C4graphGraph forms for C4 [ 336, 115 ] = SDD(UG(ATD[84,22]))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 115 ] = SDD(UG(ATD[84,22])).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {167, 174}, {166, 173}, {167, 171}, {167, 170}, {167, 169}, {166, 169}, {166, 176}, {166, 185}, {138, 170}, {155, 186}, {151, 180}, {156, 191}, {136, 172}, {157, 185}, {151, 178}, {144, 183}, {146, 181}, {155, 177}, {151, 188}, {156, 183}, {151, 187}, {146, 189}, {136, 184}, {138, 190}, {155, 175}, {155, 172}, {156, 171}, {133, 189}, {135, 187}, {138, 182}, {139, 180}, {146, 211}, {133, 198}, {135, 196}, {138, 207}, {139, 205}, {136, 192}, {137, 195}, {132, 200}, {156, 208}, {146, 194}, {149, 199}, {139, 221}, {135, 223}, {136, 209}, {144, 201}, {154, 193}, {140, 236}, {157, 253}, {128, 225}, {154, 251}, {133, 225}, {141, 234}, {149, 248}, {157, 240}, {154, 245}, {147, 228}, {147, 235}, {150, 238}, {132, 249}, {137, 247}, {149, 235}, {102, 230}, {79, 206}, {62, 188}, {66, 192}, {96, 226}, {109, 239}, {80, 211}, {121, 252}, {118, 254}, {108, 229}, {81, 219}, {83, 217}, {104, 227}, {112, 251}, {100, 233}, {125, 240}, {123, 245}, {123, 244}, {125, 242}, {93, 205}, {79, 222}, {107, 250}, {67, 209}, {110, 253}, {105, 255}, {114, 228}, {93, 197}, {120, 224}, {106, 241}, {81, 204}, {23, 183}, {90, 250}, {103, 199}, {121, 217}, {24, 185}, {106, 203}, {126, 223}, {92, 254}, {93, 255}, {25, 186}, {16, 180}, {67, 231}, {66, 230}, {65, 229}, {64, 228}, {27, 191}, {26, 190}, {17, 181}, {85, 241}, {103, 195}, {11, 174}, {74, 239}, {72, 237}, {86, 243}, {110, 203}, {8, 175}, {73, 238}, {10, 173}, {84, 243}, {91, 252}, {1, 169}, {21, 189}, {20, 188}, {19, 187}, {96, 200}, {112, 216}, {117, 221}, {1, 171}, {6, 172}, {1, 170}, {71, 236}, {2, 169}, {88, 243}, {3, 175}, {70, 234}, {69, 233}, {68, 232}, {89, 245}, {90, 246}, {89, 244}, {4, 170}, {5, 171}, {111, 193}, {126, 208}, {1, 174}, {3, 172}, {2, 173}, {81, 254}, {2, 176}, {68, 246}, {5, 183}, {4, 182}, {3, 177}, {90, 232}, {100, 214}, {102, 212}, {103, 213}, {7, 180}, {103, 212}, {121, 202}, {9, 189}, {72, 252}, {110, 218}, {7, 178}, {66, 247}, {105, 220}, {66, 244}, {91, 237}, {96, 214}, {15, 184}, {69, 242}, {120, 207}, {125, 202}, {80, 232}, {3, 186}, {112, 201}, {4, 190}, {5, 191}, {2, 185}, {67, 248}, {8, 179}, {7, 188}, {7, 187}, {69, 249}, {15, 179}, {14, 178}, {13, 177}, {12, 176}, {10, 182}, {9, 181}, {107, 215}, {111, 210}, {6, 184}, {68, 250}, {22, 214}, {111, 175}, {44, 237}, {48, 241}, {46, 239}, {11, 201}, {43, 233}, {42, 232}, {39, 229}, {38, 228}, {14, 204}, {45, 238}, {6, 192}, {37, 227}, {18, 212}, {13, 203}, {12, 202}, {107, 173}, {18, 213}, {35, 235}, {8, 193}, {121, 176}, {4, 207}, {51, 248}, {39, 236}, {30, 213}, {9, 194}, {19, 223}, {16, 221}, {38, 235}, {40, 230}, {41, 231}, {17, 222}, {37, 234}, {18, 195}, {49, 224}, {20, 197}, {105, 184}, {11, 216}, {21, 198}, {15, 220}, {51, 231}, {5, 208}, {57, 236}, {56, 237}, {18, 199}, {14, 219}, {12, 217}, {60, 234}, {6, 209}, {19, 196}, {13, 218}, {54, 239}, {8, 210}, {52, 238}, {9, 211}, {105, 179}, {35, 248}, {28, 192}, {63, 227}, {62, 226}, {61, 225}, {57, 229}, {31, 195}, {30, 194}, {29, 193}, {111, 179}, {10, 215}, {47, 242}, {36, 249}, {16, 205}, {107, 182}, {22, 200}, {62, 224}, {33, 255}, {23, 201}, {112, 174}, {17, 206}, {60, 227}, {47, 240}, {41, 246}, {110, 177}, {50, 208}, {60, 222}, {57, 219}, {56, 218}, {53, 215}, {51, 209}, {26, 249}, {81, 178}, {32, 196}, {35, 199}, {34, 198}, {33, 197}, {24, 253}, {47, 202}, {29, 251}, {59, 221}, {58, 220}, {52, 210}, {24, 240}, {31, 247}, {30, 246}, {29, 245}, {28, 244}, {27, 243}, {26, 242}, {25, 241}, {86, 191}, {28, 247}, {41, 194}, {32, 204}, {36, 200}, {34, 206}, {33, 205}, {50, 223}, {54, 216}, {55, 217}, {85, 186}, {10, 250}, {15, 255}, {14, 254}, {13, 253}, {12, 252}, {11, 251}, {26, 233}, {53, 198}, {20, 224}, {22, 226}, {21, 225}, {34, 215}, {20, 226}, {58, 204}, {46, 216}, {44, 218}, {30, 231}, {42, 211}, {28, 230}, {79, 181}, {37, 222}, {69, 190}, {62, 197}, {53, 206}, {48, 203}, {32, 220}, {41, 213}, {40, 212}, {39, 219}, {43, 214}, {49, 207}, {58, 196}, {45, 210}, {73, 331}, {78, 332}, {44, 296}, {32, 297}, {46, 295}, {64, 330}, {45, 294}, {47, 292}, {61, 305}, {74, 326}, {29, 272}, {72, 325}, {55, 314}, {35, 302}, {31, 273}, {16, 256}, {56, 296}, {50, 290}, {36, 308}, {17, 257}, {19, 258}, {61, 300}, {59, 298}, {54, 295}, {22, 260}, {52, 294}, {58, 297}, {27, 271}, {24, 269}, {49, 292}, {21, 259}, {51, 293}, {25, 270}, {48, 297}, {50, 299}, {83, 329}, {23, 268}, {40, 309}, {43, 310}, {61, 291}, {91, 325}, {63, 288}, {37, 261}, {59, 283}, {39, 263}, {38, 262}, {42, 264}, {48, 274}, {59, 280}, {115, 336}, {44, 265}, {46, 267}, {23, 304}, {45, 266}, {25, 305}, {101, 333}, {27, 306}, {109, 326}, {31, 307}, {49, 284}, {34, 268}, {63, 273}, {38, 264}, {56, 265}, {127, 333}, {33, 274}, {124, 328}, {113, 324}, {116, 321}, {36, 275}, {63, 263}, {114, 330}, {122, 322}, {53, 268}, {60, 261}, {124, 325}, {40, 276}, {122, 326}, {43, 278}, {54, 267}, {122, 327}, {52, 266}, {57, 263}, {55, 265}, {42, 277}, {124, 323}, {74, 266}, {95, 287}, {98, 291}, {115, 306}, {73, 267}, {99, 289}, {77, 270}, {98, 289}, {106, 297}, {116, 311}, {65, 261}, {84, 272}, {80, 277}, {127, 314}, {95, 281}, {127, 312}, {75, 259}, {78, 262}, {88, 272}, {104, 288}, {113, 313}, {116, 316}, {114, 315}, {119, 318}, {98, 296}, {113, 315}, {94, 277}, {76, 258}, {79, 257}, {82, 284}, {115, 317}, {91, 276}, {93, 274}, {65, 275}, {100, 310}, {76, 287}, {102, 309}, {75, 286}, {126, 299}, {78, 283}, {76, 281}, {82, 260}, {97, 311}, {77, 282}, {64, 280}, {71, 287}, {70, 286}, {80, 264}, {86, 271}, {118, 303}, {119, 302}, {125, 292}, {83, 265}, {87, 269}, {99, 313}, {85, 270}, {118, 301}, {65, 285}, {75, 279}, {74, 278}, {72, 276}, {120, 292}, {124, 288}, {126, 290}, {92, 257}, {95, 258}, {101, 312}, {123, 294}, {94, 256}, {123, 293}, {101, 314}, {117, 298}, {94, 318}, {97, 259}, {119, 277}, {85, 305}, {86, 306}, {96, 260}, {120, 284}, {67, 293}, {113, 279}, {95, 312}, {109, 266}, {122, 285}, {71, 303}, {83, 314}, {108, 261}, {70, 300}, {90, 304}, {101, 271}, {114, 280}, {115, 281}, {70, 301}, {71, 299}, {77, 289}, {82, 318}, {99, 270}, {117, 280}, {116, 282}, {117, 283}, {98, 269}, {104, 263}, {94, 302}, {127, 271}, {92, 301}, {108, 285}, {100, 278}, {102, 276}, {78, 317}, {84, 295}, {92, 303}, {68, 304}, {77, 313}, {76, 312}, {87, 291}, {73, 316}, {84, 290}, {87, 289}, {97, 279}, {118, 257}, {119, 256}, {82, 298}, {106, 274}, {99, 282}, {104, 273}, {88, 290}, {64, 315}, {109, 278}, {75, 311}, {89, 293}, {55, 329}, {87, 296}, {88, 295}, {89, 294}, {97, 286}, {108, 275}, {134, 260}, {153, 282}, {131, 262}, {165, 288}, {135, 258}, {133, 259}, {154, 272}, {139, 256}, {152, 279}, {157, 269}, {140, 287}, {160, 307}, {141, 286}, {160, 308}, {147, 262}, {132, 275}, {142, 281}, {131, 283}, {137, 273}, {134, 284}, {147, 264}, {164, 319}, {144, 268}, {150, 267}, {141, 301}, {144, 304}, {141, 300}, {158, 319}, {152, 313}, {148, 310}, {128, 291}, {152, 315}, {140, 303}, {145, 309}, {153, 316}, {140, 299}, {150, 316}, {148, 319}, {128, 300}, {134, 298}, {153, 311}, {132, 308}, {128, 305}, {142, 317}, {129, 310}, {130, 309}, {134, 318}, {137, 307}, {143, 308}, {149, 302}, {142, 306}, {143, 307}, {129, 319}, {163, 285}, {131, 317}, {129, 321}, {130, 323}, {130, 320}, {129, 322}, {143, 328}, {143, 327}, {130, 333}, {131, 332}, {145, 320}, {159, 334}, {158, 335}, {145, 323}, {159, 332}, {158, 330}, {148, 321}, {158, 331}, {148, 322}, {159, 329}, {153, 321}, {145, 333}, {152, 324}, {150, 331}, {142, 336}, {159, 320}, {165, 325}, {163, 322}, {162, 320}, {163, 327}, {161, 324}, {163, 326}, {165, 323}, {168, 334}, {160, 327}, {168, 335}, {160, 328}, {162, 329}, {164, 335}, {162, 334}, {168, 324}, {165, 328}, {161, 335}, {164, 330}, {162, 332}, {161, 334}, {164, 331}, {161, 336}, {168, 336} }>;

(II) A more general form is to represent the graph as the orbit of {167, 174} under the group generated by the following permutations:

a: (16, 139)
b: (65, 108)
c: (76, 95)
d: (4, 138)
e: (38, 147)
f: (21, 133)
g: (113, 152)
h: (143, 160)
m: (48, 106)
n1: (36, 132)
a1: (30, 41)
b1: (46, 54)
c1: (59, 117)
d1: (89, 123)
e1: (61, 128)
f1: (20, 62)
g1: (8, 111)
h1: (12, 121)
m1: (116, 153)
n2: (68, 90)
a2: (70, 141)
b2: (42, 80)
c2: (39, 57)
d2: (2, 4)(3, 7)(5, 11)(6, 14)(8, 19)(12, 26)(13, 20)(15, 32)(16, 25)(17, 30)(18, 37)(21, 42)(22, 44)(24, 49)(27, 46)(28, 39)(29, 50)(31, 63)(33, 48)(34, 68)(35, 70)(36, 72)(38, 75)(40, 65)(41, 79)(43, 55)(45, 76)(51, 92)(52, 95)(53, 90)(54, 86)(56, 96)(57, 66)(58, 105)(59, 77)(60, 103)(61, 94)(62, 110)(64, 113)(67, 118)(69, 121)(71, 89)(73, 115)(74, 101)(78, 116)(80, 133)(81, 136)(82, 87)(83, 100)(85, 139)(91, 132)(93, 106)(97, 147)(98, 134)(99, 117)(102, 108)(104, 137)(109, 127)(111, 135)(112, 156)(114, 152)(119, 128)(120, 157)(122, 130)(123, 140)(124, 143)(126, 154)(129, 159)(131, 153)(138, 166)(141, 149)(142, 150)(145, 163)(148, 162)(151, 155)(158, 161)(160, 165)(164, 168)(169, 170)(171, 174)(172, 178)(173, 182)(175, 187)(176, 190)(177, 188)(179, 196)(180, 186)(181, 194)(183, 201)(184, 204)(185, 207)(189, 211)(191, 216)(192, 219)(193, 223)(195, 227)(197, 203)(198, 232)(199, 234)(200, 237)(202, 242)(205, 241)(206, 246)(208, 251)(209, 254)(210, 258)(212, 261)(213, 222)(214, 265)(215, 250)(217, 233)(218, 226)(221, 270)(224, 253)(225, 277)(228, 279)(229, 230)(231, 257)(235, 286)(236, 244)(238, 281)(239, 271)(240, 292)(243, 295)(245, 299)(247, 263)(248, 301)(249, 252)(255, 297)(256, 305)(259, 264)(260, 296)(262, 311)(266, 312)(267, 306)(268, 304)(269, 284)(272, 290)(275, 276)(278, 314)(280, 313)(282, 283)(285, 309)(287, 294)(288, 307)(289, 298)(291, 318)(293, 303)(300, 302)(308, 325)(310, 329)(316, 317)(319, 334)(320, 322)(321, 332)(323, 327)(324, 330)(326, 333)(331, 336)
e2: (2, 166)
f2: (23, 144)
g2: (7, 151)
h2: (158, 164)
m2: (159, 162)
n3: (6, 136)
a3: (19, 135)
b3: (82, 134)
c3: (31, 137)
d3: (71, 140)
e3: (32, 58)
f3: (5, 156)
g3: (84, 88)
h3: (72, 91)
m3: (10, 107)
n4: (50, 126)
a4: (11, 112)
b4: (101, 127)
c4: (2, 5)(3, 7)(4, 11)(6, 16)(8, 20)(10, 23)(12, 27)(13, 19)(14, 25)(15, 33)(17, 21)(18, 38)(22, 45)(24, 50)(26, 46)(28, 59)(29, 49)(30, 42)(31, 64)(32, 48)(36, 73)(37, 75)(39, 77)(40, 78)(41, 80)(43, 74)(44, 76)(47, 84)(51, 94)(52, 96)(54, 69)(55, 101)(56, 95)(57, 99)(58, 106)(60, 97)(61, 92)(62, 111)(63, 113)(65, 116)(66, 117)(67, 119)(71, 87)(72, 115)(79, 133)(81, 85)(82, 89)(83, 127)(86, 121)(88, 125)(91, 142)(93, 105)(98, 140)(100, 109)(102, 131)(103, 147)(104, 152)(107, 144)(108, 153)(110, 135)(112, 138)(114, 137)(118, 128)(120, 154)(122, 129)(123, 134)(124, 161)(126, 157)(130, 159)(132, 150)(136, 139)(143, 158)(145, 162)(148, 163)(151, 155)(156, 166)(160, 164)(165, 168)(169, 171)(170, 174)(172, 180)(173, 183)(175, 188)(176, 191)(177, 187)(178, 186)(179, 197)(181, 189)(182, 201)(184, 205)(185, 208)(190, 216)(192, 221)(193, 224)(194, 211)(195, 228)(196, 203)(198, 206)(199, 235)(200, 238)(202, 243)(204, 241)(207, 251)(209, 256)(210, 226)(212, 262)(213, 264)(214, 266)(215, 268)(217, 271)(218, 258)(219, 270)(220, 274)(222, 259)(223, 253)(225, 257)(227, 279)(229, 282)(230, 283)(231, 277)(232, 246)(233, 239)(234, 286)(236, 289)(237, 281)(240, 290)(242, 295)(244, 298)(245, 284)(247, 280)(248, 302)(249, 267)(250, 304)(252, 306)(254, 305)(260, 294)(261, 311)(263, 313)(265, 312)(269, 299)(272, 292)(273, 315)(275, 316)(276, 317)(285, 321)(287, 296)(288, 324)(291, 303)(293, 318)(300, 301)(307, 330)(308, 331)(309, 332)(310, 326)(319, 327)(323, 334)(325, 336)(328, 335)(329, 333)
d4: (45, 52)
e4: (29, 154)
f4: (73, 150)
g4: (92, 118)
h4: (115, 142)
m4: (75, 97)
n5: (161, 168)
a5: (78, 131)
b5: (24, 157)
c5: (9, 146)
d5: (22, 96)
e5: (122, 163)
f5: (94, 119)
g5: (129, 148)
h5: (33, 93)
m5: (51, 67)
n6: (47, 125)
a6: (63, 104)
b6: (43, 100)
c6: (25, 85)
d6: (14, 81)
e6: (15, 105)
f6: (1, 2)(3, 8)(4, 10)(5, 12)(6, 15)(7, 18)(9, 22)(11, 24)(13, 29)(14, 31)(16, 35)(17, 36)(19, 40)(20, 30)(21, 43)(23, 47)(25, 45)(26, 34)(27, 55)(28, 32)(33, 51)(37, 65)(38, 59)(39, 63)(41, 62)(42, 82)(44, 84)(46, 87)(48, 89)(49, 68)(50, 72)(52, 85)(53, 69)(54, 98)(56, 88)(57, 104)(58, 66)(60, 108)(61, 74)(67, 93)(70, 122)(71, 124)(73, 77)(75, 129)(76, 130)(79, 132)(80, 134)(81, 137)(83, 86)(90, 120)(91, 126)(92, 143)(95, 145)(96, 146)(97, 148)(99, 150)(100, 133)(102, 135)(103, 151)(105, 136)(106, 123)(107, 138)(109, 128)(110, 154)(111, 155)(112, 157)(113, 158)(115, 159)(117, 147)(118, 160)(121, 156)(125, 144)(139, 149)(140, 165)(141, 163)(142, 162)(152, 164)(166, 167)(170, 173)(171, 176)(172, 179)(174, 185)(177, 193)(178, 195)(180, 199)(181, 200)(183, 202)(186, 210)(187, 212)(188, 213)(189, 214)(190, 215)(191, 217)(192, 220)(194, 226)(196, 230)(197, 231)(198, 233)(201, 240)(203, 245)(204, 247)(205, 248)(206, 249)(207, 250)(208, 252)(209, 255)(211, 260)(216, 269)(218, 272)(219, 273)(221, 235)(222, 275)(223, 276)(224, 246)(225, 278)(227, 229)(228, 280)(232, 284)(234, 285)(236, 288)(237, 290)(238, 270)(239, 291)(241, 294)(242, 268)(243, 265)(244, 297)(251, 253)(254, 307)(256, 302)(257, 308)(258, 309)(259, 310)(262, 283)(264, 298)(266, 305)(267, 289)(271, 314)(274, 293)(277, 318)(279, 319)(281, 320)(282, 316)(286, 322)(287, 323)(292, 304)(295, 296)(299, 325)(300, 326)(301, 327)(303, 328)(306, 329)(311, 321)(312, 333)(313, 331)(315, 330)(317, 332)(324, 335)(334, 336)
g6: (74, 109)
h6: (37, 60)
m6: (64, 114)
n7: (27, 86)
a7: (77, 99)
b7: (34, 53)
c7: (124, 165)
d7: (26, 69)
e7: (49, 120)
f7: (44, 56)
g7: (55, 83)
h7: (17, 79)
m7: (130, 145)
n8: (13, 110)
a8: (28, 66)
b8: (3, 155)
c8: (87, 98)
d8: (35, 149)
e8: (40, 102)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 115 ]
336
-1 169 170 171 174
-2 176 169 173 185
-3 177 172 175 186
-4 190 170 182 207
-5 191 171 183 208
-6 209 192 172 184
-7 187 188 178 180
-8 210 179 193 175
-9 189 211 181 194
-10 182 215 173 250
-11 201 216 174 251
-12 176 202 217 252
-13 253 177 203 218
-14 254 178 204 219
-15 220 255 179 184
-16 221 256 180 205
-17 222 257 181 206
-18 199 212 213 195
-19 187 223 258 196
-20 188 224 226 197
-21 198 189 225 259
-22 200 214 226 260
-23 201 268 183 304
-24 253 269 185 240
-25 270 305 186 241
-26 242 233 190 249
-27 243 191 271 306
-28 244 192 247 230
-29 245 193 272 251
-30 231 213 246 194
-31 247 195 273 307
-32 220 297 204 196
-33 255 205 197 274
-34 198 268 215 206
-35 199 235 302 248
-36 275 308 200 249
-37 222 234 227 261
-38 264 235 228 262
-39 236 229 219 263
-40 276 309 212 230
-41 231 213 246 194
-42 264 232 211 277
-43 233 310 278 214
-44 265 237 218 296
-45 210 266 238 294
-46 267 216 239 295
-47 242 202 292 240
-48 297 203 241 274
-49 224 292 207 284
-50 299 223 290 208
-51 209 231 248 293
-52 210 266 238 294
-53 198 268 215 206
-54 267 216 239 295
-55 265 314 217 329
-56 265 237 218 296
-57 236 229 219 263
-58 220 297 204 196
-59 221 298 280 283
-60 222 234 227 261
-61 300 225 291 305
-62 188 224 226 197
-63 288 227 273 263
-64 330 280 315 228
-65 275 261 229 285
-66 244 192 247 230
-67 209 231 248 293
-68 232 246 304 250
-69 242 233 190 249
-70 286 234 300 301
-71 287 299 236 303
-72 276 237 325 252
-73 331 267 238 316
-74 266 278 326 239
-75 286 311 279 259
-76 287 312 258 281
-77 289 313 270 282
-78 332 283 262 317
-79 222 257 181 206
-80 264 232 211 277
-81 254 178 204 219
-82 298 260 284 318
-83 265 314 217 329
-84 243 290 272 295
-85 270 305 186 241
-86 243 191 271 306
-87 289 269 291 296
-88 243 290 272 295
-89 244 245 293 294
-90 232 246 304 250
-91 276 237 325 252
-92 254 257 301 303
-93 255 205 197 274
-94 277 256 302 318
-95 287 312 258 281
-96 200 214 226 260
-97 286 311 279 259
-98 289 269 291 296
-99 289 313 270 282
-100 233 310 278 214
-101 333 312 314 271
-102 276 309 212 230
-103 199 212 213 195
-104 288 227 273 263
-105 220 255 179 184
-106 297 203 241 274
-107 182 215 173 250
-108 275 261 229 285
-109 266 278 326 239
-110 253 177 203 218
-111 210 179 193 175
-112 201 216 174 251
-113 279 313 324 315
-114 330 280 315 228
-115 281 336 306 317
-116 321 311 282 316
-117 221 298 280 283
-118 254 257 301 303
-119 277 256 302 318
-120 224 292 207 284
-121 176 202 217 252
-122 322 326 327 285
-123 244 245 293 294
-124 288 323 325 328
-125 242 202 292 240
-126 299 223 290 208
-127 333 312 314 271
-128 300 225 291 305
-129 319 310 321 322
-130 309 320 333 323
-131 332 283 262 317
-132 275 308 200 249
-133 198 189 225 259
-134 298 260 284 318
-135 187 223 258 196
-136 209 192 172 184
-137 247 195 273 307
-138 190 170 182 207
-139 221 256 180 205
-140 287 299 236 303
-141 286 234 300 301
-142 281 336 306 317
-143 308 327 328 307
-144 201 268 183 304
-145 309 320 333 323
-146 189 211 181 194
-147 264 235 228 262
-148 319 310 321 322
-149 199 235 302 248
-150 331 267 238 316
-151 187 188 178 180
-152 279 313 324 315
-153 321 311 282 316
-154 245 193 272 251
-155 177 172 175 186
-156 191 171 183 208
-157 253 269 185 240
-158 319 330 331 335
-159 320 332 334 329
-160 308 327 328 307
-161 334 324 335 336
-162 320 332 334 329
-163 322 326 327 285
-164 319 330 331 335
-165 288 323 325 328
-166 176 169 173 185
-167 169 170 171 174
-168 334 324 335 336
-169 1 166 2 167
-170 1 167 4 138
-171 1 156 167 5
-172 155 3 136 6
-173 166 2 107 10
-174 11 1 112 167
-175 111 155 3 8
-176 121 12 166 2
-177 110 155 13 3
-178 14 81 7 151
-179 111 15 105 8
-180 16 7 139 151
-181 79 146 17 9
-182 4 138 107 10
-183 23 144 156 5
-184 15 136 6 105
-185 166 2 24 157
-186 155 3 25 85
-187 135 7 19 151
-188 7 62 151 20
-189 133 146 9 21
-190 69 4 26 138
-191 156 5 27 86
-192 66 136 6 28
-193 154 111 29 8
-194 146 30 41 9
-195 103 137 18 31
-196 58 135 19 32
-197 33 93 62 20
-198 34 133 53 21
-199 35 103 149 18
-200 22 132 36 96
-201 11 23 144 112
-202 121 12 47 125
-203 110 13 48 106
-204 14 58 81 32
-205 33 16 93 139
-206 34 79 17 53
-207 4 49 138 120
-208 156 5 126 50
-209 67 136 6 51
-210 45 111 8 52
-211 80 146 9 42
-212 102 103 18 40
-213 103 18 30 41
-214 22 100 96 43
-215 34 107 53 10
-216 11 46 112 54
-217 55 121 12 83
-218 44 110 56 13
-219 57 14 81 39
-220 58 15 105 32
-221 59 16 117 139
-222 79 37 60 17
-223 135 126 50 19
-224 49 62 20 120
-225 133 61 128 21
-226 22 62 96 20
-227 37 60 104 63
-228 114 147 38 64
-229 57 39 108 65
-230 66 102 28 40
-231 67 51 30 41
-232 68 90 80 42
-233 100 69 26 43
-234 37 70 60 141
-235 35 147 38 149
-236 57 71 39 140
-237 44 56 91 72
-238 45 73 150 52
-239 46 74 54 109
-240 24 47 157 125
-241 25 48 106 85
-242 47 69 26 125
-243 88 27 84 86
-244 66 89 123 28
-245 154 89 123 29
-246 68 90 30 41
-247 66 137 28 31
-248 67 35 149 51
-249 132 36 69 26
-250 68 90 107 10
-251 11 154 112 29
-252 121 12 91 72
-253 110 13 24 157
-254 14 81 92 118
-255 33 15 93 105
-256 16 94 139 119
-257 79 92 17 118
-258 135 95 19 76
-259 133 75 97 21
-260 22 134 82 96
-261 37 60 108 65
-262 78 147 38 131
-263 57 104 39 63
-264 80 147 38 42
-265 44 55 56 83
-266 45 52 74 109
-267 46 73 150 54
-268 23 34 144 53
-269 24 157 87 98
-270 77 99 25 85
-271 101 27 127 86
-272 88 154 29 84
-273 104 137 63 31
-274 33 48 93 106
-275 132 36 108 65
-276 91 102 72 40
-277 80 94 42 119
-278 100 74 43 109
-279 113 75 97 152
-280 59 114 117 64
-281 115 95 76 142
-282 77 99 116 153
-283 78 59 117 131
-284 134 49 82 120
-285 122 108 163 65
-286 70 75 97 141
-287 71 95 140 76
-288 165 124 104 63
-289 77 99 87 98
-290 88 126 50 84
-291 61 128 87 98
-292 47 125 49 120
-293 67 89 123 51
-294 45 89 123 52
-295 88 46 84 54
-296 44 56 87 98
-297 58 48 106 32
-298 134 59 82 117
-299 71 126 50 140
-300 70 61 128 141
-301 70 92 118 141
-302 35 94 149 119
-303 92 71 118 140
-304 23 144 68 90
-305 25 61 128 85
-306 27 115 86 142
-307 143 137 160 31
-308 132 143 36 160
-309 145 102 40 130
-310 100 148 129 43
-311 116 75 97 153
-312 101 127 95 76
-313 77 99 113 152
-314 55 101 83 127
-315 113 114 64 152
-316 116 73 150 153
-317 78 115 131 142
-318 134 82 94 119
-319 158 148 129 164
-320 145 159 162 130
-321 148 116 129 153
-322 122 148 129 163
-323 165 145 124 130
-324 113 168 161 152
-325 165 91 124 72
-326 122 74 163 109
-327 143 122 160 163
-328 143 165 124 160
-329 55 159 83 162
-330 114 158 64 164
-331 158 73 150 164
-332 78 159 162 131
-333 101 145 127 130
-334 168 159 161 162
-335 168 158 161 164
-336 168 115 161 142
0

**************