C4graphGraph forms for C4 [ 336, 57 ] = UG(ATD[336,25])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 57 ] = UG(ATD[336,25]).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {4, 6}, {261, 263}, {1, 2}, {333, 334}, {1, 5}, {3, 7}, {2, 6}, {58, 63}, {330, 335}, {329, 332}, {275, 278}, {138, 143}, {162, 164}, {297, 303}, {64, 72}, {326, 334}, {23, 29}, {134, 140}, {178, 184}, {2, 14}, {305, 317}, {4, 8}, {3, 15}, {165, 169}, {85, 88}, {162, 175}, {145, 159}, {272, 286}, {178, 188}, {199, 201}, {33, 46}, {324, 331}, {87, 88}, {82, 93}, {213, 218}, {70, 86}, {289, 305}, {36, 53}, {34, 48}, {322, 336}, {32, 51}, {298, 313}, {167, 180}, {262, 277}, {4, 16}, {296, 316}, {72, 92}, {5, 17}, {194, 214}, {202, 222}, {205, 217}, {7, 18}, {295, 306}, {292, 305}, {13, 24}, {198, 208}, {35, 52}, {37, 61}, {139, 147}, {11, 18}, {164, 189}, {261, 284}, {8, 19}, {137, 146}, {12, 23}, {9, 20}, {294, 315}, {34, 63}, {32, 61}, {12, 17}, {11, 22}, {268, 273}, {13, 19}, {296, 310}, {10, 21}, {298, 309}, {33, 62}, {5, 37}, {279, 311}, {16, 48}, {15, 47}, {14, 46}, {13, 45}, {12, 44}, {11, 43}, {10, 42}, {9, 41}, {8, 40}, {7, 39}, {6, 38}, {155, 186}, {284, 317}, {23, 52}, {80, 115}, {31, 60}, {27, 56}, {159, 188}, {64, 100}, {282, 318}, {91, 127}, {90, 126}, {81, 117}, {20, 49}, {87, 114}, {85, 112}, {30, 59}, {28, 57}, {22, 51}, {143, 170}, {286, 312}, {21, 50}, {86, 113}, {29, 58}, {142, 169}, {206, 233}, {71, 110}, {158, 183}, {258, 299}, {268, 293}, {274, 312}, {281, 307}, {271, 292}, {275, 312}, {25, 53}, {80, 124}, {78, 98}, {30, 50}, {24, 53}, {28, 49}, {26, 55}, {82, 124}, {83, 125}, {269, 291}, {25, 54}, {140, 163}, {89, 118}, {152, 183}, {153, 182}, {31, 47}, {139, 187}, {74, 122}, {72, 121}, {144, 161}, {156, 173}, {214, 228}, {285, 302}, {79, 123}, {277, 289}, {86, 99}, {272, 293}, {145, 167}, {192, 246}, {193, 247}, {148, 163}, {147, 171}, {280, 288}, {266, 307}, {281, 288}, {78, 116}, {146, 168}, {84, 111}, {95, 100}, {154, 161}, {196, 255}, {265, 306}, {129, 189}, {283, 295}, {136, 181}, {67, 125}, {73, 119}, {70, 120}, {263, 313}, {267, 308}, {59, 123}, {63, 127}, {62, 126}, {61, 125}, {60, 124}, {180, 244}, {9, 72}, {56, 121}, {54, 119}, {259, 322}, {176, 242}, {27, 88}, {57, 122}, {48, 116}, {148, 208}, {149, 209}, {167, 227}, {171, 239}, {177, 244}, {174, 232}, {175, 233}, {172, 235}, {37, 111}, {164, 239}, {165, 238}, {271, 324}, {34, 110}, {32, 109}, {16, 95}, {55, 120}, {27, 84}, {55, 103}, {280, 328}, {276, 324}, {133, 213}, {15, 94}, {179, 225}, {14, 93}, {275, 327}, {134, 211}, {279, 322}, {137, 220}, {38, 112}, {39, 113}, {173, 251}, {182, 224}, {166, 241}, {274, 325}, {40, 114}, {41, 115}, {184, 226}, {185, 227}, {188, 230}, {45, 118}, {177, 234}, {175, 243}, {42, 116}, {272, 334}, {43, 117}, {186, 228}, {187, 229}, {173, 242}, {156, 252}, {157, 253}, {158, 254}, {159, 255}, {34, 67}, {152, 249}, {154, 251}, {163, 194}, {169, 200}, {33, 67}, {306, 336}, {35, 64}, {153, 250}, {155, 248}, {17, 117}, {303, 331}, {145, 245}, {146, 246}, {147, 247}, {36, 65}, {36, 66}, {300, 330}, {50, 85}, {302, 329}, {173, 197}, {191, 215}, {176, 217}, {291, 330}, {290, 331}, {131, 233}, {132, 239}, {290, 329}, {131, 238}, {150, 248}, {289, 335}, {130, 237}, {159, 240}, {176, 223}, {60, 76}, {151, 231}, {17, 96}, {21, 100}, {19, 98}, {158, 239}, {26, 104}, {63, 77}, {180, 198}, {18, 97}, {31, 108}, {22, 101}, {187, 207}, {318, 330}, {28, 105}, {315, 334}, {133, 240}, {62, 75}, {30, 107}, {190, 203}, {135, 241}, {20, 99}, {29, 106}, {35, 90}, {44, 85}, {157, 228}, {183, 206}, {143, 244}, {299, 336}, {137, 245}, {162, 222}, {166, 218}, {142, 243}, {172, 209}, {24, 102}, {25, 103}, {140, 242}, {156, 226}, {166, 216}, {160, 223}, {1, 128}, {106, 235}, {104, 233}, {102, 231}, {100, 229}, {98, 227}, {96, 225}, {45, 172}, {97, 226}, {105, 234}, {101, 230}, {88, 223}, {107, 236}, {106, 237}, {99, 228}, {115, 249}, {57, 178}, {103, 236}, {109, 225}, {118, 250}, {57, 183}, {116, 250}, {81, 222}, {103, 232}, {68, 213}, {70, 215}, {74, 216}, {79, 221}, {78, 220}, {75, 217}, {27, 136}, {96, 243}, {69, 214}, {64, 211}, {36, 176}, {105, 253}, {104, 252}, {69, 209}, {62, 170}, {95, 202}, {66, 212}, {77, 219}, {76, 218}, {114, 235}, {32, 186}, {118, 236}, {15, 148}, {91, 192}, {89, 194}, {51, 174}, {3, 161}, {25, 187}, {49, 149}, {96, 196}, {80, 247}, {7, 172}, {55, 155}, {41, 132}, {47, 129}, {10, 165}, {76, 252}, {119, 195}, {119, 194}, {71, 255}, {26, 163}, {10, 177}, {93, 224}, {6, 184}, {121, 198}, {12, 204}, {68, 132}, {65, 128}, {71, 134}, {69, 132}, {67, 130}, {22, 212}, {123, 185}, {79, 141}, {78, 140}, {75, 137}, {74, 136}, {47, 236}, {89, 154}, {83, 144}, {70, 133}, {66, 129}, {46, 234}, {112, 180}, {73, 141}, {68, 128}, {84, 145}, {87, 146}, {14, 200}, {111, 169}, {94, 152}, {77, 139}, {76, 138}, {68, 131}, {108, 171}, {105, 174}, {73, 142}, {83, 153}, {92, 150}, {89, 147}, {92, 151}, {87, 154}, {73, 135}, {91, 149}, {90, 148}, {95, 144}, {112, 191}, {48, 225}, {86, 135}, {82, 131}, {30, 205}, {94, 141}, {108, 184}, {93, 136}, {81, 135}, {110, 185}, {45, 245}, {53, 237}, {28, 197}, {106, 179}, {65, 152}, {38, 253}, {125, 166}, {44, 240}, {97, 189}, {80, 142}, {81, 143}, {24, 199}, {38, 196}, {39, 197}, {43, 200}, {46, 202}, {90, 190}, {44, 201}, {92, 185}, {91, 190}, {113, 150}, {58, 208}, {59, 209}, {42, 199}, {82, 191}, {40, 198}, {61, 210}, {71, 182}, {49, 195}, {97, 151}, {56, 207}, {54, 206}, {75, 179}, {1, 248}, {52, 205}, {50, 203}, {5, 252}, {104, 149}, {51, 204}, {37, 301}, {69, 329}, {20, 281}, {33, 300}, {21, 282}, {29, 265}, {3, 277}, {23, 257}, {18, 264}, {4, 293}, {43, 266}, {41, 264}, {42, 265}, {99, 320}, {101, 323}, {98, 325}, {52, 286}, {9, 292}, {54, 280}, {31, 303}, {40, 282}, {126, 333}, {19, 294}, {39, 285}, {59, 256}, {60, 263}, {110, 302}, {2, 323}, {108, 301}, {13, 335}, {101, 295}, {117, 304}, {11, 332}, {114, 314}, {77, 260}, {94, 276}, {115, 319}, {83, 286}, {8, 327}, {16, 321}, {26, 331}, {123, 303}, {122, 300}, {127, 296}, {109, 309}, {124, 293}, {121, 290}, {65, 285}, {66, 284}, {113, 273}, {35, 322}, {102, 256}, {79, 296}, {127, 277}, {74, 295}, {120, 278}, {107, 260}, {122, 267}, {120, 266}, {56, 333}, {107, 285}, {109, 282}, {126, 260}, {111, 274}, {58, 325}, {102, 281}, {84, 299}, {155, 283}, {150, 276}, {160, 291}, {138, 270}, {174, 297}, {178, 312}, {134, 269}, {157, 275}, {151, 263}, {181, 294}, {133, 272}, {210, 327}, {214, 323}, {221, 328}, {175, 313}, {215, 321}, {160, 311}, {153, 256}, {219, 320}, {223, 324}, {170, 311}, {216, 325}, {168, 310}, {221, 323}, {144, 271}, {210, 333}, {160, 256}, {162, 257}, {167, 260}, {164, 258}, {165, 259}, {224, 326}, {157, 308}, {158, 309}, {189, 278}, {168, 261}, {156, 307}, {179, 259}, {129, 304}, {130, 305}, {177, 258}, {181, 262}, {245, 326}, {243, 327}, {161, 279}, {190, 264}, {191, 265}, {168, 287}, {138, 306}, {139, 307}, {181, 269}, {186, 258}, {141, 308}, {244, 335}, {247, 332}, {251, 320}, {242, 332}, {246, 328}, {188, 259}, {254, 321}, {128, 320}, {204, 270}, {238, 300}, {227, 288}, {130, 326}, {219, 287}, {240, 309}, {254, 315}, {203, 269}, {251, 317}, {234, 301}, {199, 271}, {220, 276}, {192, 266}, {193, 267}, {211, 280}, {229, 302}, {195, 270}, {248, 310}, {195, 268}, {201, 262}, {211, 284}, {237, 290}, {246, 292}, {203, 287}, {220, 264}, {249, 301}, {235, 316}, {207, 279}, {230, 318}, {231, 319}, {200, 273}, {241, 299}, {201, 274}, {231, 316}, {241, 298}, {215, 267}, {255, 289}, {212, 308}, {224, 257}, {216, 314}, {171, 328}, {229, 262}, {218, 318}, {219, 319}, {213, 304}, {250, 287}, {254, 283}, {182, 336}, {193, 297}, {192, 297}, {230, 268}, {170, 321}, {193, 298}, {212, 319}, {208, 317}, {221, 304}, {232, 261}, {202, 314}, {210, 291}, {196, 311}, {207, 316}, {204, 315}, {205, 314}, {249, 270}, {206, 310}, {222, 294}, {238, 278}, {217, 288}, {226, 283}, {232, 273}, {197, 313}, {253, 257} }>;

(II) A more general form is to represent the graph as the orbit of {4, 6} under the group generated by the following permutations:

a: (2, 5)(4, 12)(6, 17)(7, 15)(8, 23)(9, 25)(11, 31)(13, 35)(14, 37)(16, 44)(18, 47)(19, 52)(20, 54)(21, 42)(22, 60)(24, 64)(26, 69)(27, 67)(28, 73)(29, 40)(30, 78)(32, 82)(33, 84)(34, 88)(36, 92)(38, 96)(39, 94)(41, 103)(43, 108)(45, 90)(46, 111)(48, 85)(49, 119)(50, 116)(51, 124)(53, 72)(55, 132)(56, 130)(57, 135)(58, 114)(59, 140)(61, 93)(62, 145)(63, 87)(65, 150)(66, 151)(68, 155)(70, 158)(71, 160)(74, 166)(75, 167)(76, 101)(77, 146)(79, 173)(80, 174)(81, 178)(83, 181)(86, 183)(89, 91)(95, 201)(97, 129)(98, 205)(99, 206)(100, 199)(102, 211)(104, 214)(105, 142)(106, 198)(107, 220)(109, 191)(110, 223)(112, 225)(113, 152)(115, 232)(117, 184)(118, 190)(120, 239)(121, 237)(122, 241)(123, 242)(125, 136)(126, 245)(127, 154)(128, 248)(131, 186)(133, 254)(134, 256)(137, 260)(138, 230)(139, 246)(141, 197)(143, 188)(144, 262)(147, 192)(148, 172)(149, 194)(153, 269)(156, 221)(157, 175)(159, 170)(161, 277)(162, 275)(163, 209)(164, 278)(165, 177)(168, 219)(169, 234)(171, 266)(176, 185)(179, 180)(182, 291)(187, 292)(200, 301)(202, 274)(203, 250)(204, 293)(207, 305)(208, 235)(210, 224)(212, 263)(213, 283)(215, 309)(217, 227)(218, 295)(222, 312)(226, 304)(228, 233)(229, 271)(231, 284)(236, 264)(238, 258)(240, 321)(243, 253)(244, 259)(247, 297)(249, 273)(251, 296)(252, 323)(255, 311)(257, 327)(261, 319)(265, 282)(267, 298)(268, 270)(272, 315)(276, 285)(279, 289)(280, 281)(286, 294)(299, 300)(302, 324)(303, 332)(306, 318)(307, 328)(308, 313)(310, 320)(314, 325)(316, 317)(322, 335)(326, 333)(329, 331)(330, 336)
b: (1, 2, 6, 4, 8, 19, 13, 24, 53, 36, 65, 128)(3, 9, 26, 11, 28, 70, 32, 74, 159, 83, 56, 134)(5, 14, 38, 16, 40, 98, 45, 102, 25, 66, 152, 68)(7, 20, 55, 22, 57, 133, 61, 136, 255, 144, 121, 140)(10, 29, 75, 30, 77, 168, 79, 171, 60, 142, 162, 143)(12, 33, 85, 34, 87, 185, 89, 151, 119, 189, 270, 238)(15, 41, 104, 43, 105, 215, 109, 216, 145, 153, 207, 211)(17, 46, 112, 48, 114, 227, 118, 231, 54, 129, 249, 131)(18, 49, 120, 51, 122, 240, 125, 27, 71, 161, 72, 163)(21, 58, 137, 59, 139, 261, 141, 239, 76, 169, 257, 170)(23, 62, 50, 63, 146, 123, 147, 263, 73, 164, 138, 165)(31, 80, 175, 81, 177, 265, 179, 205, 260, 287, 296, 328)(35, 90, 190, 91, 192, 297, 193, 298, 241, 299, 336, 322)(37, 93, 196, 95, 198, 78, 172, 281, 103, 212, 183, 213)(39, 99, 155, 101, 178, 272, 210, 181, 289, 271, 290, 242)(42, 106, 217, 107, 219, 310, 221, 108, 124, 243, 222, 244)(44, 67, 88, 110, 154, 92, 194, 97, 195, 278, 204, 300)(47, 115, 233, 117, 234, 191, 225, 314, 167, 250, 316, 280)(52, 126, 203, 127, 246, 303, 247, 313, 135, 258, 306, 259)(64, 148, 264, 149, 266, 174, 267, 309, 166, 84, 182, 279)(69, 156, 273, 157, 254, 318, 274, 326, 160, 229, 317, 276)(82, 96, 202, 180, 116, 235, 288, 236, 319, 206, 304, 301)(86, 186, 295, 188, 286, 333, 269, 277, 292, 331, 332, 197)(94, 132, 252, 200, 253, 321, 282, 325, 245, 256, 187, 284)(100, 208, 220, 209, 307, 232, 308, 158, 218, 111, 224, 311)(113, 228, 283, 230, 312, 334, 291, 262, 305, 324, 329, 173)(130, 223, 302, 251, 150, 214, 226, 268, 275, 315, 330, 201)(176, 285, 320, 248, 323, 184, 293, 327, 294, 335, 199, 237)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 57 ]
336
-1 2 5 248 128
-2 1 14 323 6
-3 277 15 7 161
-4 16 6 293 8
-5 1 37 17 252
-6 2 4 38 184
-7 3 39 18 172
-8 4 40 19 327
-9 72 292 41 20
-10 165 177 42 21
-11 22 332 18 43
-12 44 23 17 204
-13 45 24 335 19
-14 2 46 200 93
-15 3 47 148 94
-16 321 4 48 95
-17 12 5 117 96
-18 11 264 7 97
-19 13 8 294 98
-20 99 49 281 9
-21 100 50 282 10
-22 11 101 212 51
-23 12 257 29 52
-24 199 13 102 53
-25 187 103 53 54
-26 55 331 104 163
-27 88 56 136 84
-28 57 49 105 197
-29 23 265 58 106
-30 59 50 205 107
-31 47 60 303 108
-32 61 51 109 186
-33 67 46 300 62
-34 110 67 48 63
-35 90 322 52 64
-36 66 176 53 65
-37 111 301 5 61
-38 253 112 6 196
-39 113 7 197 285
-40 198 114 282 8
-41 132 264 115 9
-42 199 265 116 10
-43 11 200 266 117
-44 12 201 85 240
-45 13 245 172 118
-46 33 14 234 202
-47 15 236 129 31
-48 34 16 225 116
-49 28 149 195 20
-50 203 30 85 21
-51 22 204 174 32
-52 286 23 35 205
-53 24 25 36 237
-54 25 280 206 119
-55 155 26 103 120
-56 121 333 27 207
-57 122 178 28 183
-58 325 29 63 208
-59 209 123 256 30
-60 124 31 76 263
-61 210 37 125 32
-62 33 126 170 75
-63 77 34 58 127
-64 100 35 211 72
-65 36 128 152 285
-66 36 212 129 284
-67 33 34 125 130
-68 132 213 128 131
-69 132 209 214 329
-70 133 215 86 120
-71 110 134 255 182
-72 121 92 9 64
-73 135 119 141 142
-74 122 136 216 295
-75 179 137 62 217
-76 60 138 218 252
-77 139 260 63 219
-78 220 116 140 98
-79 221 123 141 296
-80 124 115 247 142
-81 143 222 135 117
-82 124 191 93 131
-83 286 144 125 153
-84 111 145 299 27
-85 44 88 112 50
-86 99 113 135 70
-87 88 154 146 114
-88 223 27 85 87
-89 154 147 194 118
-90 35 190 126 148
-91 190 192 127 149
-92 72 150 151 185
-93 14 136 224 82
-94 276 15 141 152
-95 100 144 202 16
-96 243 225 17 196
-97 189 226 18 151
-98 78 325 227 19
-99 320 228 20 86
-100 95 64 229 21
-101 22 323 295 230
-102 231 24 256 281
-103 55 232 25 236
-104 233 26 149 252
-105 253 234 28 174
-106 179 235 237 29
-107 236 260 30 285
-108 301 171 184 31
-109 309 225 282 32
-110 34 71 302 185
-111 37 169 84 274
-112 180 191 38 85
-113 39 150 86 273
-114 235 314 40 87
-115 319 80 249 41
-116 78 48 250 42
-117 81 17 304 43
-118 45 89 236 250
-119 73 194 195 54
-120 55 266 278 70
-121 198 56 290 72
-122 57 267 300 74
-123 79 59 303 185
-124 80 60 82 293
-125 67 166 61 83
-126 90 333 62 260
-127 277 91 63 296
-128 1 320 68 65
-129 66 189 47 304
-130 67 237 326 305
-131 68 233 82 238
-132 68 69 41 239
-133 70 213 272 240
-134 211 71 269 140
-135 81 73 86 241
-136 27 93 181 74
-137 220 146 245 75
-138 143 270 306 76
-139 77 187 147 307
-140 242 78 134 163
-141 308 79 94 73
-142 243 80 169 73
-143 244 81 170 138
-144 83 95 161 271
-145 167 245 159 84
-146 168 246 137 87
-147 89 247 171 139
-148 90 15 163 208
-149 209 91 49 104
-150 276 113 92 248
-151 231 92 97 263
-152 94 183 249 65
-153 256 83 182 250
-154 89 161 251 87
-155 55 248 283 186
-156 226 173 252 307
-157 253 275 308 228
-158 254 309 183 239
-159 188 145 255 240
-160 223 256 311 291
-161 154 144 3 279
-162 222 257 164 175
-163 26 148 194 140
-164 189 258 162 239
-165 169 259 238 10
-166 125 216 218 241
-167 145 180 227 260
-168 287 310 146 261
-169 165 111 200 142
-170 143 321 311 62
-171 147 239 108 328
-172 209 45 235 7
-173 242 156 251 197
-174 297 232 105 51
-175 243 233 313 162
-176 242 36 223 217
-177 244 234 258 10
-178 188 57 312 184
-179 225 259 106 75
-180 198 112 167 244
-181 136 269 294 262
-182 224 71 336 153
-183 57 158 206 152
-184 178 6 226 108
-185 110 123 92 227
-186 155 258 228 32
-187 25 139 207 229
-188 178 159 259 230
-189 278 129 97 164
-190 264 90 91 203
-191 265 112 82 215
-192 297 266 91 246
-193 297 298 267 247
-194 89 214 119 163
-195 268 49 270 119
-196 255 311 38 96
-197 313 28 39 173
-198 121 180 40 208
-199 24 201 271 42
-200 14 169 273 43
-201 44 199 262 274
-202 46 222 314 95
-203 287 190 269 50
-204 12 270 51 315
-205 314 30 52 217
-206 233 310 183 54
-207 187 56 279 316
-208 198 58 148 317
-209 69 59 149 172
-210 333 291 61 327
-211 134 280 64 284
-212 308 22 319 66
-213 133 68 304 218
-214 69 323 194 228
-215 321 267 70 191
-216 166 314 325 74
-217 176 288 205 75
-218 166 213 76 318
-219 77 319 287 320
-220 264 78 276 137
-221 79 323 304 328
-222 81 202 162 294
-223 88 176 324 160
-224 257 93 182 326
-225 179 48 96 109
-226 156 184 283 97
-227 167 288 185 98
-228 99 157 214 186
-229 187 100 302 262
-230 188 101 268 318
-231 319 102 151 316
-232 103 261 174 273
-233 104 206 131 175
-234 177 46 301 105
-235 114 106 172 316
-236 47 103 107 118
-237 290 106 53 130
-238 165 278 300 131
-239 132 158 171 164
-240 44 133 309 159
-241 166 298 299 135
-242 176 332 140 173
-243 96 327 142 175
-244 143 177 180 335
-245 45 145 137 326
-246 146 192 292 328
-247 332 80 147 193
-248 1 155 310 150
-249 301 115 270 152
-250 287 116 118 153
-251 154 320 173 317
-252 156 5 104 76
-253 157 257 38 105
-254 321 158 315 283
-255 289 71 159 196
-256 102 59 160 153
-257 253 23 224 162
-258 177 299 164 186
-259 165 188 179 322
-260 77 167 126 107
-261 232 168 284 263
-262 277 201 181 229
-263 60 313 151 261
-264 220 190 18 41
-265 191 29 42 306
-266 192 43 120 307
-267 308 122 193 215
-268 293 195 273 230
-269 134 181 203 291
-270 138 204 249 195
-271 144 199 324 292
-272 286 133 334 293
-273 232 200 113 268
-274 111 201 312 325
-275 157 278 312 327
-276 220 324 94 150
-277 3 289 127 262
-278 275 189 238 120
-279 311 322 161 207
-280 211 288 328 54
-281 288 102 20 307
-282 40 21 109 318
-283 155 254 226 295
-284 66 211 261 317
-285 302 39 107 65
-286 312 83 52 272
-287 168 203 250 219
-288 280 281 227 217
-289 255 277 335 305
-290 121 331 237 329
-291 330 210 269 160
-292 246 271 305 9
-293 124 4 268 272
-294 222 181 315 19
-295 101 74 283 306
-296 79 310 127 316
-297 192 193 303 174
-298 309 313 193 241
-299 258 336 84 241
-300 33 330 122 238
-301 234 37 249 108
-302 110 229 285 329
-303 297 331 123 31
-304 221 213 117 129
-305 289 292 130 317
-306 265 138 336 295
-307 156 266 281 139
-308 157 212 267 141
-309 298 158 240 109
-310 168 248 206 296
-311 279 170 160 196
-312 275 286 178 274
-313 298 175 197 263
-314 114 202 205 216
-315 254 334 204 294
-316 231 235 207 296
-317 305 251 284 208
-318 330 282 218 230
-319 231 212 115 219
-320 99 128 251 219
-321 254 16 170 215
-322 35 279 259 336
-323 221 2 101 214
-324 276 331 223 271
-325 58 216 98 274
-326 245 224 334 130
-327 275 210 243 8
-328 221 246 280 171
-329 332 69 290 302
-330 300 291 335 318
-331 26 290 324 303
-332 11 242 247 329
-333 56 210 334 126
-334 333 315 326 272
-335 330 13 244 289
-336 299 322 182 306
0

**************