C4graphGraph forms for C4 [ 336, 111 ] = XI(Rmap(168,4){3,8|8}_14)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 111 ] = XI(Rmap(168,4){3,8|8}_14).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {168, 178}, {151, 177}, {151, 176}, {145, 185}, {131, 170}, {158, 183}, {130, 173}, {131, 178}, {159, 174}, {133, 180}, {132, 182}, {159, 170}, {129, 185}, {150, 174}, {130, 184}, {151, 172}, {131, 190}, {145, 175}, {151, 169}, {154, 219}, {168, 233}, {131, 193}, {133, 205}, {152, 211}, {144, 220}, {162, 236}, {143, 223}, {150, 198}, {135, 212}, {133, 209}, {136, 221}, {159, 200}, {158, 198}, {163, 248}, {142, 210}, {141, 208}, {143, 238}, {148, 245}, {157, 255}, {145, 242}, {168, 203}, {134, 224}, {153, 254}, {132, 237}, {158, 247}, {130, 236}, {133, 234}, {146, 226}, {129, 240}, {150, 231}, {142, 255}, {134, 244}, {150, 225}, {159, 232}, {168, 211}, {167, 218}, {50, 179}, {49, 181}, {65, 197}, {63, 186}, {118, 241}, {67, 201}, {88, 210}, {93, 215}, {121, 242}, {97, 237}, {107, 231}, {115, 254}, {122, 247}, {109, 227}, {120, 246}, {123, 245}, {119, 248}, {63, 175}, {126, 239}, {34, 176}, {82, 192}, {81, 195}, {107, 249}, {68, 215}, {123, 232}, {65, 213}, {75, 223}, {74, 222}, {73, 221}, {72, 220}, {67, 214}, {76, 218}, {78, 216}, {106, 252}, {66, 213}, {64, 216}, {83, 202}, {85, 207}, {103, 253}, {32, 189}, {77, 208}, {74, 215}, {71, 218}, {69, 216}, {34, 191}, {33, 190}, {70, 217}, {27, 187}, {89, 249}, {90, 250}, {91, 251}, {92, 252}, {106, 203}, {83, 241}, {86, 244}, {12, 175}, {31, 188}, {16, 179}, {94, 253}, {107, 200}, {117, 214}, {17, 181}, {29, 185}, {28, 184}, {25, 189}, {125, 217}, {11, 174}, {80, 245}, {30, 187}, {87, 242}, {67, 229}, {82, 244}, {79, 233}, {65, 230}, {84, 243}, {109, 202}, {1, 169}, {83, 251}, {108, 196}, {4, 173}, {90, 243}, {1, 171}, {6, 172}, {103, 205}, {1, 170}, {2, 169}, {3, 175}, {108, 192}, {110, 194}, {77, 224}, {118, 219}, {4, 170}, {79, 225}, {20, 186}, {5, 171}, {1, 174}, {3, 172}, {2, 173}, {88, 247}, {109, 194}, {119, 199}, {6, 183}, {82, 227}, {2, 176}, {80, 226}, {13, 191}, {3, 177}, {5, 182}, {8, 187}, {7, 178}, {9, 188}, {10, 189}, {83, 228}, {88, 239}, {89, 238}, {84, 236}, {85, 237}, {86, 238}, {67, 250}, {82, 235}, {95, 230}, {2, 184}, {5, 191}, {4, 190}, {3, 185}, {123, 193}, {8, 179}, {77, 246}, {68, 255}, {15, 180}, {12, 183}, {66, 254}, {79, 243}, {7, 186}, {64, 253}, {15, 178}, {13, 176}, {11, 182}, {9, 180}, {104, 213}, {120, 197}, {72, 246}, {10, 181}, {14, 177}, {102, 217}, {6, 198}, {48, 240}, {47, 239}, {46, 238}, {45, 237}, {44, 236}, {37, 229}, {35, 227}, {33, 225}, {108, 172}, {51, 242}, {125, 188}, {13, 207}, {62, 252}, {59, 249}, {58, 248}, {55, 245}, {54, 244}, {38, 228}, {16, 210}, {117, 182}, {17, 212}, {20, 209}, {110, 171}, {6, 192}, {61, 251}, {60, 250}, {7, 193}, {126, 184}, {24, 223}, {55, 240}, {52, 243}, {110, 169}, {19, 219}, {46, 230}, {21, 220}, {23, 222}, {8, 194}, {48, 250}, {9, 195}, {118, 188}, {22, 221}, {30, 210}, {61, 241}, {31, 211}, {29, 208}, {53, 248}, {10, 196}, {57, 247}, {56, 246}, {7, 215}, {45, 253}, {44, 252}, {10, 218}, {9, 217}, {8, 216}, {4, 213}, {22, 196}, {35, 241}, {5, 214}, {28, 207}, {24, 203}, {20, 199}, {47, 251}, {49, 229}, {19, 198}, {27, 206}, {25, 204}, {23, 194}, {50, 228}, {18, 197}, {26, 205}, {20, 204}, {108, 181}, {25, 195}, {49, 235}, {36, 255}, {15, 211}, {59, 231}, {18, 206}, {109, 177}, {21, 200}, {63, 226}, {54, 235}, {52, 233}, {23, 202}, {110, 179}, {14, 208}, {15, 209}, {22, 201}, {55, 232}, {53, 234}, {33, 254}, {37, 197}, {61, 221}, {17, 240}, {38, 199}, {60, 222}, {62, 220}, {35, 192}, {55, 212}, {40, 203}, {59, 223}, {36, 193}, {81, 180}, {43, 206}, {41, 204}, {34, 196}, {13, 234}, {42, 205}, {93, 186}, {11, 225}, {60, 214}, {34, 201}, {37, 201}, {65, 173}, {38, 202}, {14, 227}, {12, 226}, {81, 191}, {14, 224}, {89, 183}, {39, 200}, {26, 234}, {27, 235}, {24, 233}, {79, 190}, {76, 189}, {50, 195}, {16, 228}, {32, 212}, {19, 231}, {18, 230}, {17, 229}, {12, 249}, {78, 187}, {40, 222}, {35, 219}, {63, 199}, {41, 209}, {26, 224}, {81, 171}, {53, 207}, {21, 232}, {50, 204}, {16, 239}, {49, 206}, {42, 299}, {33, 291}, {11, 264}, {69, 326}, {59, 312}, {64, 326}, {28, 283}, {43, 300}, {31, 280}, {31, 279}, {73, 321}, {28, 277}, {74, 323}, {70, 332}, {29, 278}, {71, 332}, {68, 335}, {39, 299}, {54, 314}, {53, 313}, {51, 318}, {73, 324}, {72, 325}, {57, 311}, {41, 294}, {66, 333}, {30, 270}, {48, 288}, {94, 334}, {51, 289}, {22, 258}, {32, 308}, {24, 268}, {27, 270}, {69, 336}, {88, 333}, {23, 256}, {56, 303}, {26, 269}, {25, 257}, {19, 266}, {56, 290}, {57, 291}, {18, 265}, {75, 336}, {62, 293}, {92, 320}, {45, 304}, {87, 330}, {21, 267}, {58, 292}, {95, 321}, {32, 257}, {37, 260}, {29, 319}, {43, 265}, {38, 261}, {39, 259}, {52, 272}, {47, 266}, {100, 322}, {54, 273}, {105, 334}, {40, 256}, {42, 259}, {56, 274}, {57, 275}, {43, 263}, {30, 307}, {58, 276}, {41, 262}, {44, 284}, {47, 287}, {46, 286}, {45, 285}, {42, 283}, {40, 282}, {114, 320}, {121, 330}, {52, 258}, {113, 327}, {125, 331}, {36, 275}, {112, 327}, {122, 333}, {48, 264}, {113, 328}, {113, 331}, {127, 324}, {36, 280}, {51, 271}, {116, 329}, {39, 281}, {124, 322}, {90, 282}, {68, 261}, {85, 276}, {97, 288}, {100, 293}, {103, 294}, {111, 301}, {114, 304}, {115, 305}, {95, 284}, {104, 299}, {111, 300}, {102, 290}, {69, 256}, {71, 258}, {99, 294}, {105, 300}, {116, 305}, {80, 278}, {124, 314}, {70, 257}, {89, 286}, {96, 295}, {78, 263}, {80, 281}, {76, 262}, {98, 296}, {104, 290}, {115, 313}, {127, 309}, {72, 259}, {75, 256}, {122, 310}, {73, 260}, {100, 297}, {102, 299}, {121, 308}, {77, 259}, {84, 282}, {85, 283}, {111, 289}, {112, 318}, {116, 314}, {74, 261}, {101, 298}, {106, 293}, {115, 291}, {116, 292}, {91, 266}, {98, 307}, {99, 306}, {90, 264}, {117, 295}, {125, 303}, {92, 271}, {101, 310}, {102, 309}, {119, 292}, {97, 308}, {96, 310}, {105, 319}, {66, 277}, {71, 272}, {121, 288}, {120, 290}, {114, 297}, {96, 317}, {112, 302}, {113, 303}, {86, 265}, {78, 302}, {91, 315}, {118, 279}, {124, 285}, {126, 287}, {92, 318}, {91, 312}, {123, 280}, {105, 269}, {117, 273}, {122, 286}, {99, 262}, {64, 294}, {84, 316}, {111, 263}, {127, 279}, {86, 317}, {126, 277}, {44, 320}, {87, 315}, {95, 306}, {124, 273}, {94, 304}, {101, 267}, {46, 321}, {87, 312}, {127, 272}, {93, 301}, {94, 302}, {98, 274}, {106, 282}, {96, 273}, {107, 281}, {119, 261}, {70, 309}, {75, 312}, {114, 262}, {97, 276}, {112, 263}, {58, 322}, {61, 324}, {100, 285}, {62, 325}, {101, 286}, {76, 304}, {93, 289}, {103, 283}, {120, 260}, {98, 287}, {104, 277}, {60, 323}, {99, 284}, {152, 280}, {143, 268}, {164, 295}, {148, 279}, {136, 268}, {146, 278}, {137, 269}, {138, 270}, {139, 271}, {139, 268}, {161, 297}, {165, 301}, {136, 258}, {134, 269}, {167, 300}, {132, 264}, {166, 298}, {135, 267}, {148, 281}, {128, 271}, {157, 274}, {134, 265}, {154, 266}, {162, 307}, {149, 257}, {163, 311}, {160, 310}, {161, 311}, {129, 278}, {132, 285}, {163, 313}, {144, 267}, {140, 272}, {142, 275}, {160, 317}, {147, 270}, {130, 284}, {162, 316}, {141, 274}, {155, 260}, {129, 288}, {148, 309}, {147, 306}, {146, 305}, {141, 296}, {135, 298}, {144, 318}, {147, 316}, {137, 313}, {145, 289}, {138, 314}, {139, 315}, {140, 316}, {152, 297}, {155, 298}, {141, 319}, {166, 276}, {161, 275}, {157, 303}, {156, 302}, {154, 296}, {143, 317}, {135, 308}, {136, 315}, {156, 296}, {137, 319}, {146, 292}, {128, 311}, {137, 305}, {149, 301}, {142, 307}, {162, 287}, {158, 291}, {152, 293}, {140, 306}, {153, 295}, {138, 329}, {139, 328}, {128, 328}, {140, 324}, {138, 326}, {128, 335}, {153, 329}, {154, 331}, {156, 334}, {157, 335}, {153, 333}, {147, 326}, {144, 327}, {156, 331}, {149, 332}, {155, 321}, {155, 325}, {149, 330}, {161, 320}, {166, 325}, {166, 322}, {165, 323}, {160, 327}, {164, 323}, {160, 328}, {167, 334}, {167, 332}, {163, 335}, {164, 329}, {165, 330}, {164, 336}, {165, 336} }>;

(II) A more general form is to represent the graph as the orbit of {168, 178} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 11)(6, 15)(7, 19)(10, 26)(12, 31)(13, 34)(14, 25)(16, 23)(17, 42)(18, 45)(20, 35)(22, 53)(24, 57)(27, 64)(28, 67)(29, 70)(30, 69)(32, 77)(33, 79)(36, 59)(37, 85)(38, 83)(39, 55)(40, 88)(41, 82)(43, 94)(44, 96)(46, 100)(47, 74)(48, 104)(49, 103)(50, 109)(51, 113)(52, 115)(54, 99)(56, 121)(58, 73)(60, 126)(61, 119)(62, 101)(63, 118)(65, 132)(66, 90)(68, 91)(71, 137)(72, 135)(75, 142)(76, 134)(80, 148)(81, 151)(84, 153)(86, 114)(87, 157)(89, 152)(92, 160)(93, 154)(95, 124)(97, 120)(98, 165)(102, 129)(105, 167)(106, 122)(107, 123)(108, 133)(111, 156)(116, 140)(117, 130)(125, 145)(127, 146)(128, 139)(131, 150)(136, 163)(138, 147)(141, 149)(143, 161)(155, 166)(158, 168)(162, 164)(169, 171)(170, 174)(172, 180)(173, 182)(175, 188)(176, 191)(177, 195)(178, 198)(179, 194)(181, 205)(183, 211)(184, 214)(185, 217)(186, 219)(187, 216)(189, 224)(190, 225)(192, 209)(193, 231)(196, 234)(197, 237)(199, 241)(200, 232)(201, 207)(202, 228)(203, 247)(204, 227)(206, 253)(208, 257)(210, 256)(212, 259)(213, 264)(215, 266)(218, 269)(220, 267)(221, 248)(222, 239)(223, 275)(226, 279)(229, 283)(230, 285)(233, 291)(235, 294)(236, 295)(238, 297)(240, 299)(242, 303)(243, 254)(244, 262)(245, 281)(246, 308)(249, 280)(250, 277)(251, 261)(252, 310)(255, 312)(258, 313)(260, 276)(263, 302)(265, 304)(268, 311)(270, 326)(271, 328)(272, 305)(273, 284)(274, 330)(278, 309)(282, 333)(286, 293)(287, 323)(288, 290)(289, 331)(292, 324)(296, 301)(298, 325)(300, 334)(306, 314)(307, 336)(315, 335)(316, 329)(317, 320)(318, 327)(319, 332)(321, 322)
b: (2, 4)(3, 7)(5, 11)(6, 15)(8, 21)(9, 19)(10, 24)(12, 20)(13, 33)(14, 36)(16, 39)(17, 40)(18, 44)(22, 52)(23, 55)(25, 59)(26, 57)(27, 62)(28, 66)(29, 68)(30, 72)(31, 35)(32, 75)(34, 79)(37, 84)(38, 80)(41, 89)(42, 88)(43, 92)(45, 96)(46, 99)(47, 102)(48, 60)(49, 106)(50, 107)(51, 111)(53, 115)(54, 100)(56, 98)(58, 116)(61, 127)(64, 101)(65, 130)(67, 90)(69, 135)(70, 91)(71, 136)(73, 140)(74, 129)(76, 143)(77, 142)(78, 144)(81, 150)(82, 152)(83, 148)(85, 153)(86, 114)(87, 149)(93, 145)(94, 160)(97, 164)(103, 122)(104, 126)(105, 128)(108, 168)(109, 123)(110, 159)(113, 156)(117, 132)(119, 146)(120, 162)(121, 165)(125, 154)(131, 151)(133, 158)(134, 161)(137, 163)(138, 166)(139, 167)(141, 157)(147, 155)(169, 170)(171, 174)(172, 178)(175, 186)(176, 190)(177, 193)(179, 200)(180, 198)(181, 203)(183, 209)(184, 213)(185, 215)(187, 220)(188, 219)(189, 223)(191, 225)(192, 211)(194, 232)(195, 231)(196, 233)(197, 236)(199, 226)(201, 243)(202, 245)(204, 249)(205, 247)(206, 252)(207, 254)(208, 255)(210, 259)(212, 256)(214, 264)(216, 267)(217, 266)(218, 268)(221, 272)(222, 240)(224, 275)(227, 280)(228, 281)(229, 282)(230, 284)(234, 291)(235, 293)(237, 295)(238, 262)(239, 299)(241, 279)(242, 301)(244, 297)(246, 307)(248, 305)(251, 309)(253, 310)(257, 312)(260, 316)(261, 278)(263, 318)(265, 320)(269, 311)(270, 325)(271, 300)(273, 285)(276, 329)(283, 333)(286, 294)(287, 290)(288, 323)(296, 303)(298, 326)(302, 327)(304, 317)(306, 321)(308, 336)(314, 322)(315, 332)(319, 335)(328, 334)
c: (1, 2, 4)(3, 18, 21)(5, 28, 33)(6, 37, 39)(7, 8, 44)(9, 47, 52)(10, 56, 59)(11, 13, 66)(12, 49, 72)(14, 46, 55)(15, 16, 84)(17, 77, 89)(19, 22, 102)(20, 30, 106)(23, 99, 36)(24, 25, 98)(26, 122, 48)(27, 62, 63)(29, 86, 135)(31, 83, 140)(32, 141, 143)(34, 104, 150)(35, 73, 148)(38, 147, 152)(40, 41, 142)(42, 158, 67)(43, 144, 145)(45, 163, 164)(50, 162, 168)(51, 111, 112)(53, 153, 132)(54, 166, 146)(57, 60, 103)(58, 116, 124)(61, 127, 118)(64, 161, 74)(65, 159, 151)(68, 69, 114)(70, 154, 136)(71, 125, 91)(75, 76, 157)(78, 92, 93)(79, 81, 126)(80, 82, 155)(85, 115, 117)(87, 167, 113)(88, 90, 133)(94, 128, 165)(95, 123, 109)(96, 97, 137)(100, 119, 138)(101, 129, 134)(105, 160, 121)(107, 108, 120)(110, 130, 131)(139, 149, 156)(169, 173, 170)(171, 184, 190)(172, 197, 200)(174, 176, 213)(175, 206, 220)(177, 230, 232)(178, 179, 236)(180, 239, 243)(181, 246, 249)(182, 207, 254)(183, 229, 259)(185, 265, 267)(186, 187, 252)(188, 251, 272)(189, 274, 223)(191, 277, 225)(192, 260, 281)(193, 194, 284)(195, 287, 233)(196, 290, 231)(198, 201, 299)(199, 270, 293)(202, 306, 280)(203, 204, 307)(205, 247, 250)(208, 238, 212)(209, 210, 282)(211, 228, 316)(214, 283, 291)(215, 216, 320)(217, 266, 258)(218, 303, 312)(219, 221, 309)(222, 294, 275)(224, 286, 240)(226, 235, 325)(227, 321, 245)(234, 333, 264)(237, 313, 295)(241, 324, 279)(242, 300, 327)(244, 298, 278)(248, 329, 285)(253, 311, 323)(255, 256, 262)(257, 296, 268)(261, 326, 297)(263, 318, 289)(269, 310, 288)(271, 301, 302)(273, 276, 305)(292, 314, 322)(304, 335, 336)(308, 319, 317)(315, 332, 331)(328, 330, 334)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 111 ]
336
-1 169 170 171 174
-2 176 169 173 184
-3 177 172 185 175
-4 190 213 170 173
-5 191 214 171 182
-6 198 192 172 183
-7 178 193 215 186
-8 187 179 194 216
-9 188 180 195 217
-10 189 181 196 218
-11 264 225 182 174
-12 226 183 249 175
-13 176 234 191 207
-14 177 224 227 208
-15 209 178 211 180
-16 210 179 228 239
-17 212 181 229 240
-18 265 206 197 230
-19 198 231 266 219
-20 209 199 204 186
-21 220 232 200 267
-22 221 201 258 196
-23 222 256 202 194
-24 233 223 268 203
-25 189 257 204 195
-26 234 224 269 205
-27 187 235 270 206
-28 277 184 283 207
-29 319 278 185 208
-30 187 210 270 307
-31 188 211 279 280
-32 308 189 212 257
-33 254 190 225 291
-34 176 201 191 196
-35 192 227 219 241
-36 275 255 280 193
-37 201 260 229 197
-38 199 202 228 261
-39 200 299 259 281
-40 222 256 203 282
-41 209 204 294 262
-42 299 259 205 283
-43 265 300 206 263
-44 320 236 284 252
-45 253 237 304 285
-46 286 321 238 230
-47 287 266 239 251
-48 264 288 250 240
-49 235 181 206 229
-50 179 204 195 228
-51 242 289 271 318
-52 243 233 258 272
-53 234 313 248 207
-54 244 235 314 273
-55 232 212 245 240
-56 246 290 303 274
-57 275 311 247 291
-58 276 322 248 292
-59 231 223 312 249
-60 222 323 214 250
-61 221 324 251 241
-62 220 325 293 252
-63 199 226 175 186
-64 253 216 326 294
-65 213 173 197 230
-66 254 277 333 213
-67 201 214 250 229
-68 255 335 215 261
-69 256 336 216 326
-70 309 332 257 217
-71 332 258 272 218
-72 220 246 259 325
-73 221 321 324 260
-74 222 323 215 261
-75 223 256 312 336
-76 189 304 218 262
-77 224 246 259 208
-78 187 302 216 263
-79 243 233 190 225
-80 245 278 226 281
-81 180 191 171 195
-82 244 235 192 227
-83 202 228 251 241
-84 243 236 282 316
-85 276 237 283 207
-86 265 244 238 317
-87 242 330 312 315
-88 210 333 247 239
-89 286 183 238 249
-90 264 243 282 250
-91 266 312 315 251
-92 320 271 252 318
-93 289 301 215 186
-94 253 334 302 304
-95 321 284 306 230
-96 310 273 295 317
-97 308 276 288 237
-98 287 274 296 307
-99 294 262 284 306
-100 297 322 293 285
-101 286 298 310 267
-102 309 299 290 217
-103 253 205 283 294
-104 277 299 213 290
-105 319 300 334 269
-106 203 282 293 252
-107 231 200 281 249
-108 181 192 172 196
-109 177 202 194 227
-110 179 169 171 194
-111 289 300 301 263
-112 302 327 263 318
-113 331 303 327 328
-114 297 320 304 262
-115 254 291 313 305
-116 292 314 305 329
-117 214 182 273 295
-118 188 279 219 241
-119 199 248 292 261
-120 246 290 260 197
-121 242 308 330 288
-122 286 310 333 247
-123 232 245 280 193
-124 322 314 273 285
-125 188 331 303 217
-126 287 277 184 239
-127 309 279 324 272
-128 311 335 271 328
-129 288 278 185 240
-130 236 173 184 284
-131 178 190 170 193
-132 264 182 237 285
-133 209 234 180 205
-134 265 244 224 269
-135 308 298 212 267
-136 221 268 258 315
-137 319 269 313 305
-138 270 314 326 329
-139 268 271 315 328
-140 324 272 316 306
-141 319 208 274 296
-142 275 210 255 307
-143 223 268 238 317
-144 220 267 327 318
-145 242 289 185 175
-146 278 226 292 305
-147 270 326 316 306
-148 309 245 279 281
-149 330 332 257 301
-150 198 231 225 174
-151 176 177 169 172
-152 297 211 280 293
-153 254 333 295 329
-154 331 266 219 296
-155 298 321 325 260
-156 331 334 302 296
-157 255 335 303 274
-158 198 247 291 183
-159 232 200 170 174
-160 310 327 317 328
-161 275 297 320 311
-162 287 236 316 307
-163 311 313 335 248
-164 323 336 295 329
-165 330 301 323 336
-166 276 298 322 325
-167 332 300 334 218
-168 178 211 233 203
-169 110 1 2 151
-170 1 4 159 131
-171 110 1 81 5
-172 3 6 151 108
-173 2 4 130 65
-174 11 1 159 150
-175 12 145 3 63
-176 34 2 13 151
-177 3 14 151 109
-178 168 15 7 131
-179 110 16 50 8
-180 133 15 81 9
-181 49 17 108 10
-182 11 132 5 117
-183 12 89 158 6
-184 2 126 28 130
-185 145 3 29 129
-186 93 7 63 20
-187 78 27 8 30
-188 125 118 9 31
-189 25 10 32 76
-190 33 79 4 131
-191 34 13 81 5
-192 35 82 6 108
-193 123 36 7 131
-194 110 23 8 109
-195 25 81 50 9
-196 22 34 108 10
-197 37 18 65 120
-198 158 6 150 19
-199 38 63 20 119
-200 159 39 107 21
-201 22 34 67 37
-202 23 38 83 109
-203 24 168 40 106
-204 25 50 41 20
-205 133 26 103 42
-206 27 49 18 43
-207 13 28 85 53
-208 77 14 29 141
-209 133 15 41 20
-210 88 16 30 142
-211 168 15 31 152
-212 55 135 17 32
-213 66 4 104 65
-214 67 5 60 117
-215 68 93 7 74
-216 78 69 8 64
-217 102 70 125 9
-218 167 71 10 76
-219 154 35 19 118
-220 144 72 62 21
-221 22 136 61 73
-222 23 60 40 74
-223 143 24 59 75
-224 77 134 14 26
-225 11 33 79 150
-226 12 80 146 63
-227 35 14 82 109
-228 16 38 50 83
-229 67 37 49 17
-230 46 18 95 65
-231 59 150 19 107
-232 55 123 159 21
-233 24 79 168 52
-234 133 13 26 53
-235 27 49 82 54
-236 44 84 162 130
-237 132 45 85 97
-238 143 89 46 86
-239 88 47 16 126
-240 55 48 17 129
-241 35 61 83 118
-242 121 145 51 87
-243 79 90 84 52
-244 134 82 86 54
-245 55 123 80 148
-246 77 56 72 120
-247 88 122 57 158
-248 58 53 119 163
-249 12 89 59 107
-250 67 90 48 60
-251 47 91 61 83
-252 44 92 62 106
-253 45 103 94 64
-254 33 66 115 153
-255 68 36 157 142
-256 23 69 40 75
-257 25 70 149 32
-258 22 136 71 52
-259 77 39 72 42
-260 155 37 73 120
-261 68 38 74 119
-262 99 114 41 76
-263 78 111 112 43
-264 11 132 90 48
-265 134 18 86 43
-266 154 47 91 19
-267 144 101 135 21
-268 143 24 136 139
-269 134 26 137 105
-270 147 27 138 30
-271 92 51 128 139
-272 71 127 52 140
-273 124 117 96 54
-274 56 157 141 98
-275 57 36 161 142
-276 166 58 85 97
-277 66 104 126 28
-278 80 146 29 129
-279 148 127 118 31
-280 123 36 31 152
-281 80 148 39 107
-282 90 40 84 106
-283 103 28 85 42
-284 44 99 95 130
-285 132 45 100 124
-286 89 122 46 101
-287 47 126 162 98
-288 121 48 129 97
-289 111 145 93 51
-290 56 102 104 120
-291 33 57 158 115
-292 58 146 116 119
-293 100 62 106 152
-294 99 103 41 64
-295 117 96 153 164
-296 154 156 141 98
-297 100 114 161 152
-298 155 166 101 135
-299 102 104 39 42
-300 111 167 105 43
-301 165 111 93 149
-302 78 112 156 94
-303 56 113 157 125
-304 45 114 94 76
-305 146 115 137 116
-306 99 147 95 140
-307 30 162 98 142
-308 121 135 97 32
-309 102 70 148 127
-310 122 101 160 96
-311 57 128 161 163
-312 91 59 75 87
-313 115 137 53 163
-314 124 116 138 54
-315 91 136 139 87
-316 147 84 140 162
-317 143 160 96 86
-318 144 112 92 51
-319 137 105 29 141
-320 44 92 114 161
-321 155 46 73 95
-322 100 166 58 124
-323 165 60 74 164
-324 61 127 73 140
-325 155 166 72 62
-326 69 147 138 64
-327 144 112 113 160
-328 113 160 128 139
-329 116 138 153 164
-330 121 165 149 87
-331 154 156 113 125
-332 167 70 71 149
-333 66 88 122 153
-334 156 167 94 105
-335 68 157 128 163
-336 165 69 75 164
0

**************