[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 336, 61 ] =
UG(ATD[336,39]).
(I) Following is a form readable by MAGMA:
g:=Graph<336|{ {84, 85}, {81, 83}, {180, 182}, {273, 275}, {1, 2}, {293, 294},
{112, 115}, {65, 66}, {25, 26}, {48, 52}, {328, 332}, {299, 303}, {288, 292},
{1, 4}, {3, 6}, {67, 69}, {179, 181}, {219, 221}, {2, 5}, {67, 68}, {57, 62},
{147, 148}, {2, 10}, {135, 143}, {131, 139}, {119, 127}, {7, 15}, {6, 14}, {5,
13}, {4, 12}, {3, 11}, {192, 200}, {260, 269}, {80, 90}, {321, 331}, {150, 156},
{32, 43}, {326, 333}, {325, 334}, {151, 156}, {183, 188}, {291, 303}, {326,
330}, {33, 44}, {149, 152}, {150, 155}, {151, 154}, {231, 233}, {311, 313}, {52,
59}, {326, 329}, {150, 153}, {259, 268}, {40, 56}, {139, 155}, {138, 154}, {41,
57}, {298, 315}, {169, 187}, {75, 88}, {297, 314}, {263, 275}, {300, 312}, {47,
58}, {259, 278}, {8, 30}, {302, 312}, {44, 58}, {9, 31}, {192, 214}, {298, 317},
{8, 16}, {9, 17}, {65, 88}, {298, 307}, {6, 28}, {15, 21}, {7, 29}, {163, 185},
{129, 154}, {201, 210}, {261, 286}, {268, 279}, {12, 16}, {300, 304}, {174,
178}, {235, 247}, {269, 273}, {100, 121}, {4, 26}, {110, 112}, {5, 27}, {267,
277}, {200, 232}, {204, 236}, {262, 294}, {89, 120}, {94, 127}, {277, 308},
{286, 316}, {205, 238}, {132, 161}, {136, 173}, {157, 184}, {20, 60}, {147,
187}, {209, 249}, {278, 319}, {10, 32}, {15, 37}, {14, 36}, {11, 33}, {215,
253}, {213, 254}, {26, 54}, {195, 239}, {205, 225}, {68, 105}, {12, 34}, {143,
161}, {92, 114}, {13, 35}, {262, 296}, {5, 42}, {272, 319}, {270, 318}, {69,
116}, {92, 109}, {71, 118}, {267, 314}, {278, 292}, {64, 115}, {70, 117}, {206,
253}, {222, 237}, {27, 47}, {65, 116}, {137, 188}, {67, 118}, {216, 237}, {16,
38}, {25, 47}, {24, 46}, {17, 39}, {266, 316}, {66, 117}, {277, 301}, {86, 111},
{286, 295}, {199, 254}, {202, 243}, {210, 235}, {18, 40}, {66, 120}, {23, 45},
{22, 44}, {19, 41}, {256, 315}, {270, 309}, {137, 181}, {287, 291}, {199, 251},
{213, 233}, {83, 110}, {206, 243}, {220, 225}, {20, 42}, {21, 43}, {82, 109},
{132, 187}, {221, 226}, {171, 235}, {259, 323}, {63, 126}, {256, 322}, {128,
195}, {266, 329}, {162, 230}, {186, 254}, {160, 229}, {46, 104}, {266, 322},
{12, 69}, {43, 98}, {41, 96}, {31, 86}, {29, 84}, {27, 82}, {25, 80}, {14, 71},
{176, 249}, {46, 100}, {10, 65}, {42, 97}, {30, 85}, {26, 81}, {13, 70}, {25,
85}, {61, 113}, {60, 112}, {63, 114}, {285, 336}, {45, 99}, {11, 68}, {28, 83},
{179, 252}, {146, 194}, {140, 221}, {142, 223}, {273, 320}, {4, 86}, {144, 194},
{49, 99}, {141, 222}, {59, 111}, {283, 335}, {7, 82}, {128, 213}, {56, 109},
{50, 103}, {48, 101}, {173, 248}, {129, 215}, {169, 255}, {24, 79}, {139, 220},
{57, 110}, {49, 102}, {189, 234}, {16, 72}, {287, 327}, {170, 242}, {280, 320},
{17, 72}, {23, 78}, {21, 76}, {19, 74}, {165, 252}, {265, 336}, {130, 216},
{131, 217}, {160, 250}, {1, 90}, {55, 108}, {51, 104}, {22, 77}, {18, 73}, {172,
247}, {274, 329}, {276, 335}, {134, 218}, {135, 219}, {52, 105}, {54, 107},
{190, 224}, {272, 334}, {20, 75}, {53, 106}, {158, 193}, {283, 324}, {20, 117},
{47, 78}, {14, 108}, {142, 236}, {22, 116}, {190, 218}, {293, 321}, {13, 107},
{29, 117}, {178, 219}, {53, 95}, {135, 237}, {31, 116}, {177, 218}, {18, 126},
{134, 235}, {303, 322}, {296, 325}, {134, 232}, {190, 208}, {145, 225}, {312,
328}, {288, 336}, {146, 226}, {147, 227}, {148, 228}, {149, 229}, {151, 230},
{62, 77}, {128, 243}, {183, 196}, {191, 203}, {58, 79}, {305, 324}, {304, 325},
{32, 87}, {40, 95}, {158, 233}, {44, 84}, {164, 220}, {177, 201}, {1, 120},
{317, 324}, {39, 94}, {37, 92}, {35, 90}, {33, 88}, {313, 323}, {34, 89}, {54,
77}, {38, 93}, {159, 228}, {144, 237}, {131, 253}, {133, 251}, {148, 234}, {36,
91}, {156, 227}, {8, 139}, {37, 166}, {29, 152}, {39, 162}, {37, 160}, {31,
154}, {121, 255}, {30, 153}, {38, 161}, {73, 193}, {76, 196}, {42, 163}, {124,
245}, {46, 164}, {10, 129}, {125, 246}, {126, 242}, {93, 208}, {27, 149}, {94,
208}, {45, 163}, {28, 147}, {78, 193}, {43, 164}, {61, 172}, {56, 170}, {57,
171}, {49, 165}, {113, 229}, {101, 241}, {51, 167}, {50, 166}, {74, 211}, {76,
214}, {17, 141}, {124, 224}, {53, 168}, {35, 189}, {55, 169}, {9, 150}, {58,
155}, {114, 211}, {18, 176}, {90, 248}, {19, 177}, {103, 196}, {100, 192}, {110,
202}, {109, 201}, {108, 200}, {102, 195}, {48, 151}, {115, 212}, {101, 194},
{63, 152}, {9, 161}, {123, 210}, {125, 212}, {122, 209}, {3, 175}, {107, 199},
{104, 197}, {74, 228}, {105, 198}, {124, 211}, {8, 184}, {97, 209}, {87, 229},
{121, 203}, {11, 184}, {80, 227}, {75, 248}, {2, 183}, {70, 240}, {120, 207},
{119, 206}, {113, 203}, {32, 155}, {55, 140}, {52, 143}, {36, 159}, {104, 212},
{23, 170}, {35, 158}, {33, 156}, {114, 204}, {115, 205}, {34, 157}, {62, 254},
{92, 159}, {15, 203}, {50, 245}, {94, 153}, {60, 251}, {97, 170}, {79, 129},
{30, 207}, {55, 228}, {89, 138}, {62, 234}, {61, 232}, {49, 233}, {122, 162},
{59, 227}, {81, 136}, {21, 207}, {118, 172}, {106, 176}, {111, 180}, {98, 191},
{93, 131}, {103, 185}, {96, 190}, {91, 132}, {101, 132}, {103, 134}, {36, 198},
{102, 133}, {28, 248}, {97, 133}, {88, 189}, {84, 179}, {111, 136}, {80, 184},
{3, 234}, {83, 186}, {68, 174}, {69, 175}, {23, 252}, {87, 188}, {82, 185}, {64,
173}, {106, 135}, {86, 187}, {75, 165}, {106, 133}, {6, 247}, {99, 144}, {91,
175}, {34, 215}, {127, 138}, {93, 168}, {67, 182}, {70, 176}, {71, 177}, {53,
194}, {126, 137}, {66, 181}, {54, 193}, {76, 181}, {78, 183}, {72, 178}, {73,
179}, {77, 182}, {56, 196}, {95, 162}, {38, 216}, {118, 136}, {74, 180}, {39,
217}, {7, 260}, {64, 328}, {64, 333}, {24, 279}, {50, 290}, {48, 289}, {24,
260}, {22, 264}, {63, 282}, {41, 271}, {45, 266}, {40, 257}, {60, 264}, {51,
267}, {119, 335}, {124, 318}, {87, 276}, {105, 301}, {122, 316}, {121, 308},
{91, 277}, {102, 297}, {125, 306}, {123, 299}, {95, 270}, {99, 305}, {89, 269},
{123, 302}, {71, 272}, {85, 269}, {81, 264}, {125, 292}, {19, 328}, {98, 313},
{73, 274}, {79, 275}, {119, 273}, {96, 265}, {112, 281}, {113, 282}, {72, 295},
{59, 331}, {107, 281}, {123, 265}, {51, 320}, {127, 268}, {98, 279}, {96, 278},
{108, 282}, {122, 258}, {61, 321}, {100, 280}, {163, 291}, {164, 292}, {172,
301}, {144, 274}, {166, 293}, {145, 276}, {167, 290}, {186, 319}, {149, 275},
{197, 323}, {152, 287}, {202, 333}, {175, 295}, {168, 289}, {202, 323}, {130,
265}, {166, 301}, {146, 286}, {185, 309}, {191, 307}, {171, 294}, {169, 295},
{197, 330}, {141, 285}, {167, 310}, {180, 293}, {142, 284}, {186, 296}, {142,
285}, {171, 312}, {157, 261}, {128, 283}, {130, 284}, {167, 263}, {130, 289},
{191, 283}, {239, 330}, {146, 314}, {231, 334}, {168, 258}, {238, 324}, {160,
267}, {174, 261}, {231, 332}, {232, 327}, {145, 288}, {148, 294}, {178, 256},
{245, 327}, {246, 325}, {249, 330}, {143, 315}, {250, 335}, {153, 288}, {188,
263}, {157, 289}, {159, 290}, {244, 329}, {255, 321}, {140, 307}, {220, 284},
{211, 272}, {224, 291}, {244, 311}, {250, 313}, {240, 309}, {241, 308}, {255,
314}, {140, 331}, {244, 317}, {204, 262}, {251, 305}, {215, 284}, {241, 317},
{250, 310}, {241, 316}, {137, 327}, {141, 322}, {200, 263}, {223, 271}, {145,
320}, {209, 256}, {214, 260}, {201, 282}, {210, 257}, {226, 305}, {218, 270},
{239, 315}, {226, 311}, {231, 306}, {213, 259}, {158, 326}, {246, 302}, {242,
299}, {138, 336}, {195, 280}, {207, 276}, {239, 308}, {236, 304}, {238, 306},
{222, 257}, {247, 296}, {223, 319}, {249, 281}, {205, 300}, {223, 318}, {206,
300}, {224, 258}, {240, 274}, {173, 334}, {212, 311}, {230, 261}, {174, 331},
{204, 299}, {217, 318}, {165, 333}, {217, 304}, {253, 279}, {221, 310}, {222,
309}, {197, 297}, {198, 298}, {236, 257}, {244, 281}, {225, 271}, {240, 287},
{198, 310}, {242, 258}, {189, 332}, {219, 297}, {192, 307}, {245, 262}, {214,
290}, {252, 264}, {199, 306}, {238, 280}, {216, 303}, {182, 332}, {246, 268},
{230, 285}, {243, 271}, {208, 302} }>;
(II) A more general form is to represent the graph as the orbit of {84, 85}
under the group generated by the following permutations:
a: (1, 2, 10, 65, 66, 120)(3, 18, 119, 147, 170, 279)(4, 5, 32, 116, 117,
207)(6, 40, 206, 148, 242, 268)(7, 8, 54, 149, 150, 264)(9, 60, 15, 16, 107,
229)(11, 73, 273, 227, 23, 24)(12, 13, 87, 31, 20, 21)(14, 95, 243, 228, 258,
259)(17, 112, 37, 38, 199, 113)(19, 124, 96, 272, 218, 223)(22, 29, 30, 26, 27,
155)(25, 47, 58, 44, 84, 85)(28, 56, 253, 234, 126, 127)(33, 179, 269, 80, 78,
79)(34, 35, 188, 154, 75, 76)(36, 53, 128, 55, 122, 323)(39, 110, 92, 93, 254,
282)(41, 211, 190, 319, 177, 318)(42, 43, 69, 70, 276, 86)(45, 46, 68, 274, 320,
59)(48, 49, 192, 261, 326, 167)(50, 130, 231, 232, 285, 64)(51, 52, 99, 100,
174, 329)(57, 114, 208, 186, 201, 217)(61, 141, 115, 166, 216, 306)(62, 63, 94,
83, 109, 131)(67, 240, 145, 111, 163, 164)(71, 270, 271, 74, 224, 278)(72, 281,
160, 161, 251, 203)(77, 152, 153, 81, 82, 139)(88, 181, 89, 90, 183, 129)(91,
106, 283, 169, 209, 313)(97, 98, 175, 176, 335, 187)(101, 102, 307, 286, 330,
310)(103, 284, 332, 327, 336, 173)(104, 105, 144, 280, 331, 266)(108, 162, 202,
159, 168, 213)(118, 309, 225, 180, 291, 292)(121, 178, 244, 267, 143, 305)(123,
325, 235, 236, 312, 262)(125, 172, 222, 205, 293, 303)(132, 133, 191, 295, 249,
250)(134, 142, 328, 245, 265, 334)(135, 324, 255, 256, 311, 277)(136, 185, 220,
182, 287, 288)(137, 138, 248, 196, 215, 189)(140, 316, 197, 198, 194, 195)(146,
239, 221, 241, 297, 298)(151, 165, 214, 157, 158, 263)(156, 252, 260, 184, 193,
275)(171, 204, 302, 296, 210, 304)(200, 230, 333, 290, 289, 233)(212, 301, 237,
238, 321, 322)(219, 317, 314, 315, 226, 308)(246, 247, 257, 300, 294, 299) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 7)(5, 12)(6, 15)(8, 20)(9, 23)(10, 26)(11, 29)(13, 34)(14, 37)(16,
42)(17, 45)(18, 48)(19, 51)(21, 28)(22, 58)(24, 62)(25, 65)(27, 69)(30, 75)(31,
78)(32, 81)(33, 84)(35, 89)(36, 92)(38, 97)(39, 99)(40, 101)(41, 104)(43,
83)(46, 57)(47, 116)(49, 94)(50, 55)(52, 126)(54, 129)(56, 132)(59, 137)(60,
139)(63, 105)(64, 145)(66, 80)(67, 149)(68, 152)(70, 157)(71, 160)(72, 163)(73,
151)(74, 167)(76, 147)(77, 79)(82, 175)(85, 88)(86, 183)(87, 136)(90, 120)(91,
109)(93, 133)(95, 194)(96, 197)(98, 186)(100, 171)(102, 208)(103, 169)(106,
168)(107, 215)(108, 166)(110, 164)(111, 188)(112, 220)(113, 172)(114, 198)(115,
225)(117, 184)(118, 229)(119, 231)(121, 235)(122, 237)(123, 239)(124, 221)(125,
243)(127, 233)(128, 246)(130, 249)(131, 251)(134, 255)(135, 258)(138, 158)(140,
245)(141, 266)(142, 244)(143, 242)(144, 162)(146, 270)(148, 214)(150, 252)(153,
165)(154, 193)(155, 264)(156, 179)(161, 170)(173, 276)(174, 287)(176, 289)(177,
267)(178, 291)(180, 263)(181, 227)(182, 275)(185, 295)(187, 196)(189, 269)(190,
297)(191, 296)(192, 294)(195, 302)(199, 253)(200, 293)(201, 277)(202, 292)(203,
247)(204, 298)(206, 306)(207, 248)(209, 216)(210, 308)(211, 310)(212, 271)(213,
268)(217, 305)(218, 314)(219, 224)(222, 316)(223, 311)(226, 318)(228, 290)(230,
274)(232, 321)(234, 260)(236, 317)(238, 300)(240, 261)(241, 257)(250, 272)(254,
279)(256, 303)(262, 307)(265, 330)(273, 332)(278, 323)(280, 312)(281, 284)(282,
301)(283, 325)(285, 329)(286, 309)(288, 333)(299, 315)(304, 324)(313, 319)(320,
328)(326, 336)(327, 331)(334, 335)
C4[ 336, 61 ]
336
-1 2 90 4 120
-2 1 5 183 10
-3 11 234 6 175
-4 1 12 26 86
-5 2 13 27 42
-6 3 14 247 28
-7 15 82 29 260
-8 16 139 30 184
-9 17 150 161 31
-10 2 129 32 65
-11 33 68 3 184
-12 34 69 4 16
-13 35 70 5 107
-14 36 71 6 108
-15 37 203 7 21
-16 12 38 72 8
-17 39 72 9 141
-18 176 126 40 73
-19 177 41 74 328
-20 60 117 42 75
-21 15 207 43 76
-22 44 77 264 116
-23 45 78 170 252
-24 46 79 279 260
-25 47 80 26 85
-26 25 4 81 54
-27 47 5 82 149
-28 147 6 83 248
-29 7 84 117 152
-30 8 85 207 153
-31 154 116 9 86
-32 155 10 43 87
-33 11 44 88 156
-34 12 89 157 215
-35 13 90 189 158
-36 198 14 91 159
-37 166 15 92 160
-38 16 93 161 216
-39 17 94 162 217
-40 56 257 18 95
-41 57 271 19 96
-42 5 20 97 163
-43 21 164 98 32
-44 22 33 58 84
-45 99 23 266 163
-46 100 24 104 164
-47 78 25 58 27
-48 101 289 52 151
-49 99 165 233 102
-50 166 245 103 290
-51 320 167 267 104
-52 143 48 59 105
-53 168 95 106 194
-54 77 26 193 107
-55 169 140 228 108
-56 170 40 196 109
-57 110 171 62 41
-58 44 155 79 47
-59 111 331 227 52
-60 264 112 20 251
-61 232 321 113 172
-62 77 254 57 234
-63 114 126 282 152
-64 333 115 173 328
-65 66 88 116 10
-66 181 117 65 120
-67 68 69 182 118
-68 11 67 105 174
-69 12 67 116 175
-70 176 13 117 240
-71 177 14 118 272
-72 178 16 17 295
-73 179 193 18 274
-74 211 180 19 228
-75 88 165 248 20
-76 181 214 196 21
-77 22 182 62 54
-78 23 47 193 183
-79 275 24 58 129
-80 90 25 227 184
-81 264 26 136 83
-82 27 7 185 109
-83 110 81 28 186
-84 44 179 29 85
-85 25 269 84 30
-86 187 111 4 31
-87 188 276 229 32
-88 33 189 75 65
-89 34 269 138 120
-90 1 35 80 248
-91 132 277 36 175
-92 37 114 159 109
-93 168 38 131 208
-94 39 127 153 208
-95 270 40 162 53
-96 265 190 278 41
-97 209 133 170 42
-98 191 279 313 43
-99 45 144 49 305
-100 121 46 192 280
-101 132 48 194 241
-102 297 133 49 195
-103 134 50 185 196
-104 46 212 51 197
-105 198 68 301 52
-106 176 133 135 53
-107 199 13 281 54
-108 55 200 14 282
-109 56 201 92 82
-110 57 112 202 83
-111 59 136 180 86
-112 110 60 115 281
-113 203 61 282 229
-114 211 92 204 63
-115 112 212 205 64
-116 22 69 31 65
-117 66 70 29 20
-118 67 136 71 172
-119 335 127 206 273
-120 66 1 89 207
-121 308 100 255 203
-122 209 258 162 316
-123 210 265 299 302
-124 211 245 224 318
-125 212 246 292 306
-126 242 137 18 63
-127 268 94 138 119
-128 243 213 195 283
-129 154 79 215 10
-130 265 289 216 284
-131 253 93 139 217
-132 187 101 91 161
-133 102 106 97 251
-134 232 103 235 218
-135 143 237 106 219
-136 111 81 118 173
-137 188 126 181 327
-138 154 89 127 336
-139 220 155 8 131
-140 55 221 331 307
-141 222 322 17 285
-142 223 236 284 285
-143 135 161 315 52
-144 99 237 194 274
-145 276 320 288 225
-146 286 226 314 194
-147 187 148 28 227
-148 234 147 228 294
-149 275 27 152 229
-150 155 156 9 153
-151 154 156 48 230
-152 287 149 29 63
-153 288 94 150 30
-154 138 129 151 31
-155 58 139 150 32
-156 33 150 227 151
-157 34 289 184 261
-158 35 233 193 326
-159 36 92 290 228
-160 267 37 250 229
-161 132 143 38 9
-162 122 39 95 230
-163 45 291 42 185
-164 220 46 292 43
-165 333 49 75 252
-166 37 301 50 293
-167 310 290 51 263
-168 289 93 258 53
-169 55 187 255 295
-170 242 23 56 97
-171 57 235 312 294
-172 301 247 61 118
-173 136 334 248 64
-174 331 68 178 261
-175 3 69 91 295
-176 70 18 106 249
-177 201 71 19 218
-178 256 72 174 219
-179 181 73 84 252
-180 111 182 293 74
-181 66 179 137 76
-182 77 67 332 180
-183 78 188 2 196
-184 11 80 157 8
-185 309 103 82 163
-186 319 254 83 296
-187 132 147 169 86
-188 137 183 87 263
-189 88 35 332 234
-190 224 96 218 208
-191 203 283 98 307
-192 100 200 214 307
-193 78 158 73 54
-194 144 101 146 53
-195 102 280 128 239
-196 56 103 183 76
-197 297 330 323 104
-198 298 310 36 105
-199 254 107 251 306
-200 232 192 108 263
-201 177 210 282 109
-202 110 243 333 323
-203 121 113 15 191
-204 299 114 236 262
-205 300 115 225 238
-206 253 243 300 119
-207 276 30 21 120
-208 190 93 302 94
-209 122 256 249 97
-210 123 201 235 257
-211 124 114 74 272
-212 311 125 104 115
-213 254 233 259 128
-214 290 192 260 76
-215 253 34 129 284
-216 38 237 303 130
-217 39 304 131 318
-218 177 134 190 270
-219 297 221 178 135
-220 225 139 284 164
-221 310 226 140 219
-222 309 257 237 141
-223 319 271 142 318
-224 124 190 258 291
-225 220 145 205 271
-226 221 146 311 305
-227 156 80 59 147
-228 55 148 159 74
-229 113 149 160 87
-230 151 162 261 285
-231 233 332 334 306
-232 134 200 61 327
-233 231 158 213 49
-234 189 3 148 62
-235 210 134 247 171
-236 257 204 304 142
-237 144 222 135 216
-238 280 324 205 306
-239 308 330 315 195
-240 287 309 70 274
-241 308 101 316 317
-242 299 126 170 258
-243 202 128 271 206
-244 311 281 317 329
-245 124 50 327 262
-246 125 268 302 325
-247 235 6 172 296
-248 90 28 173 75
-249 176 209 330 281
-250 310 313 335 160
-251 133 199 60 305
-252 165 264 23 179
-253 279 215 206 131
-254 199 213 62 186
-255 121 321 169 314
-256 209 178 322 315
-257 210 222 236 40
-258 242 122 168 224
-259 278 213 268 323
-260 24 214 269 7
-261 286 157 174 230
-262 245 204 294 296
-263 275 188 167 200
-264 22 81 60 252
-265 123 336 96 130
-266 45 322 316 329
-267 277 160 314 51
-268 246 279 127 259
-269 89 260 85 273
-270 309 95 218 318
-271 243 223 225 41
-272 319 211 334 71
-273 275 320 269 119
-274 144 73 240 329
-275 79 149 273 263
-276 145 335 207 87
-277 308 91 267 301
-278 319 259 292 96
-279 253 24 268 98
-280 100 320 238 195
-281 112 244 249 107
-282 113 201 63 108
-283 191 324 335 128
-284 220 215 130 142
-285 336 141 142 230
-286 146 261 316 295
-287 291 327 152 240
-288 145 292 336 153
-289 157 168 48 130
-290 167 159 214 50
-291 287 224 303 163
-292 288 278 125 164
-293 166 321 180 294
-294 148 171 293 262
-295 286 169 72 175
-296 247 325 262 186
-297 102 314 197 219
-298 198 315 317 307
-299 242 123 204 303
-300 312 205 304 206
-301 166 277 105 172
-302 123 246 312 208
-303 299 322 291 216
-304 300 236 325 217
-305 99 324 226 251
-306 231 199 125 238
-307 298 191 192 140
-308 121 277 239 241
-309 222 270 185 240
-310 198 221 167 250
-311 244 212 313 226
-312 300 302 171 328
-313 311 323 250 98
-314 297 255 146 267
-315 143 298 256 239
-316 286 122 266 241
-317 298 244 324 241
-318 124 223 270 217
-319 223 278 272 186
-320 145 280 51 273
-321 331 255 61 293
-322 266 256 303 141
-323 202 313 259 197
-324 238 283 305 317
-325 246 334 304 296
-326 330 333 158 329
-327 232 287 245 137
-328 332 312 19 64
-329 244 266 326 274
-330 249 326 239 197
-331 321 59 140 174
-332 231 189 182 328
-333 165 202 326 64
-334 231 325 173 272
-335 276 250 283 119
-336 265 288 138 285
0