[Home] [Table] [Glossary]
[Families]
On this page are all graphs related to C4[ 336, 110 ].
Graphs which this one covers
2-fold cover of
C4[ 168, 57 ]
= XI(Rmap(84,46){3,8|8}_8)
BGCG dissections of this graph
Base Graph:
C4[ 12, 2 ]
= R_ 6( 5, 4)
connection graph: [BC_ 7( 0, 1, 2, 4)]
Base Graph:
C4[ 168, 39 ]
= UG(ATD[168,63])
connection graph: [K_1]
Base Graph:
C4[ 168, 43 ]
= UG(ATD[168,68])
connection graph: [K_1]
Base Graph:
C4[ 168, 46 ]
= UG(ATD[168,74])
connection graph: [K_1]
Aut-Orbital graphs of this one:
C4[ 16, 1 ] = W( 8, 2)
C4[ 168, 42 ] = UG(ATD[168,66])
C4[ 168, 43 ] = UG(ATD[168,68])
C4[ 168, 44 ] = UG(ATD[168,70])
C4[ 168, 45 ] = UG(ATD[168,72])
C4[ 168, 46 ] = UG(ATD[168,74])
C4[ 168, 47 ] = UG(ATD[168,75])
C4[ 168, 48 ] = UG(ATD[168,77])
C4[ 168, 54 ] = UG(Rmap(336,307){8,4|6}_28)
C4[ 168, 55 ] = MG(Rmap(168,133){4,6|8}_8)
C4[ 336, 110 ] = XI(Rmap(168,3){3,8|8}_8)
C4[ 336, 114 ] = XI(Rmap(168,17){6,6|4}_8)
C4[ 336, 129 ] = XI(Rmap(168,144){6,6|4}_8)
C4[ 336, 139 ] = PL(CS(MC3( 6, 7, 1, 3, 3, 0, 1)[ 4^ 21], 1))
C4[ 336, 143 ] = SDD(MC3( 6, 14, 1, 10, 3, 0, 1))