[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 336, 102 ] =
UG(ATD[336,178]).
(I) Following is a form readable by MAGMA:
g:=Graph<336|{ {1, 2}, {244, 247}, {1, 5}, {3, 7}, {2, 6}, {272, 277}, {315,
318}, {64, 70}, {66, 68}, {137, 143}, {249, 254}, {213, 220}, {321, 328}, {246,
255}, {263, 270}, {39, 45}, {81, 90}, {322, 329}, {240, 251}, {4, 8}, {310,
314}, {194, 206}, {65, 76}, {117, 120}, {180, 185}, {260, 265}, {256, 270},
{311, 313}, {112, 127}, {9, 25}, {44, 60}, {226, 242}, {262, 278}, {11, 26},
{15, 30}, {13, 28}, {2, 16}, {10, 24}, {7, 21}, {6, 20}, {3, 17}, {129, 147},
{131, 145}, {227, 241}, {14, 29}, {161, 181}, {199, 211}, {40, 61}, {298, 319},
{140, 153}, {4, 18}, {292, 306}, {5, 19}, {172, 186}, {198, 208}, {204, 218},
{266, 284}, {12, 27}, {166, 177}, {194, 213}, {128, 152}, {202, 210}, {230,
254}, {257, 281}, {259, 283}, {43, 49}, {100, 127}, {107, 112}, {47, 51}, {102,
122}, {173, 177}, {227, 255}, {226, 255}, {8, 22}, {9, 23}, {169, 183}, {96,
127}, {256, 288}, {129, 160}, {131, 162}, {132, 165}, {207, 237}, {130, 161},
{279, 307}, {216, 253}, {259, 293}, {270, 296}, {73, 97}, {15, 38}, {196, 237},
{20, 62}, {193, 235}, {259, 296}, {282, 305}, {16, 61}, {18, 63}, {260, 297},
{274, 316}, {17, 62}, {287, 304}, {221, 242}, {266, 293}, {5, 52}, {7, 54},
{261, 308}, {10, 56}, {275, 289}, {70, 116}, {14, 60}, {11, 57}, {6, 53}, {91,
104}, {92, 105}, {257, 308}, {264, 317}, {12, 58}, {276, 290}, {13, 59}, {93,
106}, {264, 319}, {221, 229}, {72, 114}, {10, 49}, {257, 317}, {258, 318}, {197,
248}, {276, 297}, {265, 311}, {8, 55}, {29, 34}, {209, 238}, {53, 117}, {137,
201}, {168, 232}, {51, 114}, {134, 199}, {187, 250}, {50, 113}, {263, 323}, {24,
94}, {35, 100}, {159, 215}, {182, 253}, {267, 320}, {149, 217}, {186, 247}, {38,
104}, {39, 105}, {162, 236}, {131, 204}, {261, 330}, {136, 216}, {50, 99}, {135,
214}, {154, 200}, {183, 229}, {191, 237}, {19, 64}, {56, 107}, {27, 72}, {23,
68}, {136, 219}, {30, 74}, {275, 327}, {31, 75}, {130, 214}, {131, 215}, {20,
65}, {57, 108}, {28, 73}, {22, 67}, {128, 213}, {139, 222}, {273, 324}, {274,
327}, {14, 88}, {138, 220}, {21, 66}, {31, 71}, {57, 97}, {190, 230}, {18, 75},
{287, 326}, {60, 101}, {273, 331}, {134, 221}, {286, 325}, {39, 123}, {283,
327}, {280, 324}, {24, 69}, {50, 111}, {36, 121}, {26, 71}, {174, 243}, {183,
234}, {25, 70}, {58, 101}, {133, 218}, {184, 231}, {6, 103}, {300, 334}, {29,
126}, {150, 245}, {141, 232}, {144, 246}, {299, 333}, {42, 77}, {142, 233},
{155, 243}, {302, 326}, {170, 194}, {156, 245}, {142, 228}, {33, 74}, {301,
326}, {36, 79}, {151, 252}, {31, 115}, {41, 69}, {32, 76}, {146, 254}, {148,
248}, {178, 222}, {35, 78}, {50, 95}, {48, 93}, {141, 227}, {34, 77}, {296,
327}, {171, 196}, {32, 80}, {288, 336}, {36, 84}, {157, 236}, {43, 89}, {313,
331}, {47, 92}, {22, 98}, {44, 88}, {42, 94}, {38, 82}, {37, 81}, {34, 86},
{144, 228}, {37, 80}, {46, 91}, {141, 248}, {46, 88}, {314, 332}, {170, 220},
{187, 205}, {45, 90}, {142, 249}, {142, 246}, {188, 196}, {154, 224}, {309,
335}, {40, 83}, {309, 334}, {41, 85}, {43, 87}, {42, 86}, {148, 232}, {44, 81},
{189, 195}, {318, 320}, {16, 144}, {13, 140}, {113, 240}, {19, 145}, {115, 241},
{48, 178}, {23, 149}, {22, 148}, {27, 152}, {94, 221}, {93, 222}, {30, 154},
{28, 153}, {4, 130}, {109, 235}, {108, 234}, {21, 147}, {20, 146}, {73, 206},
{117, 242}, {110, 233}, {89, 210}, {118, 250}, {24, 150}, {47, 161}, {46, 160},
{25, 151}, {35, 172}, {76, 195}, {1, 144}, {48, 162}, {77, 223}, {55, 165}, {54,
164}, {59, 168}, {118, 229}, {99, 240}, {17, 132}, {63, 169}, {52, 163}, {11,
147}, {41, 176}, {46, 180}, {120, 226}, {106, 240}, {26, 129}, {124, 224}, {125,
225}, {32, 189}, {123, 230}, {51, 174}, {40, 182}, {57, 167}, {56, 166}, {63,
160}, {120, 231}, {95, 192}, {84, 244}, {91, 251}, {69, 228}, {98, 195}, {96,
193}, {80, 243}, {111, 204}, {97, 194}, {108, 200}, {123, 223}, {110, 202},
{109, 201}, {58, 159}, {110, 203}, {101, 192}, {3, 165}, {93, 251}, {99, 196},
{126, 217}, {49, 153}, {120, 208}, {35, 138}, {123, 209}, {33, 138}, {127, 212},
{106, 198}, {107, 199}, {33, 140}, {126, 211}, {104, 197}, {92, 241}, {78, 224},
{83, 253}, {79, 225}, {125, 210}, {85, 228}, {126, 207}, {112, 193}, {95, 238},
{44, 158}, {45, 159}, {4, 176}, {124, 200}, {41, 157}, {40, 156}, {55, 130},
{100, 220}, {119, 207}, {105, 209}, {34, 155}, {124, 198}, {32, 155}, {118,
205}, {37, 158}, {113, 205}, {114, 206}, {65, 252}, {122, 197}, {37, 229}, {51,
241}, {62, 252}, {11, 200}, {125, 190}, {102, 161}, {61, 245}, {119, 191}, {15,
197}, {66, 136}, {67, 143}, {21, 219}, {87, 153}, {122, 181}, {9, 217}, {119,
163}, {92, 137}, {125, 168}, {112, 166}, {42, 242}, {96, 184}, {54, 239}, {88,
129}, {59, 225}, {68, 158}, {12, 215}, {14, 211}, {121, 164}, {109, 179}, {116,
170}, {56, 216}, {91, 185}, {67, 167}, {74, 175}, {90, 191}, {13, 235}, {105,
143}, {72, 174}, {48, 215}, {89, 190}, {80, 183}, {65, 166}, {28, 244}, {49,
216}, {66, 171}, {64, 170}, {87, 189}, {86, 188}, {83, 185}, {82, 184}, {71,
173}, {119, 156}, {98, 143}, {106, 135}, {25, 247}, {85, 187}, {84, 186}, {52,
219}, {67, 172}, {84, 164}, {118, 134}, {117, 133}, {116, 132}, {71, 182}, {103,
149}, {78, 186}, {103, 146}, {74, 178}, {47, 214}, {121, 128}, {59, 193}, {79,
181}, {78, 180}, {75, 176}, {124, 135}, {19, 239}, {76, 177}, {77, 179}, {115,
141}, {111, 145}, {15, 268}, {12, 267}, {68, 323}, {58, 305}, {17, 257}, {31,
271}, {85, 321}, {2, 279}, {1, 278}, {83, 324}, {3, 280}, {81, 333}, {52, 278},
{53, 279}, {18, 305}, {36, 256}, {116, 336}, {9, 300}, {63, 282}, {30, 315},
{62, 281}, {7, 298}, {54, 280}, {33, 277}, {10, 306}, {53, 269}, {43, 275}, {23,
302}, {45, 276}, {38, 284}, {61, 263}, {39, 285}, {5, 312}, {55, 265}, {114,
332}, {94, 284}, {97, 291}, {100, 289}, {26, 336}, {104, 291}, {8, 325}, {75,
281}, {16, 323}, {99, 304}, {95, 268}, {98, 310}, {72, 286}, {73, 287}, {82,
266}, {69, 284}, {64, 283}, {121, 290}, {70, 285}, {29, 321}, {27, 325}, {122,
292}, {96, 319}, {113, 272}, {111, 268}, {87, 317}, {115, 281}, {110, 260}, {86,
315}, {107, 261}, {79, 288}, {103, 276}, {82, 294}, {102, 274}, {101, 273},
{102, 275}, {60, 331}, {89, 289}, {90, 290}, {108, 273}, {109, 274}, {179, 307},
{175, 302}, {159, 285}, {175, 301}, {188, 318}, {167, 291}, {169, 303}, {133,
269}, {178, 315}, {139, 256}, {171, 295}, {188, 304}, {139, 262}, {168, 293},
{181, 312}, {163, 301}, {157, 269}, {165, 311}, {212, 326}, {219, 329}, {152,
267}, {154, 268}, {208, 328}, {218, 322}, {238, 334}, {185, 280}, {135, 293},
{173, 271}, {139, 296}, {179, 272}, {132, 288}, {150, 306}, {145, 312}, {173,
260}, {140, 295}, {164, 271}, {174, 261}, {233, 322}, {224, 332}, {138, 295},
{136, 294}, {146, 316}, {234, 324}, {231, 328}, {134, 310}, {158, 302}, {184,
264}, {156, 301}, {252, 333}, {152, 300}, {189, 264}, {177, 265}, {147, 298},
{243, 330}, {175, 277}, {250, 320}, {151, 300}, {249, 322}, {149, 297}, {150,
298}, {151, 299}, {190, 258}, {176, 269}, {223, 286}, {231, 294}, {201, 267},
{233, 299}, {210, 279}, {234, 303}, {249, 316}, {192, 262}, {222, 278}, {255,
311}, {137, 320}, {237, 295}, {245, 319}, {204, 263}, {133, 329}, {128, 334},
{223, 272}, {148, 325}, {218, 270}, {236, 313}, {157, 331}, {235, 316}, {205,
277}, {251, 291}, {225, 312}, {236, 309}, {155, 321}, {227, 313}, {253, 294},
{214, 266}, {248, 292}, {207, 303}, {239, 271}, {202, 299}, {203, 297}, {209,
309}, {212, 304}, {211, 310}, {169, 335}, {172, 330}, {182, 336}, {171, 323},
{238, 262}, {163, 329}, {247, 285}, {232, 259}, {244, 287}, {246, 282}, {162,
335}, {167, 330}, {160, 335}, {192, 305}, {191, 333}, {187, 328}, {199, 308},
{198, 306}, {206, 314}, {208, 292}, {239, 283}, {212, 289}, {203, 317}, {217,
303}, {213, 290}, {180, 332}, {226, 282}, {230, 286}, {250, 258}, {195, 314},
{202, 307}, {201, 307}, {254, 258}, {203, 308} }>;
(II) A more general form is to represent the graph as the orbit of {1, 2}
under the group generated by the following permutations:
a: (2, 144)(3, 277)(4, 230)(5, 278)(6, 228)(7, 175)(8, 286)(9, 306)(10, 217)(11,
287)(12, 232)(13, 273)(14, 112)(15, 121)(17, 205)(18, 190)(19, 222)(20, 85)(21,
301)(22, 72)(23, 150)(24, 149)(25, 198)(26, 304)(27, 148)(28, 108)(29, 166)(30,
164)(31, 318)(33, 280)(34, 177)(35, 180)(36, 268)(37, 264)(38, 290)(39, 214)(40,
171)(41, 146)(42, 260)(43, 169)(44, 96)(45, 266)(46, 100)(47, 105)(48, 283)(49,
303)(50, 288)(51, 143)(53, 142)(54, 74)(55, 223)(56, 126)(57, 73)(58, 168)(59,
101)(60, 193)(61, 323)(62, 187)(63, 89)(64, 93)(65, 321)(66, 156)(67, 114)(68,
245)(69, 103)(70, 106)(71, 188)(75, 258)(76, 155)(77, 265)(79, 95)(80, 189)(81,
184)(82, 90)(83, 295)(84, 154)(86, 173)(87, 183)(88, 127)(91, 220)(94, 297)(98,
174)(99, 336)(102, 309)(104, 213)(107, 211)(109, 313)(110, 242)(111, 256)(113,
132)(115, 320)(116, 240)(117, 233)(118, 257)(119, 136)(120, 299)(122, 334)(123,
130)(124, 247)(125, 305)(128, 197)(129, 212)(131, 296)(133, 322)(134, 308)(135,
285)(137, 241)(138, 185)(139, 145)(140, 324)(141, 267)(147, 326)(151, 208)(152,
248)(153, 234)(157, 316)(158, 319)(159, 293)(160, 289)(161, 209)(162, 327)(163,
219)(165, 272)(167, 206)(170, 251)(172, 332)(176, 254)(178, 239)(179, 311)(181,
238)(182, 196)(186, 224)(191, 294)(192, 225)(194, 291)(195, 243)(200, 244)(201,
227)(202, 226)(203, 221)(204, 270)(207, 216)(210, 282)(215, 259)(229, 317)(231,
333)(235, 331)(236, 274)(237, 253)(246, 279)(249, 269)(250, 281)(252, 328)(255,
307)(261, 310)(262, 312)(271, 315)(275, 335)(276, 284)(292, 300)(298, 302)(314,
330) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 86)(4, 326)(5, 279)(6, 278)(7, 42)(8, 287)(9, 58)(10, 306)(11,
134)(12, 25)(13, 232)(14, 234)(15, 317)(16, 144)(17, 315)(18, 302)(19, 307)(20,
222)(21, 242)(22, 73)(23, 305)(24, 150)(26, 118)(27, 247)(28, 148)(29, 324)(30,
257)(31, 277)(32, 91)(33, 115)(34, 280)(35, 51)(36, 230)(37, 160)(38, 264)(39,
128)(40, 85)(41, 156)(43, 122)(44, 169)(45, 334)(46, 80)(47, 100)(48, 252)(49,
292)(50, 260)(52, 53)(54, 77)(55, 304)(56, 198)(57, 310)(59, 168)(60, 303)(61,
228)(62, 178)(63, 158)(64, 201)(65, 93)(66, 226)(67, 206)(68, 282)(69, 245)(70,
267)(71, 205)(72, 186)(74, 281)(75, 175)(76, 251)(78, 174)(79, 190)(81, 335)(82,
184)(83, 321)(84, 286)(87, 197)(88, 183)(89, 181)(90, 309)(92, 220)(94, 298)(95,
297)(96, 266)(97, 98)(99, 265)(101, 217)(102, 275)(103, 262)(104, 189)(105,
213)(106, 166)(107, 124)(108, 211)(109, 283)(110, 111)(112, 135)(113, 173)(114,
172)(116, 320)(117, 219)(119, 157)(120, 136)(121, 123)(125, 225)(126, 273)(127,
214)(129, 229)(130, 212)(131, 299)(132, 318)(133, 329)(137, 170)(138, 241)(139,
146)(140, 141)(142, 263)(143, 194)(145, 202)(147, 221)(149, 192)(151, 215)(152,
285)(153, 248)(154, 308)(155, 185)(159, 300)(161, 289)(162, 333)(163, 269)(164,
223)(165, 188)(167, 314)(171, 255)(176, 301)(177, 240)(179, 239)(180, 243)(182,
187)(191, 236)(193, 293)(195, 291)(196, 311)(199, 200)(203, 268)(204, 233)(207,
331)(208, 216)(209, 290)(210, 312)(218, 322)(224, 261)(227, 295)(231, 294)(235,
259)(237, 313)(238, 276)(244, 325)(246, 323)(249, 270)(250, 336)(253, 328)(254,
256)(258, 288)(271, 272)(274, 327)(284, 319)(296, 316)(330, 332)
c: (2, 5)(3, 9)(4, 12)(6, 19)(7, 23)(8, 27)(10, 33)(11, 37)(13, 43)(14, 46)(15,
42)(16, 52)(17, 25)(18, 58)(20, 64)(21, 68)(22, 72)(24, 74)(26, 81)(28, 87)(29,
91)(30, 94)(31, 45)(32, 97)(34, 104)(35, 107)(36, 110)(38, 86)(39, 115)(40,
119)(41, 48)(44, 129)(47, 137)(49, 140)(50, 120)(51, 143)(53, 145)(54, 149)(55,
152)(56, 138)(57, 80)(59, 89)(60, 160)(61, 163)(62, 70)(63, 101)(65, 170)(67,
174)(69, 178)(71, 90)(73, 189)(75, 159)(76, 194)(77, 197)(78, 199)(79, 202)(82,
188)(83, 207)(84, 203)(85, 93)(95, 226)(96, 212)(98, 114)(99, 231)(100,
112)(102, 109)(103, 239)(105, 241)(106, 187)(108, 183)(111, 117)(113, 208)(116,
252)(118, 124)(121, 260)(122, 179)(123, 141)(126, 185)(128, 265)(130, 267)(131,
269)(132, 151)(133, 204)(134, 224)(135, 250)(136, 171)(139, 142)(144, 278)(146,
283)(147, 158)(148, 286)(150, 175)(154, 221)(155, 291)(157, 162)(161, 201)(164,
297)(165, 300)(166, 220)(167, 243)(168, 190)(169, 273)(172, 261)(173, 290)(176,
215)(177, 213)(180, 211)(181, 307)(182, 191)(184, 304)(186, 308)(192, 282)(193,
289)(195, 206)(196, 294)(198, 205)(200, 229)(209, 227)(210, 225)(214, 320)(216,
295)(217, 280)(219, 323)(222, 228)(223, 248)(230, 232)(233, 256)(235, 275)(237,
253)(238, 255)(240, 328)(242, 268)(244, 317)(245, 301)(246, 262)(247, 257)(249,
296)(251, 321)(254, 259)(258, 293)(263, 329)(264, 287)(266, 318)(270, 322)(271,
276)(272, 292)(277, 306)(279, 312)(281, 285)(284, 315)(288, 299)(298, 302)(303,
324)(309, 313)(310, 332)(311, 334)(316, 327)(319, 326)(331, 335)(333, 336)
C4[ 336, 102 ]
336
-1 144 2 278 5
-2 1 279 16 6
-3 165 280 17 7
-4 176 18 8 130
-5 1 312 19 52
-6 2 103 20 53
-7 298 3 21 54
-8 22 55 4 325
-9 23 25 300 217
-10 56 24 49 306
-11 57 200 26 147
-12 58 267 27 215
-13 59 235 28 140
-14 88 211 60 29
-15 268 38 30 197
-16 144 2 323 61
-17 132 3 257 62
-18 4 63 305 75
-19 145 5 239 64
-20 146 6 62 65
-21 66 147 7 219
-22 67 148 8 98
-23 68 302 149 9
-24 69 94 150 10
-25 70 247 151 9
-26 11 71 336 129
-27 12 72 325 152
-28 13 244 73 153
-29 34 321 14 126
-30 154 15 315 74
-31 71 115 271 75
-32 155 189 80 76
-33 277 138 74 140
-34 77 155 29 86
-35 78 100 138 172
-36 121 79 256 84
-37 80 81 158 229
-38 15 82 104 284
-39 45 123 105 285
-40 156 61 83 182
-41 176 69 157 85
-42 77 242 94 86
-43 275 89 49 87
-44 88 81 158 60
-45 276 90 159 39
-46 88 91 180 160
-47 92 214 51 161
-48 178 93 215 162
-49 216 10 43 153
-50 99 111 113 95
-51 47 114 174 241
-52 278 5 163 219
-53 279 269 6 117
-54 280 7 239 164
-55 165 265 8 130
-56 166 216 107 10
-57 11 167 97 108
-58 12 101 159 305
-59 13 168 225 193
-60 44 331 101 14
-61 245 16 40 263
-62 17 281 20 252
-63 169 160 18 282
-64 70 170 19 283
-65 166 20 76 252
-66 68 136 171 21
-67 22 143 167 172
-68 66 23 158 323
-69 24 41 228 284
-70 25 116 64 285
-71 26 182 173 31
-72 286 114 27 174
-73 287 28 206 97
-74 33 178 30 175
-75 176 281 18 31
-76 177 195 32 65
-77 34 179 223 42
-78 35 180 224 186
-79 288 36 181 225
-80 243 37 183 32
-81 44 90 333 37
-82 266 38 184 294
-83 253 324 40 185
-84 244 36 164 186
-85 187 321 41 228
-86 34 188 315 42
-87 189 317 43 153
-88 44 46 14 129
-89 210 190 289 43
-90 45 81 191 290
-91 46 104 185 251
-92 47 137 105 241
-93 222 48 106 251
-94 221 24 42 284
-95 268 192 50 238
-96 319 127 193 184
-97 57 291 73 194
-98 22 143 310 195
-99 50 304 196 240
-100 220 35 289 127
-101 58 60 192 273
-102 275 122 161 274
-103 276 146 6 149
-104 91 38 291 197
-105 143 209 92 39
-106 198 135 93 240
-107 56 199 112 261
-108 57 200 234 273
-109 179 201 235 274
-110 233 202 203 260
-111 145 268 50 204
-112 166 127 193 107
-113 50 205 272 240
-114 332 72 51 206
-115 281 31 141 241
-116 132 70 170 336
-117 242 133 53 120
-118 134 205 250 229
-119 156 191 163 207
-120 231 226 117 208
-121 36 290 128 164
-122 102 181 292 197
-123 209 223 39 230
-124 198 200 135 224
-125 210 168 190 225
-126 211 29 217 207
-127 100 112 212 96
-128 121 213 334 152
-129 88 26 147 160
-130 55 4 214 161
-131 145 204 215 162
-132 165 288 17 116
-133 269 117 218 329
-134 199 221 310 118
-135 124 214 106 293
-136 66 216 294 219
-137 143 320 201 92
-138 33 220 35 295
-139 222 256 262 296
-140 33 13 295 153
-141 232 115 248 227
-142 233 246 249 228
-143 67 137 105 98
-144 1 246 16 228
-145 111 312 19 131
-146 254 103 316 20
-147 11 298 129 21
-148 22 232 248 325
-149 297 23 103 217
-150 298 24 245 306
-151 299 25 300 252
-152 267 300 27 128
-153 49 28 140 87
-154 200 224 268 30
-155 34 243 321 32
-156 245 301 40 119
-157 331 236 269 41
-158 44 68 37 302
-159 45 58 215 285
-160 46 335 63 129
-161 47 102 181 130
-162 48 236 335 131
-163 301 52 119 329
-164 121 84 271 54
-165 55 132 3 311
-166 56 177 112 65
-167 330 67 57 291
-168 232 59 125 293
-169 335 303 183 63
-170 220 116 194 64
-171 66 323 196 295
-172 330 67 35 186
-173 177 71 260 271
-174 243 72 51 261
-175 277 301 302 74
-176 4 269 41 75
-177 166 265 173 76
-178 222 48 315 74
-179 77 272 109 307
-180 78 46 332 185
-181 122 79 312 161
-182 253 71 336 40
-183 80 234 169 229
-184 231 264 82 96
-185 91 180 280 83
-186 78 247 84 172
-187 205 85 250 328
-188 304 86 196 318
-189 264 195 32 87
-190 89 125 258 230
-191 90 333 237 119
-192 101 95 305 262
-193 112 59 235 96
-194 213 170 206 97
-195 189 314 76 98
-196 99 188 171 237
-197 122 15 104 248
-198 124 106 306 208
-199 308 134 211 107
-200 11 154 124 108
-201 267 137 109 307
-202 110 210 299 307
-203 110 297 308 317
-204 111 218 131 263
-205 187 277 113 118
-206 114 314 73 194
-207 126 237 303 119
-208 198 292 328 120
-209 309 123 105 238
-210 89 125 202 279
-211 199 310 14 126
-212 289 127 304 326
-213 220 290 128 194
-214 266 47 135 130
-215 12 48 159 131
-216 253 56 136 49
-217 126 149 303 9
-218 133 322 204 270
-219 136 52 21 329
-220 100 213 170 138
-221 242 134 94 229
-222 178 278 93 139
-223 77 286 123 272
-224 154 78 332 124
-225 79 59 125 312
-226 242 255 282 120
-227 255 313 141 241
-228 144 69 85 142
-229 221 37 183 118
-230 286 254 123 190
-231 184 294 328 120
-232 168 148 259 141
-233 110 299 322 142
-234 324 303 183 108
-235 13 193 316 109
-236 309 157 313 162
-237 191 196 207 295
-238 209 334 95 262
-239 271 19 283 54
-240 99 113 106 251
-241 92 115 51 227
-242 221 226 117 42
-243 330 155 80 174
-244 287 247 28 84
-245 319 156 61 150
-246 144 255 282 142
-247 244 25 186 285
-248 148 292 141 197
-249 254 322 316 142
-250 187 320 258 118
-251 91 93 291 240
-252 333 62 151 65
-253 83 182 216 294
-254 146 258 249 230
-255 311 246 226 227
-256 288 36 270 139
-257 308 17 281 317
-258 254 190 250 318
-259 232 293 283 296
-260 110 297 265 173
-261 308 330 107 174
-262 278 192 139 238
-263 323 61 204 270
-264 319 189 184 317
-265 55 177 311 260
-266 82 214 293 284
-267 12 320 201 152
-268 154 111 15 95
-269 176 133 157 53
-270 256 218 263 296
-271 173 239 31 164
-272 277 113 179 223
-273 331 101 324 108
-274 102 316 327 109
-275 102 289 327 43
-276 297 45 103 290
-277 33 205 272 175
-278 1 222 52 262
-279 210 2 53 307
-280 3 324 185 54
-281 257 115 62 75
-282 246 226 63 305
-283 259 239 327 64
-284 266 69 38 94
-285 70 159 247 39
-286 223 72 325 230
-287 244 73 304 326
-288 132 79 256 336
-289 275 89 100 212
-290 121 276 90 213
-291 167 104 97 251
-292 122 248 306 208
-293 266 135 168 259
-294 231 253 136 82
-295 138 171 237 140
-296 259 270 139 327
-297 276 203 149 260
-298 319 147 7 150
-299 233 333 202 151
-300 334 151 9 152
-301 156 326 163 175
-302 23 158 326 175
-303 234 169 217 207
-304 99 188 287 212
-305 58 192 18 282
-306 198 292 150 10
-307 179 201 202 279
-308 199 257 203 261
-309 209 334 236 335
-310 134 211 314 98
-311 165 265 255 313
-312 145 5 181 225
-313 331 311 236 227
-314 310 332 195 206
-315 178 30 86 318
-316 146 235 249 274
-317 264 257 203 87
-318 188 320 258 315
-319 264 298 245 96
-320 267 137 250 318
-321 155 29 85 328
-322 233 249 218 329
-323 68 16 171 263
-324 234 280 83 273
-325 286 27 148 8
-326 287 212 301 302
-327 275 283 274 296
-328 187 231 321 208
-329 133 322 163 219
-330 243 167 172 261
-331 157 60 313 273
-332 114 180 224 314
-333 299 81 191 252
-334 309 300 128 238
-335 309 169 160 162
-336 288 26 116 182
0