 324, 138, 253)(95, 182, 267, 331, 158, 285)(96, 171, 286, 332, 200, 264)(98, 166, 281, 205, 199, 290)(99, 197, 295, 201, 162, 273)(104, 213, 234, 321, 248, 300)(113, 223, 310, 194, 247, 306)(124, 235, 316, 335, 301, 320)(135, 218, 309, 183, 262, 311)(189, 236, 322, 304, 256, 315)(211, 246, 312, 244, 217, 308)(233, 314, 336, 302, 323, 303)(237, 317, 238, 296, 319, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 55 ]
336
-1 2 5 148 272
-2 1 67 15 6
-3 36 201 16 7
-4 23 17 8 97
-5 44 88 1 18
-6 45 2 167 19
-7 166 46 3 20
-8 165 47 4 21
-9 22 48 92 95
-10 23 49 60 162
-11 24 70 50 161
-12 25 69 51 207
-13 26 39 205 52
-14 68 27 206 53
-15 111 2 163 54
-16 55 112 3 196
-17 56 113 4 197
-18 57 114 5 296
-19 58 115 6 293
-20 59 38 116 7
-21 60 292 117 8
-22 25 246 105 9
-23 4 281 118 10
-24 11 61 119 295
-25 22 12 62 120
-26 121 13 236 63
-27 122 14 294 64
-28 176 123 182 65
-29 66 124 202 203
-30 67 144 125 137
-31 243 102 39 152
-32 68 126 273 153
-33 69 291 127 151
-34 277 70 128 150
-35 234 71 126 129
-36 3 289 149 130
-37 156 290 72 131
-38 132 168 20 241
-39 155 13 73 31
-40 133 199 70 74
-41 198 134 60 75
-42 135 59 206 76
-43 77 302 83 128
-44 232 190 136 5
-45 137 6 292 216
-46 277 138 7 217
-47 291 139 8 218
-48 216 9 75 219
-49 220 140 272 10
-50 11 221 289 141
-51 12 222 281 142
-52 66 188 13 301
-53 143 14 223 295
-54 319 144 15 147
-55 145 16 104 184
-56 146 82 17 172
-57 266 157 147 18
-58 136 224 148 19
-59 90 149 20 42
-60 89 41 10 21
-61 24 225 150 98
-62 99 25 226 151
-63 26 171 283 152
-64 27 227 173 153
-65 312 28 73 120
-66 122 72 29 52
-67 2 126 30 305
-68 14 205 228 32
-69 33 12 180 229
-70 11 88 34 40
-71 154 144 287 35
-72 66 155 37 230
-73 231 156 39 65
-74 157 322 160 40
-75 187 48 158 41
-76 168 323 159 42
-77 264 146 160 43
-78 90 233 213 130
-79 232 254 267 161
-80 253 233 266 162
-81 234 260 282 163
-82 209 56 222 191
-83 287 235 43 164
-84 165 265 236 252
-85 264 166 237 251
-86 88 238 249 119
-87 167 239 250 263
-88 70 5 86 274
-89 275 308 60 130
-90 78 276 59 118
-91 298 168 169 251
-92 321 169 226 9
-93 170 192 227 315
-94 154 320 171 228
-95 255 182 9 285
-96 253 268 159 172
-97 4 128 271 307
-98 297 311 61 117
-99 310 278 116 62
-100 126 173 239 240
-101 290 149 174 241
-102 242 148 31 175
-103 176 243 156 293
-104 55 221 244 152
-105 22 177 245 153
-106 178 246 151 294
-107 179 247 150 273
-108 180 302 248 120
-109 191 224 181 317
-110 231 182 152 318
-111 15 259 196 318
-112 16 313 163 296
-113 319 235 17 162
-114 18 249 283 196
-115 19 173 250 305
-116 99 20 251 306
-117 307 21 98 252
-118 253 308 23 90
-119 254 24 136 86
-120 255 25 108 65
-121 298 256 26 208
-122 66 309 257 27
-123 242 177 28 305
-124 178 29 306 241
-125 220 179 30 307
-126 67 100 35 32
-127 33 310 201 258
-128 34 311 97 43
-129 198 35 259 285
-130 78 89 36 260
-131 37 180 312 261
-132 155 202 38 262
-133 320 40 249 164
-134 165 234 314 41
-135 166 233 322 42
-136 44 288 58 119
-137 45 30 240 263
-138 264 46 335 270
-139 265 47 303 271
-140 275 266 213 49
-141 190 267 50 274
-142 189 299 268 51
-143 188 269 280 53
-144 71 282 30 54
-145 55 330 270 283
-146 77 56 271 284
-147 57 313 272 54
-148 1 58 102 196
-149 101 36 59 163
-150 34 61 107 164
-151 33 199 62 106
-152 110 104 63 31
-153 198 105 64 32
-154 71 94 314 273
-155 132 39 72 208
-156 37 103 73 197
-157 286 57 74 274
-158 275 331 75 285
-159 276 269 96 76
-160 77 277 315 74
-161 11 231 79 244
-162 80 113 10 230
-163 112 15 81 149
-164 133 83 150 229
-165 134 84 8 228
-166 135 7 227 85
-167 6 226 87 219
-168 91 38 316 76
-169 91 278 92 263
-170 264 279 93 326
-171 265 280 94 63
-172 56 281 96 317
-173 100 279 115 64
-174 276 101 282 304
-175 288 102 238 283
-176 103 28 248 284
-177 123 279 105 285
-178 286 124 278 106
-179 297 287 125 107
-180 299 69 108 131
-181 288 268 328 109
-182 110 267 28 95
-183 199 302 315 229
-184 55 331 289 318
-185 319 332 290 215
-186 330 320 291 325
-187 321 292 327 75
-188 143 243 288 52
-189 276 312 262 142
-190 44 275 216 141
-191 82 293 326 109
-192 322 93 294 329
-193 323 324 295 328
-194 301 317 197 230
-195 286 199 258 296
-196 111 114 16 148
-197 156 334 17 194
-198 211 41 129 153
-199 40 183 151 195
-200 297 298 324 327
-201 3 127 270 306
-202 132 298 336 29
-203 266 215 29 329
-204 287 299 332 325
-205 309 13 68 280
-206 210 14 333 42
-207 209 12 212 224
-208 121 155 214 225
-209 82 226 237 207
-210 227 206 239 316
-211 198 321 256 228
-212 255 300 268 207
-213 78 140 217 274
-214 231 300 323 208
-215 203 313 185 230
-216 45 190 48 272
-217 46 289 322 213
-218 47 281 314 304
-219 232 167 48 224
-220 319 125 49 292
-221 277 104 50 303
-222 82 291 335 51
-223 316 53 240 273
-224 58 207 109 219
-225 244 324 61 208
-226 209 167 92 62
-227 166 210 93 64
-228 165 68 211 94
-229 69 325 183 164
-230 72 215 194 162
-231 110 214 73 161
-232 44 79 255 219
-233 78 80 135 257
-234 308 35 134 81
-235 113 83 261 307
-236 244 311 26 84
-237 209 310 85 250
-238 247 280 86 175
-239 100 210 251 87
-240 297 100 223 137
-241 101 124 38 313
-242 123 102 293 318
-243 188 103 31 317
-244 104 225 236 161
-245 321 105 336 294
-246 22 248 106 315
-247 320 238 107 295
-248 176 246 279 108
-249 133 114 258 86
-250 115 237 326 87
-251 91 116 85 239
-252 256 84 117 327
-253 80 301 96 118
-254 79 300 119 328
-255 232 212 95 120
-256 121 309 211 252
-257 122 233 333 329
-258 330 127 249 195
-259 111 260 129 305
-260 331 81 259 130
-261 332 235 334 131
-262 132 189 290 323
-263 169 137 327 87
-264 77 170 138 85
-265 330 171 84 139
-266 57 80 203 140
-267 331 79 182 141
-268 212 181 96 142
-269 143 333 159 328
-270 145 201 138 303
-271 146 335 139 97
-272 1 147 49 216
-273 154 223 107 32
-274 88 157 213 141
-275 89 190 158 140
-276 90 189 159 174
-277 34 221 46 160
-278 99 178 169 336
-279 177 170 248 173
-280 143 171 205 238
-281 23 51 172 218
-282 144 332 81 174
-283 145 114 63 175
-284 176 146 334 326
-285 177 158 95 129
-286 178 157 195 329
-287 179 71 83 204
-288 188 136 181 175
-289 36 50 184 217
-290 101 37 185 262
-291 33 222 47 186
-292 187 220 45 21
-293 242 103 191 19
-294 245 27 192 106
-295 24 247 193 53
-296 112 18 195 306
-297 200 179 240 98
-298 121 200 91 202
-299 180 204 304 142
-300 254 212 312 214
-301 253 333 194 52
-302 334 183 108 43
-303 221 311 270 139
-304 308 299 174 218
-305 67 123 115 259
-306 124 201 116 296
-307 125 235 117 97
-308 89 234 304 118
-309 122 256 336 205
-310 99 335 127 237
-311 236 303 128 98
-312 189 300 65 131
-313 112 147 215 241
-314 154 134 325 218
-315 246 93 160 183
-316 210 168 223 324
-317 243 172 194 109
-318 110 242 111 184
-319 220 113 185 54
-320 133 247 94 186
-321 187 211 245 92
-322 135 192 74 217
-323 214 193 262 76
-324 200 225 193 316
-325 204 314 229 186
-326 191 170 250 284
-327 187 200 252 263
-328 254 181 269 193
-329 286 257 192 203
-330 265 145 258 186
-331 267 158 260 184
-332 204 282 261 185
-333 257 301 269 206
-334 302 261 284 197
-335 222 310 138 271
-336 309 245 278 202
0

**************