C4graphGraph forms for C4 [ 336, 60 ] = UG(ATD[336,37])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 60 ] = UG(ATD[336,37]).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {20, 21}, {314, 315}, {294, 295}, {126, 127}, {120, 121}, {136, 138}, {249, 251}, {256, 258}, {260, 262}, {1, 2}, {1, 5}, {3, 7}, {2, 6}, {257, 261}, {43, 46}, {321, 324}, {259, 261}, {25, 30}, {196, 204}, {323, 331}, {146, 155}, {195, 202}, {288, 298}, {324, 334}, {194, 201}, {310, 317}, {4, 8}, {145, 157}, {69, 72}, {307, 318}, {135, 138}, {102, 107}, {71, 74}, {180, 185}, {241, 252}, {16, 30}, {288, 302}, {263, 265}, {70, 73}, {39, 55}, {320, 336}, {3, 18}, {9, 24}, {7, 22}, {5, 20}, {14, 28}, {15, 29}, {225, 243}, {2, 17}, {10, 25}, {6, 21}, {229, 246}, {108, 120}, {232, 252}, {12, 26}, {268, 282}, {13, 27}, {141, 155}, {4, 19}, {194, 213}, {11, 19}, {167, 190}, {226, 251}, {264, 274}, {129, 154}, {132, 159}, {236, 240}, {193, 220}, {302, 304}, {8, 23}, {107, 116}, {16, 48}, {271, 303}, {269, 301}, {137, 169}, {81, 112}, {81, 115}, {147, 177}, {153, 187}, {6, 37}, {84, 112}, {207, 235}, {24, 61}, {209, 247}, {267, 301}, {208, 247}, {284, 315}, {66, 106}, {280, 304}, {69, 109}, {91, 112}, {221, 246}, {266, 294}, {136, 165}, {273, 316}, {132, 170}, {4, 43}, {143, 191}, {92, 109}, {193, 243}, {276, 294}, {84, 96}, {91, 111}, {86, 98}, {85, 97}, {144, 164}, {216, 236}, {8, 61}, {10, 63}, {260, 305}, {87, 97}, {275, 293}, {140, 186}, {9, 62}, {283, 300}, {89, 110}, {156, 171}, {82, 106}, {270, 310}, {261, 317}, {14, 55}, {280, 289}, {287, 293}, {7, 60}, {286, 290}, {287, 291}, {6, 59}, {16, 45}, {200, 245}, {218, 231}, {28, 34}, {266, 308}, {143, 177}, {216, 230}, {5, 58}, {128, 191}, {146, 173}, {219, 228}, {269, 333}, {45, 108}, {152, 218}, {268, 334}, {165, 231}, {265, 331}, {148, 215}, {152, 219}, {179, 245}, {180, 243}, {271, 328}, {148, 221}, {158, 215}, {26, 80}, {161, 235}, {259, 329}, {11, 64}, {52, 127}, {163, 232}, {15, 67}, {270, 322}, {43, 103}, {139, 199}, {12, 65}, {29, 80}, {157, 208}, {31, 81}, {37, 107}, {256, 334}, {260, 330}, {13, 66}, {145, 222}, {149, 218}, {10, 90}, {142, 223}, {144, 193}, {149, 196}, {62, 108}, {140, 222}, {24, 75}, {136, 219}, {16, 68}, {33, 117}, {27, 79}, {26, 78}, {19, 71}, {18, 70}, {17, 69}, {8, 93}, {25, 76}, {14, 91}, {162, 247}, {163, 246}, {15, 89}, {55, 96}, {274, 325}, {172, 244}, {286, 326}, {56, 97}, {130, 219}, {141, 212}, {159, 198}, {279, 333}, {57, 98}, {275, 328}, {147, 200}, {21, 72}, {23, 74}, {19, 77}, {152, 198}, {22, 73}, {131, 220}, {140, 211}, {22, 118}, {23, 119}, {9, 104}, {303, 334}, {297, 328}, {289, 320}, {57, 88}, {20, 117}, {292, 326}, {54, 85}, {38, 66}, {150, 243}, {288, 327}, {49, 89}, {148, 252}, {173, 197}, {50, 91}, {135, 238}, {54, 95}, {52, 93}, {136, 225}, {166, 207}, {169, 192}, {48, 90}, {2, 105}, {134, 237}, {53, 94}, {41, 66}, {40, 67}, {3, 104}, {57, 85}, {181, 217}, {41, 68}, {56, 86}, {299, 325}, {51, 92}, {143, 224}, {175, 192}, {44, 92}, {130, 242}, {156, 237}, {32, 82}, {46, 92}, {36, 86}, {33, 83}, {148, 230}, {26, 110}, {44, 88}, {149, 225}, {314, 335}, {34, 84}, {47, 89}, {35, 85}, {62, 70}, {28, 101}, {309, 332}, {304, 329}, {29, 100}, {155, 226}, {158, 228}, {44, 87}, {137, 242}, {149, 238}, {150, 237}, {158, 229}, {163, 216}, {319, 323}, {42, 87}, {47, 82}, {32, 95}, {312, 327}, {156, 227}, {177, 206}, {34, 162}, {37, 164}, {70, 199}, {68, 197}, {64, 194}, {120, 250}, {103, 229}, {65, 195}, {76, 207}, {114, 241}, {5, 129}, {122, 254}, {79, 203}, {78, 202}, {77, 201}, {76, 200}, {87, 209}, {119, 241}, {118, 240}, {56, 191}, {119, 240}, {117, 242}, {102, 225}, {67, 196}, {1, 137}, {51, 187}, {15, 135}, {14, 134}, {13, 133}, {53, 188}, {55, 190}, {54, 189}, {67, 207}, {75, 199}, {80, 221}, {73, 198}, {122, 245}, {50, 162}, {58, 170}, {1, 144}, {49, 160}, {41, 184}, {39, 182}, {37, 180}, {35, 178}, {32, 178}, {38, 181}, {50, 161}, {42, 185}, {68, 208}, {71, 211}, {44, 186}, {36, 179}, {52, 172}, {98, 250}, {86, 206}, {93, 199}, {121, 227}, {3, 159}, {80, 204}, {95, 194}, {76, 210}, {83, 205}, {40, 183}, {106, 203}, {7, 165}, {48, 146}, {18, 182}, {114, 214}, {60, 152}, {32, 133}, {17, 183}, {113, 215}, {45, 139}, {126, 217}, {123, 210}, {114, 216}, {115, 217}, {12, 160}, {63, 147}, {31, 179}, {30, 176}, {116, 218}, {53, 155}, {31, 177}, {69, 234}, {39, 151}, {78, 254}, {78, 255}, {100, 213}, {99, 210}, {90, 235}, {28, 174}, {29, 175}, {77, 254}, {24, 172}, {103, 211}, {94, 234}, {25, 173}, {18, 167}, {99, 214}, {47, 154}, {56, 142}, {117, 195}, {75, 253}, {57, 143}, {17, 166}, {107, 220}, {42, 157}, {10, 179}, {121, 192}, {111, 214}, {110, 215}, {109, 212}, {11, 178}, {20, 168}, {23, 171}, {22, 170}, {21, 169}, {105, 212}, {27, 165}, {109, 211}, {97, 222}, {106, 213}, {63, 255}, {83, 146}, {127, 189}, {36, 224}, {125, 187}, {88, 145}, {110, 163}, {33, 239}, {95, 142}, {114, 161}, {125, 174}, {88, 142}, {125, 170}, {72, 144}, {33, 251}, {126, 164}, {123, 161}, {122, 160}, {27, 198}, {73, 151}, {124, 162}, {102, 134}, {100, 133}, {59, 217}, {116, 150}, {12, 239}, {121, 154}, {104, 139}, {83, 176}, {47, 204}, {74, 172}, {112, 153}, {49, 221}, {108, 128}, {51, 222}, {94, 176}, {4, 244}, {77, 190}, {79, 188}, {34, 214}, {35, 213}, {96, 150}, {42, 220}, {60, 203}, {48, 200}, {58, 192}, {59, 193}, {49, 202}, {62, 197}, {30, 226}, {101, 153}, {75, 183}, {35, 223}, {82, 175}, {100, 154}, {116, 138}, {81, 174}, {104, 151}, {40, 291}, {36, 296}, {43, 295}, {61, 304}, {60, 303}, {59, 302}, {40, 309}, {46, 307}, {38, 312}, {41, 265}, {13, 303}, {50, 278}, {61, 281}, {51, 279}, {9, 293}, {52, 280}, {11, 294}, {39, 266}, {115, 327}, {31, 298}, {54, 259}, {58, 269}, {126, 329}, {113, 326}, {63, 264}, {53, 268}, {46, 277}, {113, 307}, {123, 313}, {98, 292}, {113, 312}, {105, 291}, {101, 296}, {79, 256}, {101, 298}, {102, 311}, {99, 305}, {124, 297}, {96, 311}, {115, 296}, {118, 301}, {111, 306}, {103, 312}, {84, 308}, {118, 274}, {120, 284}, {38, 323}, {45, 331}, {127, 281}, {65, 297}, {111, 263}, {94, 310}, {72, 291}, {124, 272}, {74, 295}, {119, 282}, {90, 309}, {64, 305}, {122, 264}, {65, 306}, {71, 307}, {99, 278}, {125, 267}, {93, 293}, {64, 313}, {124, 263}, {105, 277}, {123, 262}, {171, 299}, {204, 332}, {164, 288}, {184, 318}, {184, 319}, {129, 267}, {197, 335}, {131, 264}, {181, 318}, {141, 257}, {145, 285}, {156, 268}, {168, 313}, {137, 283}, {167, 308}, {189, 302}, {208, 323}, {153, 269}, {175, 315}, {196, 336}, {223, 329}, {140, 277}, {157, 263}, {167, 317}, {130, 286}, {191, 290}, {223, 322}, {131, 285}, {181, 298}, {169, 267}, {128, 292}, {183, 275}, {230, 322}, {185, 273}, {224, 328}, {180, 285}, {249, 336}, {151, 317}, {190, 276}, {185, 274}, {231, 330}, {228, 330}, {246, 326}, {134, 308}, {159, 301}, {168, 283}, {188, 271}, {160, 276}, {178, 262}, {241, 325}, {250, 335}, {182, 257}, {132, 316}, {182, 270}, {166, 287}, {248, 321}, {128, 314}, {133, 319}, {129, 315}, {130, 313}, {147, 296}, {158, 290}, {131, 316}, {228, 292}, {132, 325}, {206, 271}, {139, 335}, {247, 306}, {236, 299}, {141, 324}, {135, 332}, {206, 258}, {209, 285}, {240, 316}, {226, 300}, {201, 262}, {238, 289}, {248, 311}, {205, 281}, {227, 311}, {253, 297}, {209, 265}, {250, 290}, {227, 314}, {138, 336}, {202, 272}, {235, 305}, {229, 318}, {233, 306}, {244, 299}, {224, 256}, {249, 281}, {205, 300}, {168, 330}, {212, 310}, {248, 282}, {253, 287}, {174, 333}, {230, 261}, {251, 280}, {245, 273}, {248, 284}, {173, 331}, {232, 270}, {210, 309}, {166, 332}, {171, 321}, {252, 278}, {232, 259}, {233, 258}, {234, 257}, {255, 276}, {205, 289}, {201, 295}, {244, 282}, {249, 279}, {255, 273}, {195, 300}, {237, 284}, {176, 324}, {203, 319}, {239, 283}, {254, 266}, {242, 260}, {186, 333}, {231, 286}, {233, 272}, {238, 279}, {186, 320}, {233, 275}, {236, 278}, {187, 320}, {188, 321}, {184, 327}, {189, 322}, {234, 277}, {239, 272}, {253, 258} }>;

(II) A more general form is to represent the graph as the orbit of {20, 21} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 13)(6, 20)(7, 24)(8, 27)(10, 34)(11, 38)(12, 42)(14, 48)(15, 51)(16, 55)(17, 58)(18, 62)(19, 66)(22, 75)(23, 79)(25, 84)(26, 87)(28, 90)(29, 92)(30, 96)(31, 99)(32, 103)(33, 107)(35, 113)(36, 114)(37, 117)(39, 45)(40, 125)(41, 77)(43, 133)(44, 80)(46, 100)(47, 140)(49, 145)(50, 147)(52, 152)(53, 156)(54, 158)(56, 163)(57, 148)(59, 168)(60, 172)(61, 165)(63, 162)(64, 181)(65, 185)(67, 187)(68, 190)(69, 192)(71, 106)(72, 169)(73, 199)(74, 203)(76, 112)(78, 209)(81, 210)(82, 211)(83, 102)(85, 215)(86, 216)(88, 221)(89, 222)(91, 200)(93, 198)(94, 227)(95, 229)(97, 110)(98, 230)(101, 235)(105, 129)(108, 182)(109, 175)(111, 245)(115, 123)(116, 251)(118, 253)(119, 256)(120, 257)(121, 234)(122, 263)(124, 264)(126, 130)(127, 219)(128, 270)(131, 272)(132, 275)(134, 146)(135, 279)(136, 281)(137, 144)(138, 249)(139, 151)(141, 284)(142, 246)(143, 252)(149, 289)(150, 226)(153, 207)(154, 277)(155, 237)(157, 160)(159, 293)(161, 296)(164, 242)(166, 269)(167, 197)(170, 183)(171, 188)(173, 308)(174, 309)(176, 311)(177, 278)(178, 312)(179, 214)(180, 195)(184, 201)(186, 204)(189, 228)(191, 232)(193, 283)(194, 318)(196, 320)(202, 285)(205, 225)(206, 236)(208, 276)(212, 315)(213, 307)(217, 313)(218, 280)(220, 239)(223, 326)(224, 241)(231, 304)(233, 316)(240, 258)(243, 300)(244, 303)(247, 255)(248, 324)(250, 261)(254, 265)(259, 290)(260, 288)(262, 327)(266, 331)(267, 291)(271, 299)(273, 306)(274, 297)(282, 334)(286, 329)(287, 301)(292, 322)(294, 323)(295, 319)(298, 305)(302, 330)(310, 314)(317, 335)(325, 328)(332, 333)
b: (1, 2, 6, 21, 72, 144)(3, 10, 35, 73, 200, 95)(4, 14, 49, 74, 84, 26)(5, 17, 59, 169, 291, 164)(7, 25, 85, 198, 48, 142)(8, 28, 89, 172, 112, 80)(9, 31, 100, 199, 296, 82)(11, 39, 122, 201, 167, 255)(12, 43, 134, 202, 71, 96)(13, 45, 86, 203, 197, 143)(15, 52, 153, 204, 61, 174)(16, 56, 60, 173, 57, 27)(18, 63, 178, 151, 245, 194)(19, 55, 160, 295, 308, 78)(20, 69, 193, 137, 105, 37)(22, 76, 54, 159, 90, 223)(23, 34, 110, 244, 91, 221)(24, 81, 29, 93, 101, 47)(30, 97, 152, 146, 88, 165)(32, 104, 179, 213, 70, 147)(33, 92, 225, 300, 140, 116)(36, 106, 62, 177, 133, 139)(38, 120, 258, 184, 314, 328)(40, 126, 58, 166, 302, 267)(41, 128, 271, 323, 250, 256)(42, 130, 141, 285, 330, 94)(44, 136, 226, 222, 218, 83)(46, 102, 195, 211, 150, 239)(50, 148, 119, 214, 163, 299)(51, 149, 205, 186, 138, 251)(53, 157, 286, 324, 209, 228)(64, 182, 264, 262, 317, 273)(65, 103, 237, 272, 307, 311)(66, 108, 206, 319, 335, 224)(67, 127, 269, 332, 304, 125)(68, 191, 303, 331, 98, 79)(75, 115, 175, 293, 298, 154)(77, 190, 276, 294, 266, 254)(87, 219, 155, 145, 231, 176)(99, 232, 325, 161, 230, 240)(107, 117, 109, 243, 283, 277)(111, 246, 171, 162, 215, 282)(113, 248, 306, 229, 156, 124)(114, 216, 236, 278, 252, 241)(118, 210, 259, 132, 235, 322)(121, 253, 327, 315, 275, 181)(123, 261, 316, 305, 270, 274)(129, 183, 217, 192, 287, 288)(131, 260, 310, 185, 313, 257)(135, 280, 187, 196, 281, 333)(158, 268, 263, 326, 321, 247)(168, 234, 220, 242, 212, 180)(170, 207, 189, 301, 309, 329)(188, 208, 290, 334, 265, 292)(227, 297, 312, 284, 233, 318)(238, 289, 320, 336, 249, 279)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 60 ]
336
-1 144 2 5 137
-2 1 6 17 105
-3 104 159 7 18
-4 244 8 19 43
-5 1 58 129 20
-6 2 37 59 21
-7 22 165 3 60
-8 23 4 93 61
-9 24 104 62 293
-10 90 25 179 63
-11 178 19 294 64
-12 26 160 239 65
-13 66 133 27 303
-14 55 134 91 28
-15 67 89 135 29
-16 45 68 48 30
-17 166 2 69 183
-18 167 3 70 182
-19 11 77 4 71
-20 168 5 117 21
-21 169 6 72 20
-22 170 7 73 118
-23 171 8 74 119
-24 61 172 9 75
-25 30 173 10 76
-26 110 12 78 80
-27 165 198 13 79
-28 34 101 14 174
-29 100 80 15 175
-30 176 25 16 226
-31 177 298 179 81
-32 133 178 82 95
-33 83 117 239 251
-34 214 28 84 162
-35 178 223 213 85
-36 179 224 86 296
-37 180 6 107 164
-38 66 312 323 181
-39 55 266 182 151
-40 67 309 291 183
-41 66 265 68 184
-42 220 157 185 87
-43 46 4 103 295
-44 88 92 87 186
-45 331 16 139 108
-46 277 92 43 307
-47 154 89 82 204
-48 90 200 146 16
-49 89 221 202 160
-50 91 278 161 162
-51 187 222 92 279
-52 93 280 127 172
-53 155 188 268 94
-54 189 259 95 85
-55 14 190 39 96
-56 191 86 97 142
-57 88 143 85 98
-58 170 5 192 269
-59 302 6 193 217
-60 203 303 7 152
-61 24 281 304 8
-62 70 9 108 197
-63 264 255 147 10
-64 11 313 194 305
-65 297 12 195 306
-66 13 38 106 41
-67 15 40 196 207
-68 16 41 197 208
-69 234 17 72 109
-70 199 18 62 73
-71 211 19 74 307
-72 144 69 291 21
-73 22 198 70 151
-74 23 71 172 295
-75 253 199 24 183
-76 210 200 25 207
-77 254 190 201 19
-78 254 255 26 202
-79 188 256 27 203
-80 221 26 204 29
-81 112 115 31 174
-82 47 106 32 175
-83 33 176 146 205
-84 308 34 112 96
-85 35 57 97 54
-86 56 36 206 98
-87 44 209 42 97
-88 44 57 145 142
-89 110 47 15 49
-90 309 48 235 10
-91 111 112 14 50
-92 44 46 51 109
-93 199 293 8 52
-94 176 310 234 53
-95 194 32 54 142
-96 55 311 84 150
-97 56 222 85 87
-98 57 292 250 86
-99 210 278 214 305
-100 154 133 213 29
-101 298 28 153 296
-102 134 311 225 107
-103 211 312 229 43
-104 3 139 151 9
-105 2 277 212 291
-106 66 213 82 203
-107 220 102 37 116
-108 45 62 128 120
-109 211 69 212 92
-110 89 26 215 163
-111 91 214 306 263
-112 91 81 84 153
-113 312 215 326 307
-114 214 161 216 241
-115 81 217 327 296
-116 138 150 107 218
-117 33 242 195 20
-118 22 301 240 274
-119 23 282 240 241
-120 121 250 108 284
-121 154 192 227 120
-122 264 254 245 160
-123 210 313 161 262
-124 297 162 272 263
-125 187 267 170 174
-126 127 217 164 329
-127 189 126 281 52
-128 191 292 314 108
-129 154 267 5 315
-130 242 286 313 219
-131 220 264 316 285
-132 159 170 325 316
-133 319 100 13 32
-134 308 14 102 237
-135 332 15 138 238
-136 165 225 138 219
-137 242 1 169 283
-138 135 136 116 336
-139 45 199 104 335
-140 211 222 277 186
-141 155 212 257 324
-142 88 56 223 95
-143 177 57 191 224
-144 1 72 193 164
-145 88 222 157 285
-146 155 48 83 173
-147 177 200 63 296
-148 221 215 230 252
-149 225 238 196 218
-150 243 116 237 96
-151 104 39 73 317
-152 198 60 218 219
-153 187 101 112 269
-154 121 100 47 129
-155 146 226 53 141
-156 268 171 237 227
-157 145 42 208 263
-158 290 215 228 229
-159 132 198 3 301
-160 12 122 276 49
-161 123 114 235 50
-162 34 124 247 50
-163 110 232 246 216
-164 144 288 37 126
-165 231 136 27 7
-166 287 332 17 207
-167 308 190 18 317
-168 330 313 283 20
-169 267 137 192 21
-170 22 132 58 125
-171 23 156 299 321
-172 24 244 52 74
-173 331 25 146 197
-174 333 81 125 28
-175 82 192 29 315
-176 324 83 94 30
-177 143 147 206 31
-178 11 35 262 32
-179 36 245 31 10
-180 243 37 185 285
-181 298 38 217 318
-182 257 39 270 18
-183 275 17 40 75
-184 319 41 327 318
-185 180 42 273 274
-186 44 320 333 140
-187 320 125 51 153
-188 79 321 271 53
-189 322 302 127 54
-190 55 77 276 167
-191 143 56 290 128
-192 121 58 169 175
-193 220 144 243 59
-194 201 213 95 64
-195 300 202 117 65
-196 67 149 204 336
-197 68 335 62 173
-198 27 159 73 152
-199 70 93 139 75
-200 245 48 147 76
-201 77 194 262 295
-202 78 49 195 272
-203 319 79 60 106
-204 332 47 80 196
-205 289 300 83 281
-206 177 258 271 86
-207 67 166 235 76
-208 68 157 323 247
-209 265 247 87 285
-210 99 309 123 76
-211 103 71 140 109
-212 310 105 141 109
-213 100 35 106 194
-214 99 34 111 114
-215 110 113 158 148
-216 114 236 163 230
-217 59 115 126 181
-218 231 116 149 152
-219 136 228 130 152
-220 193 107 42 131
-221 80 246 49 148
-222 145 51 140 97
-223 35 322 142 329
-224 143 36 256 328
-225 243 102 136 149
-226 155 300 30 251
-227 121 156 311 314
-228 330 158 292 219
-229 103 158 246 318
-230 322 148 216 261
-231 165 286 330 218
-232 259 270 163 252
-233 275 258 272 306
-234 277 69 257 94
-235 90 161 305 207
-236 299 278 216 240
-237 134 156 150 284
-238 135 289 279 149
-239 33 12 272 283
-240 236 118 316 119
-241 114 325 119 252
-242 137 117 260 130
-243 180 225 193 150
-244 299 4 172 282
-245 122 200 179 273
-246 221 326 163 229
-247 209 162 306 208
-248 321 311 282 284
-249 279 281 336 251
-250 290 335 98 120
-251 33 280 226 249
-252 232 278 148 241
-253 297 287 258 75
-254 77 78 122 266
-255 78 276 63 273
-256 79 224 334 258
-257 234 182 261 141
-258 253 233 256 206
-259 232 261 54 329
-260 242 330 305 262
-261 257 259 317 230
-262 123 178 201 260
-263 111 265 124 157
-264 122 63 131 274
-265 209 331 41 263
-266 308 254 39 294
-267 125 169 301 129
-268 156 334 282 53
-269 58 333 301 153
-270 232 310 322 182
-271 188 303 206 328
-272 233 124 202 239
-273 255 245 316 185
-274 264 325 118 185
-275 233 183 293 328
-276 255 190 160 294
-277 46 234 105 140
-278 99 236 50 252
-279 333 51 238 249
-280 289 304 52 251
-281 61 127 205 249
-282 244 268 248 119
-283 168 300 137 239
-284 237 248 315 120
-285 209 145 180 131
-286 231 290 326 130
-287 253 166 291 293
-288 298 302 327 164
-289 320 280 205 238
-290 286 158 191 250
-291 287 72 105 40
-292 128 326 228 98
-293 275 287 93 9
-294 11 276 266 295
-295 201 74 294 43
-296 101 36 147 115
-297 253 124 328 65
-298 101 288 181 31
-299 244 236 171 325
-300 226 205 195 283
-301 267 159 269 118
-302 189 288 59 304
-303 13 334 60 271
-304 280 302 61 329
-305 99 235 260 64
-306 111 233 247 65
-307 46 113 71 318
-308 134 167 266 84
-309 210 90 332 40
-310 212 94 270 317
-311 102 248 227 96
-312 113 103 38 327
-313 123 168 64 130
-314 335 128 227 315
-315 314 129 284 175
-316 132 240 273 131
-317 167 310 151 261
-318 181 184 229 307
-319 133 323 203 184
-320 187 289 336 186
-321 188 324 171 248
-322 189 223 270 230
-323 319 331 38 208
-324 176 321 334 141
-325 132 299 241 274
-326 286 113 246 292
-327 288 312 115 184
-328 275 297 224 271
-329 223 126 259 304
-330 231 168 260 228
-331 45 265 323 173
-332 166 309 135 204
-333 279 269 174 186
-334 256 268 324 303
-335 314 139 250 197
-336 320 138 249 196
0

**************