C4graphGraph forms for C4 [ 336, 95 ] = UG(ATD[336,171])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 95 ] = UG(ATD[336,171]).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {268, 270}, {1, 2}, {34, 38}, {2, 7}, {304, 309}, {88, 93}, {19, 22}, {307, 309}, {1, 6}, {329, 334}, {136, 143}, {291, 299}, {54, 63}, {292, 301}, {69, 76}, {3, 8}, {308, 319}, {192, 203}, {325, 329}, {4, 9}, {5, 10}, {326, 329}, {83, 92}, {17, 30}, {160, 175}, {208, 223}, {166, 182}, {6, 23}, {237, 252}, {160, 179}, {302, 317}, {289, 306}, {43, 63}, {143, 155}, {8, 30}, {133, 147}, {9, 31}, {164, 179}, {193, 214}, {77, 85}, {78, 86}, {3, 26}, {5, 28}, {205, 212}, {7, 29}, {2, 25}, {227, 248}, {194, 222}, {295, 315}, {263, 283}, {227, 253}, {288, 318}, {4, 27}, {295, 312}, {36, 59}, {264, 279}, {30, 62}, {277, 309}, {84, 116}, {77, 109}, {20, 53}, {131, 162}, {71, 102}, {66, 96}, {31, 60}, {136, 171}, {18, 54}, {221, 249}, {150, 176}, {198, 224}, {199, 225}, {19, 52}, {271, 296}, {69, 98}, {211, 251}, {158, 183}, {10, 32}, {15, 37}, {14, 36}, {11, 33}, {220, 246}, {221, 247}, {141, 166}, {222, 245}, {64, 108}, {76, 96}, {65, 109}, {156, 177}, {213, 248}, {12, 34}, {13, 35}, {200, 230}, {270, 288}, {148, 187}, {205, 226}, {141, 189}, {149, 164}, {159, 174}, {91, 105}, {204, 255}, {285, 302}, {70, 114}, {12, 57}, {24, 45}, {192, 245}, {220, 233}, {16, 38}, {17, 39}, {221, 234}, {256, 311}, {16, 40}, {196, 253}, {217, 224}, {18, 40}, {284, 294}, {19, 41}, {21, 46}, {286, 293}, {271, 308}, {72, 115}, {23, 44}, {197, 254}, {192, 252}, {73, 116}, {137, 180}, {20, 42}, {21, 43}, {74, 117}, {24, 89}, {21, 87}, {25, 90}, {256, 323}, {34, 102}, {148, 208}, {189, 249}, {190, 250}, {191, 251}, {132, 193}, {161, 228}, {173, 235}, {178, 244}, {144, 215}, {157, 218}, {176, 248}, {190, 246}, {191, 247}, {26, 83}, {129, 200}, {27, 81}, {259, 328}, {178, 254}, {56, 117}, {161, 236}, {165, 232}, {167, 234}, {266, 327}, {28, 82}, {51, 125}, {145, 223}, {23, 88}, {48, 127}, {166, 233}, {35, 115}, {61, 109}, {42, 122}, {41, 121}, {40, 120}, {39, 119}, {38, 118}, {37, 117}, {36, 116}, {170, 250}, {32, 113}, {47, 126}, {45, 124}, {31, 76}, {46, 125}, {33, 114}, {260, 336}, {275, 327}, {285, 331}, {8, 95}, {44, 123}, {153, 193}, {7, 94}, {49, 104}, {187, 226}, {20, 78}, {48, 106}, {6, 93}, {50, 105}, {157, 198}, {267, 336}, {286, 322}, {284, 321}, {12, 82}, {282, 324}, {52, 107}, {59, 100}, {188, 227}, {45, 77}, {55, 87}, {4, 101}, {62, 95}, {175, 205}, {292, 320}, {51, 86}, {152, 253}, {5, 99}, {58, 92}, {15, 105}, {14, 104}, {161, 199}, {180, 210}, {3, 100}, {290, 325}, {13, 106}, {9, 96}, {11, 98}, {174, 199}, {14, 100}, {301, 327}, {15, 101}, {168, 194}, {169, 195}, {10, 97}, {288, 331}, {173, 198}, {146, 254}, {61, 80}, {13, 99}, {11, 100}, {31, 112}, {132, 244}, {319, 335}, {30, 111}, {5, 119}, {315, 329}, {41, 91}, {162, 208}, {29, 110}, {59, 72}, {171, 216}, {52, 64}, {305, 325}, {53, 65}, {149, 225}, {174, 218}, {24, 109}, {191, 202}, {16, 102}, {294, 336}, {17, 103}, {190, 201}, {305, 326}, {171, 211}, {183, 207}, {188, 196}, {18, 104}, {62, 68}, {19, 105}, {163, 217}, {168, 210}, {23, 108}, {316, 327}, {129, 250}, {128, 252}, {180, 200}, {22, 107}, {47, 82}, {20, 106}, {318, 320}, {178, 204}, {68, 196}, {24, 154}, {103, 228}, {55, 179}, {127, 251}, {85, 210}, {43, 163}, {9, 130}, {32, 172}, {73, 197}, {81, 220}, {110, 227}, {83, 222}, {21, 155}, {82, 221}, {4, 148}, {74, 219}, {97, 240}, {75, 223}, {50, 170}, {55, 175}, {27, 130}, {94, 194}, {126, 226}, {40, 182}, {121, 231}, {120, 230}, {42, 181}, {122, 229}, {108, 243}, {101, 197}, {121, 217}, {120, 216}, {58, 155}, {57, 154}, {65, 232}, {71, 236}, {93, 240}, {32, 142}, {95, 241}, {115, 195}, {49, 128}, {69, 244}, {51, 130}, {54, 132}, {110, 220}, {58, 136}, {55, 133}, {50, 129}, {60, 137}, {117, 192}, {81, 228}, {63, 138}, {53, 131}, {99, 219}, {62, 131}, {56, 134}, {57, 135}, {25, 217}, {122, 186}, {121, 185}, {120, 184}, {22, 215}, {118, 183}, {92, 157}, {114, 177}, {87, 147}, {89, 156}, {119, 178}, {80, 150}, {90, 156}, {81, 151}, {16, 216}, {108, 164}, {79, 135}, {76, 132}, {34, 235}, {88, 145}, {70, 143}, {41, 224}, {84, 158}, {42, 225}, {119, 188}, {116, 191}, {89, 146}, {83, 152}, {64, 139}, {65, 140}, {115, 190}, {84, 153}, {78, 131}, {67, 142}, {68, 138}, {88, 150}, {69, 139}, {66, 141}, {114, 189}, {67, 140}, {47, 255}, {57, 235}, {18, 193}, {85, 134}, {61, 232}, {71, 144}, {33, 249}, {35, 250}, {74, 147}, {72, 145}, {43, 242}, {39, 254}, {37, 252}, {79, 149}, {38, 253}, {73, 146}, {46, 242}, {50, 238}, {49, 237}, {101, 187}, {104, 182}, {14, 209}, {106, 181}, {99, 188}, {75, 148}, {48, 239}, {44, 243}, {36, 251}, {37, 197}, {58, 218}, {49, 209}, {15, 238}, {13, 239}, {125, 159}, {48, 211}, {45, 201}, {59, 223}, {46, 202}, {1, 228}, {107, 142}, {79, 170}, {77, 168}, {61, 216}, {29, 248}, {68, 162}, {44, 203}, {78, 169}, {75, 172}, {73, 160}, {7, 237}, {28, 247}, {94, 181}, {1, 236}, {27, 246}, {118, 152}, {26, 245}, {122, 149}, {97, 142}, {103, 151}, {25, 237}, {84, 160}, {35, 219}, {90, 163}, {80, 171}, {79, 179}, {113, 141}, {91, 167}, {17, 274}, {39, 289}, {64, 326}, {67, 324}, {12, 257}, {75, 325}, {53, 314}, {94, 332}, {3, 278}, {22, 256}, {63, 297}, {33, 317}, {11, 278}, {110, 334}, {60, 272}, {47, 257}, {56, 256}, {126, 324}, {112, 332}, {56, 261}, {60, 257}, {66, 258}, {67, 259}, {72, 265}, {70, 260}, {124, 319}, {66, 263}, {123, 318}, {103, 289}, {8, 335}, {2, 330}, {95, 279}, {85, 285}, {71, 270}, {10, 320}, {97, 298}, {6, 330}, {127, 305}, {74, 261}, {86, 262}, {87, 263}, {29, 332}, {126, 303}, {89, 264}, {90, 265}, {26, 335}, {80, 261}, {124, 298}, {28, 320}, {111, 307}, {70, 282}, {91, 262}, {98, 317}, {112, 272}, {123, 283}, {113, 273}, {111, 266}, {107, 259}, {102, 268}, {125, 279}, {127, 272}, {113, 258}, {124, 271}, {86, 291}, {123, 270}, {52, 322}, {54, 321}, {93, 298}, {51, 328}, {118, 269}, {112, 267}, {98, 281}, {96, 283}, {111, 274}, {92, 290}, {159, 287}, {156, 286}, {162, 288}, {185, 314}, {165, 289}, {206, 330}, {150, 284}, {151, 285}, {163, 297}, {174, 292}, {146, 286}, {181, 313}, {145, 284}, {161, 303}, {172, 290}, {173, 291}, {128, 273}, {169, 312}, {138, 280}, {139, 281}, {154, 264}, {186, 296}, {129, 274}, {135, 276}, {158, 269}, {144, 260}, {167, 307}, {215, 323}, {133, 275}, {140, 282}, {168, 304}, {208, 331}, {155, 263}, {186, 294}, {136, 277}, {184, 293}, {212, 330}, {137, 278}, {153, 313}, {130, 291}, {173, 271}, {137, 300}, {154, 316}, {184, 287}, {233, 334}, {234, 333}, {158, 310}, {165, 269}, {176, 281}, {189, 276}, {151, 317}, {185, 275}, {233, 323}, {177, 282}, {153, 310}, {169, 262}, {134, 311}, {128, 306}, {166, 276}, {167, 277}, {157, 302}, {249, 333}, {176, 261}, {180, 257}, {185, 268}, {140, 314}, {175, 280}, {177, 265}, {152, 290}, {135, 316}, {242, 334}, {172, 273}, {241, 332}, {170, 276}, {243, 333}, {133, 314}, {147, 300}, {235, 299}, {244, 308}, {246, 310}, {247, 311}, {209, 275}, {240, 307}, {255, 315}, {211, 277}, {238, 294}, {139, 322}, {242, 315}, {195, 265}, {239, 293}, {138, 321}, {206, 258}, {207, 259}, {212, 280}, {213, 281}, {134, 331}, {229, 296}, {245, 312}, {224, 302}, {225, 303}, {203, 283}, {255, 303}, {226, 304}, {231, 305}, {159, 328}, {229, 306}, {199, 287}, {207, 278}, {232, 306}, {209, 266}, {196, 280}, {202, 279}, {143, 336}, {144, 335}, {200, 297}, {164, 326}, {201, 298}, {207, 300}, {195, 295}, {206, 299}, {238, 267}, {165, 333}, {214, 318}, {215, 319}, {236, 260}, {213, 316}, {204, 295}, {206, 293}, {231, 268}, {234, 262}, {239, 258}, {198, 296}, {222, 304}, {214, 313}, {214, 292}, {203, 312}, {229, 273}, {230, 274}, {182, 323}, {218, 301}, {219, 300}, {231, 272}, {204, 308}, {205, 309}, {213, 301}, {230, 287}, {241, 264}, {184, 322}, {240, 266}, {241, 267}, {186, 321}, {194, 313}, {210, 297}, {202, 311}, {243, 269}, {183, 328}, {187, 324}, {201, 310}, {212, 299} }>;

(II) A more general form is to represent the graph as the orbit of {268, 270} under the group generated by the following permutations:

a: (2, 228)(3, 59)(4, 194)(5, 21)(6, 236)(7, 81)(8, 72)(9, 313)(10, 155)(11, 14)(12, 179)(13, 125)(15, 77)(16, 64)(17, 90)(18, 69)(19, 61)(20, 86)(22, 80)(23, 71)(24, 50)(25, 103)(26, 223)(27, 94)(28, 87)(29, 220)(30, 265)(31, 153)(32, 58)(33, 209)(34, 164)(35, 279)(36, 278)(37, 85)(38, 326)(39, 163)(40, 139)(41, 232)(42, 291)(43, 119)(44, 270)(45, 238)(46, 99)(47, 175)(48, 328)(49, 317)(51, 106)(52, 216)(53, 262)(54, 244)(55, 82)(57, 79)(60, 84)(62, 195)(63, 178)(65, 91)(66, 292)(67, 277)(68, 295)(70, 240)(73, 180)(74, 311)(75, 83)(76, 193)(88, 144)(89, 129)(92, 172)(93, 260)(95, 115)(96, 214)(97, 143)(98, 104)(101, 168)(102, 108)(105, 109)(107, 171)(111, 177)(112, 310)(113, 218)(114, 266)(116, 137)(117, 134)(118, 305)(120, 322)(121, 165)(122, 173)(124, 294)(126, 205)(127, 183)(128, 302)(130, 181)(131, 169)(133, 221)(136, 142)(138, 204)(140, 167)(141, 301)(145, 335)(146, 200)(147, 247)(148, 222)(149, 235)(150, 215)(151, 237)(152, 325)(154, 170)(156, 274)(157, 273)(158, 272)(159, 239)(160, 257)(161, 330)(162, 312)(166, 213)(174, 258)(176, 323)(182, 281)(185, 333)(186, 271)(187, 304)(188, 242)(189, 327)(190, 241)(191, 300)(192, 331)(196, 315)(197, 210)(198, 229)(199, 206)(201, 267)(202, 219)(203, 288)(207, 251)(208, 245)(211, 259)(212, 303)(217, 289)(224, 306)(225, 299)(227, 334)(230, 286)(231, 269)(233, 248)(234, 314)(243, 268)(246, 332)(249, 275)(250, 264)(252, 285)(253, 329)(254, 297)(255, 280)(256, 261)(263, 320)(276, 316)(282, 307)(283, 318)(284, 319)(287, 293)(298, 336)(308, 321)(309, 324)
b: (1, 2)(3, 180)(4, 213)(5, 84)(6, 330)(7, 228)(8, 210)(9, 281)(10, 160)(11, 60)(12, 59)(13, 269)(14, 47)(15, 218)(16, 195)(17, 194)(18, 204)(19, 155)(20, 232)(21, 22)(23, 206)(24, 162)(25, 236)(26, 200)(27, 248)(28, 116)(29, 81)(30, 168)(31, 98)(32, 179)(33, 272)(34, 72)(35, 118)(36, 82)(37, 174)(38, 115)(39, 313)(40, 295)(41, 143)(42, 306)(43, 215)(44, 293)(45, 68)(46, 256)(48, 333)(49, 303)(50, 92)(51, 261)(52, 263)(53, 65)(54, 308)(55, 142)(56, 125)(57, 223)(58, 105)(61, 78)(62, 77)(63, 319)(64, 66)(67, 133)(69, 76)(70, 121)(71, 90)(73, 320)(74, 328)(75, 135)(79, 172)(80, 86)(83, 129)(85, 95)(87, 107)(88, 299)(89, 288)(91, 136)(93, 212)(94, 103)(96, 139)(97, 175)(99, 158)(100, 257)(101, 301)(102, 265)(104, 255)(106, 165)(108, 258)(109, 131)(110, 220)(111, 304)(112, 317)(113, 164)(114, 231)(117, 159)(119, 153)(120, 312)(122, 229)(123, 286)(124, 138)(126, 209)(127, 249)(128, 225)(130, 176)(132, 244)(134, 279)(137, 278)(140, 314)(141, 326)(144, 163)(145, 235)(146, 318)(147, 259)(148, 316)(149, 273)(150, 291)(151, 332)(152, 250)(154, 208)(156, 270)(157, 238)(161, 237)(166, 329)(167, 277)(169, 216)(170, 290)(171, 262)(173, 284)(177, 268)(178, 193)(181, 289)(182, 315)(183, 219)(184, 203)(185, 282)(186, 296)(187, 327)(188, 310)(189, 305)(190, 253)(191, 247)(192, 287)(196, 201)(197, 292)(198, 294)(199, 252)(202, 311)(205, 240)(207, 300)(211, 234)(214, 254)(217, 260)(221, 251)(222, 274)(224, 336)(226, 266)(227, 246)(230, 245)(233, 334)(239, 243)(241, 285)(242, 323)(264, 331)(267, 302)(271, 321)(275, 324)(276, 325)(280, 298)(283, 322)(297, 335)(307, 309)
c: (2, 236)(3, 14)(4, 64)(6, 228)(7, 71)(8, 209)(9, 326)(10, 119)(11, 59)(12, 106)(13, 82)(15, 19)(16, 194)(17, 240)(18, 83)(20, 57)(22, 37)(23, 81)(24, 65)(25, 260)(26, 104)(27, 108)(28, 99)(29, 270)(30, 266)(31, 305)(32, 178)(33, 72)(34, 181)(35, 221)(36, 278)(38, 313)(39, 97)(40, 222)(41, 238)(42, 235)(43, 155)(44, 220)(45, 232)(46, 87)(47, 239)(48, 257)(49, 335)(50, 91)(51, 179)(52, 101)(53, 154)(54, 92)(55, 125)(58, 63)(60, 127)(61, 77)(62, 327)(66, 315)(67, 146)(68, 301)(69, 75)(70, 90)(73, 259)(74, 311)(76, 325)(78, 135)(79, 86)(80, 85)(84, 183)(88, 151)(89, 140)(93, 103)(94, 102)(95, 275)(96, 329)(98, 223)(107, 197)(110, 123)(112, 231)(113, 204)(114, 265)(115, 249)(116, 207)(117, 256)(118, 153)(120, 304)(121, 267)(122, 173)(124, 306)(126, 293)(128, 319)(129, 167)(130, 164)(131, 316)(132, 290)(133, 279)(134, 261)(136, 297)(137, 251)(138, 218)(139, 148)(141, 295)(142, 254)(143, 163)(144, 237)(145, 317)(147, 202)(149, 291)(150, 285)(152, 193)(156, 282)(157, 321)(159, 175)(160, 328)(161, 330)(162, 213)(165, 201)(166, 312)(168, 216)(169, 276)(170, 262)(171, 210)(172, 244)(174, 280)(176, 331)(180, 211)(182, 245)(184, 226)(185, 241)(186, 198)(187, 322)(188, 320)(189, 195)(190, 333)(191, 300)(192, 323)(196, 292)(199, 212)(200, 277)(203, 233)(205, 287)(206, 303)(208, 281)(214, 253)(215, 252)(217, 336)(219, 247)(224, 294)(225, 299)(227, 318)(229, 271)(230, 309)(234, 250)(242, 263)(243, 246)(248, 288)(255, 258)(264, 314)(268, 332)(269, 310)(273, 308)(274, 307)(283, 334)(284, 302)(286, 324)(289, 298)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 95 ]
336
-1 2 236 6 228
-2 330 1 25 7
-3 100 278 26 8
-4 101 27 148 9
-5 99 28 119 10
-6 330 1 23 93
-7 2 94 237 29
-8 3 335 95 30
-9 4 96 31 130
-10 320 5 97 32
-11 33 100 278 98
-12 34 57 257 82
-13 99 35 106 239
-14 209 100 36 104
-15 101 37 105 238
-16 102 38 40 216
-17 103 39 30 274
-18 104 193 40 54
-19 22 105 41 52
-20 78 106 42 53
-21 155 46 43 87
-22 256 215 19 107
-23 44 88 6 108
-24 154 45 89 109
-25 2 90 237 217
-26 3 245 335 83
-27 4 81 246 130
-28 320 5 82 247
-29 110 332 248 7
-30 111 17 62 8
-31 112 60 9 76
-32 113 172 10 142
-33 11 114 249 317
-34 12 102 235 38
-35 13 115 250 219
-36 14 59 116 251
-37 15 117 197 252
-38 253 34 16 118
-39 254 289 17 119
-40 16 182 18 120
-41 121 91 224 19
-42 122 181 225 20
-43 242 63 163 21
-44 23 243 123 203
-45 77 24 124 201
-46 242 125 202 21
-47 255 257 82 126
-48 211 127 106 239
-49 209 104 237 128
-50 170 105 238 129
-51 125 86 130 328
-52 322 19 107 64
-53 314 20 65 131
-54 132 321 18 63
-55 133 179 87 175
-56 134 256 117 261
-57 154 12 135 235
-58 155 92 136 218
-59 100 36 223 72
-60 257 137 272 31
-61 232 80 216 109
-62 68 95 30 131
-63 297 138 43 54
-64 139 326 52 108
-65 232 140 53 109
-66 258 96 141 263
-67 324 259 140 142
-68 138 62 162 196
-69 244 139 76 98
-70 143 114 260 282
-71 144 102 236 270
-72 265 145 59 115
-73 146 116 160 197
-74 147 117 261 219
-75 223 148 325 172
-76 132 69 96 31
-77 45 168 85 109
-78 169 20 86 131
-79 135 179 170 149
-80 61 171 150 261
-81 220 27 151 228
-82 12 221 47 28
-83 222 26 92 152
-84 158 116 160 153
-85 77 210 134 285
-86 78 291 51 262
-87 55 147 21 263
-88 23 145 93 150
-89 264 24 156 146
-90 265 156 25 163
-91 167 105 41 262
-92 58 157 290 83
-93 88 298 6 240
-94 332 181 7 194
-95 279 62 8 241
-96 66 283 9 76
-97 298 240 10 142
-98 11 69 281 317
-99 188 13 5 219
-100 11 3 14 59
-101 187 4 15 197
-102 34 268 16 71
-103 289 17 151 228
-104 14 49 182 18
-105 91 15 50 19
-106 13 48 181 20
-107 22 259 52 142
-108 23 243 64 164
-109 77 24 61 65
-110 220 334 29 227
-111 266 30 274 307
-112 332 267 272 31
-113 258 141 273 32
-114 33 177 189 70
-115 35 190 72 195
-116 36 191 73 84
-117 56 37 192 74
-118 38 269 183 152
-119 188 178 5 39
-120 40 216 184 230
-121 231 41 217 185
-122 149 42 229 186
-123 44 270 283 318
-124 319 45 298 271
-125 46 279 159 51
-126 47 324 226 303
-127 48 272 305 251
-128 49 273 306 252
-129 200 50 250 274
-130 27 291 51 9
-131 78 62 162 53
-132 244 193 54 76
-133 55 275 147 314
-134 56 331 311 85
-135 276 57 79 316
-136 143 277 58 171
-137 278 300 180 60
-138 68 321 280 63
-139 69 322 281 64
-140 67 314 282 65
-141 66 166 189 113
-142 67 107 97 32
-143 155 70 136 336
-144 71 335 215 260
-145 88 223 72 284
-146 286 89 254 73
-147 133 300 74 87
-148 187 4 75 208
-149 122 79 225 164
-150 88 176 80 284
-151 81 103 317 285
-152 253 290 83 118
-153 310 313 193 84
-154 264 24 57 316
-155 143 58 21 263
-156 286 89 177 90
-157 198 92 302 218
-158 310 269 84 183
-159 287 125 174 328
-160 179 73 84 175
-161 199 236 303 228
-162 68 288 131 208
-163 297 90 217 43
-164 179 149 326 108
-165 232 289 333 269
-166 276 233 182 141
-167 277 91 234 307
-168 77 210 194 304
-169 78 312 195 262
-170 276 79 50 250
-171 211 80 136 216
-172 290 75 273 32
-173 198 235 291 271
-174 199 159 292 218
-175 55 280 160 205
-176 248 281 150 261
-177 265 156 114 282
-178 254 244 204 119
-179 55 79 160 164
-180 210 200 257 137
-181 313 94 106 42
-182 166 323 104 40
-183 158 118 207 328
-184 287 322 293 120
-185 121 275 268 314
-186 122 321 294 296
-187 101 148 324 226
-188 99 227 119 196
-189 276 114 249 141
-190 201 246 115 250
-191 202 247 116 251
-192 245 203 117 252
-193 132 214 18 153
-194 222 168 313 94
-195 265 169 115 295
-196 253 188 68 280
-197 254 101 37 73
-198 157 224 173 296
-199 287 225 161 174
-200 297 180 129 230
-201 45 298 310 190
-202 46 311 191 279
-203 44 312 192 283
-204 308 178 255 295
-205 309 212 226 175
-206 330 299 258 293
-207 278 300 259 183
-208 331 223 148 162
-209 275 266 14 49
-210 297 168 180 85
-211 277 48 171 251
-212 330 299 280 205
-213 301 248 281 316
-214 313 193 292 318
-215 22 319 144 323
-216 16 61 171 120
-217 121 25 224 163
-218 58 157 301 174
-219 99 35 300 74
-220 110 233 81 246
-221 234 82 247 249
-222 245 83 194 304
-223 145 59 75 208
-224 198 302 41 217
-225 199 149 303 42
-226 187 126 205 304
-227 110 253 188 248
-228 1 81 103 161
-229 122 273 306 296
-230 287 200 120 274
-231 121 268 272 305
-232 165 61 306 65
-233 220 166 323 334
-234 221 167 333 262
-235 34 57 299 173
-236 1 71 161 260
-237 25 49 7 252
-238 267 15 50 294
-239 13 48 258 293
-240 266 93 97 307
-241 264 332 267 95
-242 46 334 315 43
-243 44 333 269 108
-244 132 308 178 69
-245 222 26 312 192
-246 220 310 190 27
-247 221 311 191 28
-248 176 213 29 227
-249 33 221 189 333
-250 35 190 170 129
-251 211 36 191 127
-252 37 192 237 128
-253 38 227 152 196
-254 178 146 39 197
-255 47 204 303 315
-256 22 56 311 323
-257 12 47 180 60
-258 66 113 206 239
-259 67 107 207 328
-260 144 70 236 336
-261 176 56 80 74
-262 91 234 169 86
-263 66 155 283 87
-264 154 89 279 241
-265 177 90 72 195
-266 209 111 327 240
-267 112 336 238 241
-268 231 102 270 185
-269 165 243 158 118
-270 123 288 268 71
-271 308 124 173 296
-272 231 112 60 127
-273 113 128 172 229
-274 111 17 129 230
-275 209 133 327 185
-276 166 189 135 170
-277 309 167 211 136
-278 11 3 137 207
-279 264 125 202 95
-280 212 138 196 175
-281 176 213 139 98
-282 177 70 324 140
-283 123 203 96 263
-284 145 321 150 294
-285 331 302 85 151
-286 156 146 322 293
-287 199 159 184 230
-288 331 270 162 318
-289 165 103 39 306
-290 92 325 172 152
-291 299 173 86 130
-292 320 301 214 174
-293 286 184 206 239
-294 336 238 284 186
-295 312 204 315 195
-296 198 271 229 186
-297 210 200 63 163
-298 124 201 93 97
-299 212 235 291 206
-300 147 137 207 219
-301 213 292 327 218
-302 157 224 317 285
-303 255 126 225 161
-304 309 222 168 226
-305 231 127 325 326
-306 232 289 128 229
-307 111 309 167 240
-308 319 244 204 271
-309 277 205 304 307
-310 201 158 246 153
-311 134 256 202 247
-312 245 169 203 295
-313 181 214 194 153
-314 133 140 53 185
-315 242 255 295 329
-316 154 135 213 327
-317 33 302 151 98
-318 320 123 288 214
-319 308 124 335 215
-320 28 292 10 318
-321 138 284 54 186
-322 286 139 52 184
-323 233 256 182 215
-324 187 67 126 282
-325 290 305 75 329
-326 305 64 164 329
-327 275 266 301 316
-328 159 259 51 183
-329 334 325 315 326
-330 2 212 6 206
-331 134 288 208 285
-332 112 94 29 241
-333 165 243 234 249
-334 110 242 233 329
-335 319 144 26 8
-336 143 267 260 294
0

**************