C4graphGraph forms for C4 [ 336, 85 ] = UG(ATD[336,153])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 85 ] = UG(ATD[336,153]).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {210, 213}, {166, 174}, {208, 216}, {39, 46}, {18, 24}, {294, 300}, {230, 236}, {16, 27}, {225, 237}, {292, 297}, {37, 43}, {177, 191}, {228, 234}, {142, 159}, {35, 49}, {77, 95}, {136, 155}, {10, 30}, {2, 23}, {264, 285}, {65, 87}, {193, 215}, {271, 281}, {1, 22}, {161, 185}, {68, 94}, {224, 250}, {261, 287}, {168, 181}, {197, 219}, {71, 88}, {129, 161}, {196, 229}, {15, 45}, {26, 57}, {23, 51}, {157, 184}, {200, 237}, {209, 244}, {262, 291}, {280, 317}, {3, 36}, {130, 165}, {143, 167}, {196, 236}, {144, 185}, {1, 43}, {29, 55}, {134, 172}, {218, 240}, {266, 288}, {79, 100}, {128, 171}, {137, 162}, {151, 188}, {158, 179}, {222, 243}, {280, 309}, {2, 44}, {204, 252}, {64, 113}, {76, 125}, {131, 178}, {259, 306}, {70, 117}, {72, 123}, {265, 314}, {67, 119}, {81, 101}, {201, 253}, {256, 308}, {264, 316}, {272, 293}, {274, 295}, {78, 120}, {142, 184}, {281, 303}, {207, 248}, {202, 243}, {6, 58}, {9, 52}, {261, 312}, {277, 296}, {257, 319}, {267, 309}, {3, 60}, {140, 179}, {8, 72}, {51, 115}, {1, 64}, {43, 106}, {23, 86}, {137, 200}, {31, 93}, {140, 206}, {22, 85}, {173, 233}, {4, 65}, {136, 205}, {170, 236}, {187, 253}, {261, 323}, {44, 107}, {157, 218}, {28, 84}, {166, 238}, {176, 248}, {7, 78}, {48, 121}, {33, 109}, {258, 334}, {29, 80}, {50, 127}, {178, 255}, {271, 322}, {46, 96}, {150, 217}, {177, 254}, {21, 69}, {182, 230}, {275, 323}, {13, 92}, {38, 119}, {19, 66}, {148, 197}, {145, 195}, {183, 229}, {23, 68}, {130, 209}, {154, 201}, {156, 207}, {175, 252}, {189, 238}, {180, 224}, {57, 108}, {15, 89}, {45, 123}, {185, 239}, {42, 115}, {147, 202}, {281, 320}, {26, 65}, {61, 97}, {151, 203}, {52, 105}, {56, 101}, {34, 124}, {9, 86}, {278, 329}, {188, 220}, {190, 222}, {38, 71}, {143, 238}, {186, 219}, {4, 102}, {51, 81}, {153, 250}, {172, 207}, {169, 205}, {175, 203}, {1, 100}, {309, 336}, {63, 90}, {27, 126}, {7, 98}, {22, 127}, {146, 251}, {150, 252}, {42, 70}, {53, 89}, {45, 65}, {47, 66}, {301, 320}, {294, 331}, {26, 116}, {162, 204}, {176, 222}, {290, 333}, {2, 114}, {305, 321}, {48, 64}, {39, 87}, {151, 231}, {163, 211}, {181, 197}, {160, 209}, {61, 79}, {314, 328}, {132, 246}, {139, 249}, {164, 214}, {152, 235}, {156, 239}, {307, 327}, {312, 332}, {183, 194}, {159, 232}, {6, 127}, {16, 106}, {133, 255}, {142, 244}, {24, 99}, {137, 242}, {158, 229}, {5, 120}, {8, 118}, {14, 112}, {18, 109}, {54, 73}, {37, 90}, {32, 161}, {25, 155}, {3, 128}, {72, 203}, {38, 165}, {5, 129}, {105, 237}, {93, 217}, {58, 190}, {12, 136}, {37, 163}, {116, 242}, {31, 152}, {82, 213}, {121, 241}, {36, 173}, {17, 155}, {118, 252}, {77, 198}, {84, 216}, {94, 210}, {24, 149}, {103, 234}, {21, 154}, {122, 245}, {5, 149}, {28, 141}, {88, 201}, {34, 176}, {49, 162}, {113, 226}, {64, 211}, {112, 228}, {82, 199}, {111, 250}, {125, 235}, {67, 212}, {9, 144}, {100, 253}, {73, 208}, {25, 128}, {2, 152}, {83, 201}, {75, 209}, {29, 135}, {101, 254}, {71, 219}, {19, 142}, {95, 194}, {126, 224}, {122, 218}, {111, 205}, {25, 186}, {108, 207}, {90, 255}, {11, 173}, {63, 153}, {19, 181}, {70, 225}, {77, 234}, {40, 129}, {28, 182}, {105, 195}, {61, 150}, {83, 248}, {8, 164}, {98, 206}, {92, 240}, {91, 246}, {103, 202}, {22, 184}, {50, 156}, {42, 132}, {7, 168}, {4, 180}, {88, 233}, {54, 133}, {30, 170}, {57, 141}, {62, 139}, {114, 199}, {71, 241}, {96, 214}, {10, 189}, {14, 185}, {103, 223}, {120, 192}, {98, 219}, {110, 215}, {56, 130}, {81, 235}, {21, 174}, {104, 211}, {60, 135}, {46, 149}, {66, 254}, {78, 242}, {75, 247}, {85, 232}, {43, 148}, {107, 212}, {94, 225}, {83, 146}, {102, 164}, {74, 137}, {91, 152}, {79, 139}, {34, 228}, {95, 153}, {51, 245}, {20, 220}, {104, 160}, {91, 147}, {69, 141}, {56, 240}, {100, 174}, {99, 168}, {61, 241}, {126, 178}, {122, 182}, {5, 200}, {118, 187}, {102, 171}, {62, 243}, {54, 251}, {12, 193}, {52, 250}, {41, 230}, {33, 241}, {21, 199}, {111, 189}, {7, 212}, {92, 143}, {6, 210}, {107, 191}, {106, 190}, {74, 158}, {80, 133}, {86, 131}, {78, 153}, {114, 165}, {58, 227}, {117, 172}, {89, 128}, {17, 203}, {59, 231}, {76, 144}, {13, 208}, {110, 179}, {11, 213}, {13, 211}, {40, 247}, {124, 163}, {8, 232}, {87, 183}, {52, 212}, {20, 244}, {12, 238}, {115, 145}, {70, 164}, {18, 240}, {47, 204}, {101, 134}, {84, 183}, {14, 235}, {30, 249}, {117, 146}, {117, 157}, {44, 198}, {80, 186}, {15, 228}, {68, 175}, {53, 217}, {105, 133}, {76, 163}, {94, 177}, {18, 226}, {119, 135}, {76, 188}, {26, 234}, {24, 233}, {81, 160}, {27, 232}, {46, 218}, {124, 136}, {83, 167}, {11, 254}, {69, 179}, {125, 138}, {50, 202}, {110, 150}, {15, 246}, {108, 149}, {27, 225}, {45, 215}, {37, 223}, {111, 148}, {56, 196}, {86, 170}, {85, 169}, {32, 221}, {60, 193}, {75, 181}, {114, 140}, {97, 159}, {38, 217}, {62, 318}, {35, 290}, {57, 315}, {25, 285}, {4, 257}, {72, 333}, {55, 306}, {10, 269}, {55, 317}, {60, 311}, {35, 303}, {48, 316}, {62, 307}, {75, 325}, {28, 269}, {3, 273}, {93, 335}, {16, 259}, {55, 292}, {17, 260}, {48, 294}, {89, 334}, {39, 319}, {40, 304}, {53, 300}, {82, 331}, {49, 299}, {33, 314}, {41, 306}, {35, 318}, {87, 329}, {90, 325}, {16, 304}, {103, 327}, {44, 269}, {54, 277}, {59, 287}, {116, 336}, {96, 324}, {63, 283}, {17, 308}, {31, 313}, {36, 258}, {32, 263}, {30, 308}, {34, 268}, {39, 265}, {14, 319}, {125, 332}, {47, 284}, {112, 323}, {49, 258}, {118, 322}, {10, 316}, {40, 286}, {32, 278}, {13, 315}, {63, 264}, {31, 294}, {41, 272}, {11, 305}, {59, 257}, {50, 265}, {123, 320}, {42, 279}, {20, 298}, {47, 273}, {6, 313}, {74, 266}, {116, 308}, {122, 312}, {9, 330}, {109, 302}, {79, 268}, {12, 328}, {108, 296}, {91, 287}, {82, 279}, {120, 317}, {67, 260}, {73, 257}, {98, 298}, {102, 303}, {84, 286}, {96, 301}, {93, 275}, {110, 288}, {121, 310}, {95, 267}, {20, 322}, {99, 309}, {74, 284}, {19, 324}, {29, 325}, {115, 299}, {104, 307}, {80, 270}, {36, 326}, {97, 258}, {41, 332}, {106, 271}, {67, 293}, {73, 289}, {33, 331}, {121, 274}, {104, 261}, {123, 277}, {77, 290}, {119, 280}, {113, 286}, {59, 330}, {107, 282}, {127, 268}, {53, 321}, {85, 289}, {99, 278}, {113, 262}, {97, 281}, {69, 316}, {126, 263}, {68, 318}, {112, 266}, {88, 291}, {92, 295}, {109, 273}, {124, 256}, {58, 324}, {66, 317}, {134, 262}, {168, 297}, {206, 335}, {200, 330}, {156, 287}, {171, 296}, {173, 297}, {180, 304}, {199, 323}, {174, 295}, {177, 312}, {192, 329}, {166, 300}, {205, 327}, {171, 288}, {193, 333}, {187, 310}, {130, 269}, {176, 319}, {216, 330}, {223, 333}, {147, 256}, {154, 265}, {138, 286}, {191, 299}, {158, 267}, {145, 263}, {132, 284}, {131, 280}, {221, 326}, {227, 322}, {154, 313}, {160, 259}, {162, 263}, {148, 306}, {178, 282}, {131, 298}, {135, 302}, {167, 270}, {230, 335}, {226, 328}, {237, 326}, {143, 291}, {190, 274}, {191, 275}, {138, 295}, {139, 293}, {144, 318}, {186, 276}, {184, 279}, {255, 336}, {182, 262}, {188, 268}, {147, 288}, {242, 321}, {248, 331}, {251, 328}, {155, 303}, {165, 272}, {157, 292}, {170, 275}, {129, 315}, {159, 293}, {167, 285}, {180, 270}, {161, 282}, {169, 274}, {244, 335}, {247, 332}, {145, 301}, {151, 299}, {132, 313}, {166, 283}, {134, 324}, {140, 334}, {194, 256}, {198, 260}, {223, 285}, {215, 276}, {243, 310}, {227, 292}, {246, 305}, {222, 279}, {229, 300}, {141, 321}, {195, 271}, {251, 311}, {138, 327}, {216, 278}, {192, 273}, {146, 320}, {208, 259}, {249, 298}, {253, 302}, {231, 307}, {221, 267}, {247, 289}, {224, 311}, {204, 276}, {214, 270}, {220, 260}, {249, 290}, {245, 297}, {198, 283}, {213, 266}, {239, 304}, {206, 302}, {195, 289}, {192, 291}, {172, 329}, {175, 326}, {245, 284}, {194, 296}, {220, 310}, {226, 264}, {169, 325}, {214, 314}, {221, 305}, {189, 336}, {197, 311}, {227, 272}, {187, 334}, {236, 283}, {239, 277}, {231, 282}, {233, 276}, {196, 315}, {210, 301} }>;

(II) A more general form is to represent the graph as the orbit of {210, 213} under the group generated by the following permutations:

a: (2, 4)(3, 7)(5, 11)(6, 13)(8, 10)(9, 15)(12, 20)(16, 21)(18, 19)(22, 64)(23, 65)(24, 66)(25, 67)(26, 68)(27, 69)(28, 70)(29, 71)(30, 72)(31, 73)(32, 74)(33, 75)(34, 76)(35, 77)(36, 78)(37, 79)(38, 80)(39, 81)(40, 82)(41, 83)(42, 84)(43, 100)(44, 102)(45, 86)(46, 101)(47, 99)(48, 85)(49, 95)(50, 104)(51, 87)(52, 89)(53, 105)(54, 93)(55, 88)(56, 96)(57, 94)(58, 92)(59, 91)(60, 98)(61, 90)(62, 103)(63, 97)(106, 174)(107, 171)(108, 177)(109, 181)(110, 178)(111, 187)(112, 185)(113, 184)(114, 180)(115, 183)(116, 175)(117, 182)(118, 189)(119, 186)(120, 173)(121, 169)(122, 172)(123, 170)(124, 188)(125, 176)(126, 179)(127, 211)(128, 212)(129, 213)(130, 214)(131, 215)(132, 216)(133, 217)(134, 218)(135, 219)(136, 220)(137, 221)(138, 222)(139, 223)(140, 224)(141, 225)(142, 226)(143, 227)(144, 228)(145, 229)(146, 230)(147, 231)(148, 253)(149, 254)(150, 255)(151, 256)(152, 257)(153, 258)(154, 259)(155, 260)(156, 261)(157, 262)(158, 263)(159, 264)(160, 265)(161, 266)(162, 267)(163, 268)(164, 269)(165, 270)(166, 271)(167, 272)(168, 273)(190, 295)(191, 296)(192, 297)(193, 298)(194, 299)(195, 300)(196, 301)(197, 302)(198, 303)(199, 304)(200, 305)(201, 306)(202, 307)(203, 308)(204, 309)(205, 310)(206, 311)(207, 312)(208, 313)(209, 314)(210, 315)(232, 316)(233, 317)(234, 318)(235, 319)(236, 320)(237, 321)(238, 322)(239, 323)(240, 324)(241, 325)(242, 326)(243, 327)(244, 328)(245, 329)(246, 330)(247, 331)(248, 332)(249, 333)(250, 334)(251, 335)(252, 336)(275, 277)(276, 280)(278, 284)(279, 286)(281, 283)(282, 288)(285, 293)(289, 294)(291, 292)
b: (1, 2)(4, 5)(6, 10)(7, 8)(9, 16)(11, 12)(13, 14)(15, 18)(17, 19)(22, 44)(23, 43)(24, 45)(25, 47)(26, 46)(27, 52)(28, 50)(29, 49)(30, 58)(31, 48)(32, 54)(33, 53)(34, 56)(35, 55)(36, 60)(37, 51)(38, 61)(39, 57)(40, 59)(41, 62)(42, 63)(64, 152)(65, 149)(66, 155)(67, 159)(68, 148)(69, 154)(70, 153)(71, 150)(72, 168)(73, 161)(74, 167)(75, 151)(76, 160)(77, 157)(78, 164)(79, 165)(80, 162)(81, 163)(82, 166)(83, 158)(84, 156)(85, 107)(86, 106)(87, 108)(88, 110)(89, 109)(90, 115)(91, 113)(92, 112)(93, 121)(94, 111)(95, 117)(96, 116)(97, 119)(98, 118)(99, 123)(100, 114)(101, 124)(102, 120)(103, 122)(104, 125)(105, 126)(127, 269)(128, 273)(129, 257)(130, 268)(131, 271)(132, 264)(133, 263)(134, 256)(135, 258)(136, 254)(137, 270)(138, 261)(139, 272)(140, 253)(141, 265)(142, 260)(143, 266)(144, 259)(145, 255)(146, 267)(147, 262)(169, 191)(170, 190)(171, 192)(172, 194)(173, 193)(174, 199)(175, 197)(176, 196)(177, 205)(178, 195)(179, 201)(180, 200)(181, 203)(182, 202)(183, 207)(184, 198)(185, 208)(186, 204)(187, 206)(188, 209)(189, 210)(211, 235)(212, 232)(213, 238)(214, 242)(215, 233)(216, 239)(217, 241)(218, 234)(219, 252)(220, 244)(221, 251)(222, 236)(223, 245)(224, 237)(225, 250)(226, 246)(227, 249)(228, 240)(229, 248)(230, 243)(231, 247)(274, 275)(277, 278)(279, 283)(280, 281)(282, 289)(284, 285)(286, 287)(288, 291)(290, 292)(295, 323)(296, 329)(297, 333)(298, 322)(299, 325)(300, 331)(301, 336)(302, 334)(303, 317)(304, 330)(305, 328)(306, 318)(307, 332)(308, 324)(309, 320)(310, 335)(311, 326)(312, 327)(313, 316)(314, 321)(315, 319)
c: (2, 44)(3, 329)(4, 102)(5, 204)(6, 90)(7, 245)(8, 304)(9, 299)(10, 199)(11, 309)(12, 248)(13, 61)(14, 17)(15, 194)(16, 232)(18, 88)(19, 55)(20, 332)(21, 316)(22, 43)(23, 107)(24, 233)(25, 39)(26, 288)(28, 140)(29, 324)(30, 323)(31, 283)(32, 326)(33, 143)(34, 124)(35, 59)(36, 278)(37, 127)(38, 56)(40, 118)(41, 244)(42, 250)(45, 296)(46, 186)(47, 120)(48, 174)(49, 330)(50, 223)(51, 212)(52, 115)(53, 229)(54, 320)(57, 110)(58, 325)(60, 172)(62, 307)(63, 313)(64, 100)(65, 171)(66, 317)(67, 81)(68, 282)(70, 224)(71, 240)(72, 239)(73, 281)(74, 242)(75, 227)(76, 188)(77, 91)(78, 284)(79, 211)(80, 96)(82, 189)(83, 328)(84, 334)(85, 106)(86, 191)(87, 128)(89, 183)(92, 241)(93, 236)(94, 178)(95, 246)(97, 208)(98, 122)(99, 173)(101, 119)(103, 202)(104, 139)(105, 145)(108, 215)(109, 291)(111, 279)(112, 308)(113, 253)(114, 269)(116, 266)(117, 311)(121, 295)(123, 277)(125, 220)(126, 225)(129, 252)(130, 165)(131, 177)(132, 153)(133, 301)(134, 135)(136, 176)(138, 310)(141, 179)(142, 306)(144, 151)(146, 251)(147, 234)(148, 184)(149, 276)(150, 315)(152, 198)(154, 264)(155, 319)(156, 333)(157, 197)(158, 321)(159, 259)(160, 293)(161, 175)(162, 200)(163, 268)(164, 180)(166, 294)(167, 314)(168, 297)(169, 190)(170, 275)(181, 292)(182, 206)(185, 203)(187, 286)(192, 273)(193, 207)(196, 217)(201, 226)(205, 222)(209, 272)(210, 255)(213, 336)(214, 270)(216, 258)(218, 219)(228, 256)(230, 335)(231, 318)(235, 260)(237, 263)(238, 331)(243, 327)(247, 322)(249, 261)(254, 280)(257, 303)(262, 302)(265, 285)(267, 305)(271, 289)(287, 290)(298, 312)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 85 ]
336
-1 22 100 64 43
-2 44 23 114 152
-3 36 60 128 273
-4 102 180 257 65
-5 200 149 129 120
-6 210 58 313 127
-7 78 168 212 98
-8 232 72 118 164
-9 330 144 52 86
-10 189 269 30 316
-11 254 213 173 305
-12 136 193 238 328
-13 211 92 315 208
-14 319 112 235 185
-15 45 89 246 228
-16 27 259 106 304
-17 308 155 203 260
-18 24 226 240 109
-19 66 181 324 142
-20 220 298 244 322
-21 154 199 69 174
-22 1 127 85 184
-23 2 68 51 86
-24 99 233 149 18
-25 155 128 186 285
-26 57 234 116 65
-27 232 16 126 225
-28 269 182 84 141
-29 55 80 135 325
-30 308 170 249 10
-31 93 313 294 152
-32 221 278 161 263
-33 331 314 109 241
-34 176 124 268 228
-35 290 49 303 318
-36 3 258 326 173
-37 90 223 163 43
-38 165 71 217 119
-39 319 265 46 87
-40 286 247 304 129
-41 332 272 306 230
-42 132 70 279 115
-43 1 37 148 106
-44 198 2 269 107
-45 123 15 215 65
-46 39 149 96 218
-47 66 204 273 284
-48 121 294 316 64
-49 35 299 258 162
-50 265 156 202 127
-51 23 245 81 115
-52 212 105 250 9
-53 89 321 300 217
-54 133 277 73 251
-55 292 29 306 317
-56 101 130 196 240
-57 26 315 108 141
-58 190 324 6 227
-59 231 330 287 257
-60 3 135 311 193
-61 79 150 97 241
-62 243 139 307 318
-63 264 90 283 153
-64 1 211 113 48
-65 45 4 26 87
-66 254 47 19 317
-67 212 260 293 119
-68 23 94 175 318
-69 179 316 141 21
-70 225 117 42 164
-71 88 38 219 241
-72 123 333 203 8
-73 289 257 54 208
-74 266 158 137 284
-75 209 181 247 325
-76 144 188 125 163
-77 198 234 290 95
-78 242 7 120 153
-79 100 268 61 139
-80 133 270 29 186
-81 101 235 160 51
-82 199 331 213 279
-83 167 146 201 248
-84 286 28 183 216
-85 22 232 289 169
-86 23 170 9 131
-87 39 183 65 329
-88 233 201 71 291
-89 15 334 128 53
-90 255 37 325 63
-91 287 147 246 152
-92 143 13 240 295
-93 275 335 217 31
-94 177 210 68 225
-95 77 267 194 153
-96 46 301 214 324
-97 159 258 61 281
-98 298 7 206 219
-99 309 24 168 278
-100 253 1 79 174
-101 56 254 134 81
-102 4 171 303 164
-103 223 234 202 327
-104 211 160 261 307
-105 133 237 52 195
-106 190 16 271 43
-107 44 212 191 282
-108 57 149 207 296
-109 33 302 18 273
-110 288 179 215 150
-111 189 148 205 250
-112 266 14 323 228
-113 286 226 64 262
-114 165 199 2 140
-115 145 299 51 42
-116 242 308 26 336
-117 146 157 70 172
-118 187 322 8 252
-119 67 135 38 280
-120 78 5 192 317
-121 310 48 241 274
-122 245 312 182 218
-123 45 320 277 72
-124 34 256 136 163
-125 332 235 138 76
-126 178 224 27 263
-127 22 268 6 50
-128 89 3 25 171
-129 5 40 161 315
-130 165 209 56 269
-131 298 178 280 86
-132 246 313 42 284
-133 255 80 105 54
-134 101 324 172 262
-135 60 302 29 119
-136 12 155 124 205
-137 242 200 74 162
-138 286 125 327 295
-139 79 62 249 293
-140 179 114 334 206
-141 57 321 69 28
-142 244 159 19 184
-143 167 92 291 238
-144 9 185 76 318
-145 301 115 195 263
-146 320 83 117 251
-147 288 91 256 202
-148 111 306 43 197
-149 24 46 5 108
-150 110 61 217 252
-151 231 188 299 203
-152 2 91 235 31
-153 78 95 63 250
-154 265 201 313 21
-155 25 136 17 303
-156 287 50 239 207
-157 292 117 184 218
-158 179 267 74 229
-159 232 293 97 142
-160 209 81 104 259
-161 282 129 185 32
-162 49 137 204 263
-163 211 124 37 76
-164 102 70 214 8
-165 114 38 272 130
-166 300 238 283 174
-167 143 83 270 285
-168 99 297 181 7
-169 325 205 85 274
-170 275 236 30 86
-171 288 102 128 296
-172 134 117 207 329
-173 11 297 233 36
-174 100 166 295 21
-175 68 203 326 252
-176 319 34 222 248
-177 254 191 312 94
-178 255 126 282 131
-179 110 69 158 140
-180 4 224 270 304
-181 168 19 75 197
-182 122 28 262 230
-183 84 194 229 87
-184 22 157 279 142
-185 144 14 161 239
-186 276 25 80 219
-187 253 310 334 118
-188 220 268 151 76
-189 111 336 238 10
-190 222 58 106 274
-191 275 177 299 107
-192 291 273 120 329
-193 12 333 60 215
-194 256 95 183 296
-195 145 289 105 271
-196 56 236 315 229
-197 311 148 181 219
-198 44 77 260 283
-199 114 323 82 21
-200 330 5 137 237
-201 88 154 253 83
-202 243 103 147 50
-203 17 72 151 175
-204 276 47 162 252
-205 111 136 169 327
-206 302 335 140 98
-207 156 248 172 108
-208 13 259 73 216
-209 244 160 75 130
-210 213 301 6 94
-211 13 104 64 163
-212 67 7 52 107
-213 11 210 266 82
-214 270 314 96 164
-215 110 45 276 193
-216 330 278 84 208
-217 38 93 150 53
-218 122 46 157 240
-219 71 98 186 197
-220 188 310 260 20
-221 267 326 305 32
-222 176 243 190 279
-223 333 37 103 285
-224 311 180 126 250
-225 70 27 94 237
-226 264 113 18 328
-227 58 322 292 272
-228 34 112 234 15
-229 300 158 183 196
-230 236 335 182 41
-231 59 282 151 307
-232 27 159 8 85
-233 88 276 24 173
-234 77 26 103 228
-235 14 81 125 152
-236 170 283 196 230
-237 200 225 105 326
-238 143 12 166 189
-239 156 277 304 185
-240 56 92 18 218
-241 33 121 71 61
-242 78 321 137 116
-243 222 310 202 62
-244 209 335 20 142
-245 297 122 51 284
-246 132 91 15 305
-247 332 289 40 75
-248 176 331 83 207
-249 298 290 139 30
-250 111 224 52 153
-251 146 311 328 54
-252 204 150 118 175
-253 187 100 201 302
-254 11 66 177 101
-255 133 90 178 336
-256 308 124 147 194
-257 319 4 59 73
-258 36 334 49 97
-259 16 160 306 208
-260 198 220 67 17
-261 287 312 323 104
-262 134 113 291 182
-263 145 126 162 32
-264 226 63 316 285
-265 154 39 50 314
-266 112 288 213 74
-267 221 309 158 95
-268 34 188 79 127
-269 44 28 130 10
-270 167 80 180 214
-271 322 281 106 195
-272 165 227 293 41
-273 3 47 192 109
-274 121 190 169 295
-275 191 323 93 170
-276 233 204 215 186
-277 123 239 54 296
-278 99 216 32 329
-279 222 82 184 42
-280 309 119 317 131
-281 320 303 271 97
-282 231 178 161 107
-283 198 166 236 63
-284 132 47 245 74
-285 264 167 25 223
-286 113 138 40 84
-287 156 91 59 261
-288 110 266 147 171
-289 247 73 85 195
-290 77 35 333 249
-291 88 143 192 262
-292 55 297 157 227
-293 67 159 139 272
-294 331 300 48 31
-295 92 138 174 274
-296 277 171 194 108
-297 168 245 292 173
-298 249 20 98 131
-299 191 49 115 151
-300 166 294 53 229
-301 210 320 145 96
-302 253 135 206 109
-303 155 35 102 281
-304 180 16 40 239
-305 11 221 321 246
-306 55 148 259 41
-307 231 104 62 327
-308 256 17 116 30
-309 99 267 280 336
-310 121 187 220 243
-311 224 60 251 197
-312 122 177 332 261
-313 132 154 6 31
-314 33 265 214 328
-315 13 57 129 196
-316 264 69 48 10
-317 55 66 280 120
-318 144 35 68 62
-319 176 14 257 39
-320 123 146 301 281
-321 242 305 53 141
-322 227 271 118 20
-323 275 199 112 261
-324 134 58 19 96
-325 90 169 29 75
-326 221 36 237 175
-327 103 138 205 307
-328 12 226 314 251
-329 278 192 172 87
-330 200 59 216 9
-331 33 82 248 294
-332 125 312 247 41
-333 223 290 72 193
-334 187 89 258 140
-335 244 93 206 230
-336 309 189 255 116
0

**************