C4graphGraph forms for C4 [ 336, 121 ] = SDD(C_84(1,29))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 121 ] = SDD(C_84(1,29)).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {137, 190}, {130, 184}, {163, 225}, {137, 207}, {155, 209}, {156, 215}, {140, 195}, {165, 234}, {140, 217}, {168, 253}, {140, 214}, {130, 217}, {146, 201}, {151, 202}, {167, 249}, {146, 243}, {128, 227}, {151, 244}, {137, 234}, {136, 235}, {131, 224}, {129, 226}, {130, 230}, {150, 254}, {156, 244}, {149, 255}, {135, 236}, {145, 250}, {144, 251}, {156, 238}, {137, 253}, {130, 249}, {139, 240}, {138, 241}, {155, 230}, {140, 243}, {160, 223}, {57, 184}, {116, 245}, {83, 208}, {55, 179}, {63, 186}, {76, 201}, {89, 220}, {115, 246}, {110, 232}, {82, 213}, {104, 239}, {36, 172}, {111, 231}, {56, 177}, {57, 176}, {36, 175}, {37, 174}, {115, 248}, {37, 169}, {74, 198}, {90, 215}, {37, 171}, {35, 172}, {37, 170}, {57, 169}, {75, 218}, {112, 225}, {74, 216}, {82, 192}, {100, 246}, {33, 178}, {102, 245}, {35, 183}, {73, 221}, {72, 220}, {57, 173}, {36, 177}, {58, 175}, {89, 206}, {90, 195}, {101, 252}, {33, 186}, {116, 239}, {117, 238}, {35, 191}, {36, 185}, {34, 188}, {84, 202}, {96, 254}, {97, 255}, {123, 229}, {64, 223}, {21, 181}, {72, 232}, {22, 183}, {69, 228}, {67, 226}, {65, 224}, {26, 187}, {24, 185}, {89, 248}, {112, 209}, {28, 190}, {29, 191}, {91, 249}, {94, 252}, {95, 253}, {12, 175}, {79, 236}, {71, 228}, {70, 229}, {66, 225}, {25, 186}, {103, 196}, {117, 214}, {16, 180}, {11, 174}, {78, 235}, {85, 240}, {87, 242}, {18, 180}, {20, 178}, {92, 250}, {93, 251}, {10, 173}, {77, 234}, {68, 227}, {27, 188}, {20, 179}, {19, 180}, {86, 241}, {1, 169}, {100, 204}, {103, 207}, {115, 219}, {1, 171}, {6, 172}, {88, 242}, {1, 170}, {2, 169}, {3, 175}, {75, 231}, {116, 216}, {82, 255}, {83, 254}, {102, 203}, {104, 197}, {4, 170}, {5, 171}, {1, 174}, {23, 184}, {20, 187}, {19, 188}, {3, 172}, {2, 173}, {13, 189}, {4, 181}, {75, 250}, {6, 183}, {117, 196}, {2, 176}, {3, 177}, {104, 218}, {5, 182}, {72, 251}, {8, 187}, {7, 178}, {9, 188}, {83, 235}, {103, 223}, {4, 189}, {6, 191}, {2, 184}, {74, 240}, {8, 178}, {3, 185}, {5, 190}, {8, 179}, {10, 182}, {15, 179}, {81, 237}, {7, 186}, {80, 237}, {13, 176}, {9, 180}, {110, 211}, {111, 210}, {73, 247}, {82, 236}, {14, 177}, {112, 176}, {117, 181}, {31, 222}, {24, 218}, {25, 219}, {21, 214}, {9, 205}, {17, 213}, {16, 212}, {11, 207}, {61, 248}, {18, 212}, {27, 221}, {26, 220}, {7, 192}, {48, 247}, {9, 193}, {39, 239}, {15, 199}, {14, 198}, {10, 195}, {62, 247}, {60, 245}, {12, 197}, {103, 174}, {8, 194}, {7, 204}, {61, 246}, {34, 233}, {30, 213}, {4, 201}, {32, 237}, {29, 208}, {6, 203}, {112, 189}, {22, 216}, {63, 241}, {23, 217}, {5, 202}, {59, 244}, {11, 196}, {22, 198}, {21, 196}, {19, 193}, {17, 194}, {60, 239}, {28, 207}, {11, 223}, {55, 227}, {51, 231}, {50, 230}, {49, 229}, {38, 243}, {59, 238}, {20, 194}, {46, 248}, {16, 200}, {18, 200}, {58, 224}, {56, 226}, {45, 247}, {44, 246}, {41, 243}, {40, 242}, {12, 208}, {53, 233}, {52, 232}, {15, 211}, {14, 210}, {13, 209}, {10, 215}, {47, 242}, {19, 205}, {43, 245}, {42, 244}, {34, 252}, {31, 193}, {30, 192}, {25, 199}, {17, 206}, {54, 233}, {40, 200}, {46, 206}, {45, 205}, {44, 204}, {43, 203}, {42, 202}, {41, 201}, {26, 251}, {53, 212}, {51, 210}, {33, 192}, {32, 193}, {30, 255}, {28, 253}, {24, 250}, {54, 212}, {39, 197}, {84, 182}, {29, 254}, {62, 221}, {50, 209}, {49, 213}, {63, 219}, {60, 216}, {55, 211}, {38, 195}, {22, 240}, {76, 170}, {61, 219}, {27, 252}, {52, 211}, {47, 200}, {25, 241}, {35, 203}, {56, 210}, {58, 208}, {84, 190}, {12, 224}, {59, 215}, {15, 227}, {14, 226}, {13, 225}, {83, 191}, {90, 182}, {33, 204}, {23, 249}, {38, 214}, {55, 199}, {23, 230}, {76, 189}, {47, 222}, {26, 232}, {75, 185}, {46, 220}, {31, 237}, {30, 236}, {27, 233}, {49, 194}, {72, 187}, {16, 228}, {17, 229}, {18, 228}, {40, 222}, {29, 235}, {28, 234}, {90, 173}, {63, 199}, {76, 181}, {21, 238}, {39, 218}, {74, 183}, {48, 205}, {32, 222}, {56, 198}, {24, 231}, {58, 197}, {49, 206}, {38, 217}, {34, 221}, {84, 171}, {62, 296}, {94, 326}, {91, 322}, {92, 325}, {93, 320}, {31, 256}, {32, 256}, {47, 269}, {101, 326}, {106, 329}, {40, 269}, {46, 267}, {97, 327}, {108, 330}, {109, 330}, {41, 257}, {48, 280}, {45, 261}, {44, 260}, {43, 259}, {42, 258}, {120, 336}, {51, 282}, {53, 284}, {105, 320}, {107, 322}, {54, 284}, {98, 328}, {50, 281}, {99, 328}, {106, 321}, {39, 266}, {61, 275}, {109, 323}, {52, 283}, {108, 323}, {125, 333}, {126, 334}, {127, 334}, {62, 268}, {60, 271}, {120, 331}, {50, 262}, {51, 263}, {45, 280}, {59, 270}, {48, 261}, {113, 324}, {121, 332}, {122, 335}, {114, 324}, {127, 329}, {121, 335}, {122, 332}, {125, 330}, {126, 329}, {44, 279}, {52, 264}, {53, 265}, {41, 276}, {43, 278}, {121, 324}, {122, 324}, {42, 277}, {54, 265}, {95, 285}, {97, 291}, {66, 257}, {107, 303}, {127, 315}, {125, 313}, {124, 312}, {73, 268}, {126, 315}, {85, 272}, {87, 274}, {124, 314}, {86, 273}, {123, 307}, {88, 274}, {106, 288}, {107, 289}, {79, 260}, {118, 317}, {119, 316}, {120, 307}, {78, 259}, {64, 270}, {65, 271}, {98, 300}, {101, 299}, {108, 290}, {77, 258}, {91, 276}, {99, 300}, {109, 290}, {89, 267}, {67, 272}, {118, 293}, {119, 292}, {81, 261}, {88, 268}, {96, 308}, {68, 273}, {71, 274}, {70, 275}, {80, 261}, {69, 274}, {105, 305}, {123, 291}, {113, 296}, {119, 302}, {114, 296}, {87, 268}, {118, 301}, {99, 319}, {64, 285}, {66, 287}, {86, 267}, {96, 317}, {98, 319}, {113, 300}, {101, 315}, {114, 300}, {65, 286}, {85, 266}, {97, 318}, {100, 260}, {115, 275}, {73, 296}, {119, 278}, {121, 280}, {98, 256}, {126, 284}, {104, 266}, {122, 280}, {67, 288}, {127, 284}, {91, 312}, {95, 316}, {99, 256}, {107, 264}, {118, 277}, {109, 265}, {68, 289}, {124, 281}, {71, 290}, {70, 291}, {92, 313}, {94, 315}, {102, 259}, {108, 265}, {81, 311}, {110, 264}, {69, 290}, {125, 282}, {124, 283}, {80, 311}, {93, 314}, {111, 263}, {123, 275}, {77, 292}, {79, 294}, {95, 309}, {78, 293}, {64, 301}, {66, 303}, {106, 263}, {65, 302}, {105, 262}, {120, 279}, {102, 278}, {67, 304}, {88, 299}, {100, 279}, {68, 305}, {71, 306}, {70, 307}, {92, 297}, {94, 299}, {110, 283}, {111, 282}, {81, 295}, {105, 287}, {69, 306}, {80, 295}, {93, 298}, {77, 308}, {79, 310}, {78, 309}, {116, 271}, {85, 297}, {86, 298}, {87, 299}, {113, 269}, {96, 286}, {114, 269}, {138, 267}, {165, 292}, {164, 293}, {139, 266}, {151, 277}, {155, 281}, {135, 260}, {146, 276}, {150, 286}, {158, 279}, {164, 301}, {159, 278}, {136, 259}, {131, 271}, {163, 303}, {160, 301}, {128, 273}, {165, 308}, {153, 264}, {129, 272}, {156, 270}, {146, 257}, {168, 316}, {151, 258}, {166, 305}, {161, 313}, {162, 314}, {164, 317}, {162, 312}, {138, 273}, {139, 272}, {131, 286}, {168, 309}, {155, 262}, {154, 263}, {167, 312}, {138, 298}, {166, 262}, {128, 289}, {135, 294}, {134, 295}, {129, 288}, {132, 294}, {163, 257}, {150, 308}, {148, 310}, {139, 297}, {133, 295}, {148, 311}, {159, 316}, {157, 318}, {147, 311}, {147, 310}, {165, 258}, {145, 313}, {152, 304}, {144, 314}, {149, 318}, {150, 317}, {131, 302}, {158, 307}, {136, 293}, {160, 270}, {128, 305}, {164, 277}, {159, 302}, {135, 310}, {129, 304}, {167, 276}, {168, 285}, {149, 291}, {153, 303}, {145, 297}, {153, 289}, {134, 319}, {166, 287}, {162, 283}, {132, 318}, {154, 288}, {144, 298}, {133, 319}, {157, 294}, {162, 281}, {161, 282}, {159, 292}, {142, 306}, {163, 287}, {136, 309}, {160, 285}, {143, 306}, {141, 304}, {134, 327}, {133, 327}, {143, 333}, {141, 334}, {142, 333}, {141, 325}, {142, 326}, {143, 326}, {132, 335}, {132, 328}, {141, 323}, {158, 336}, {143, 321}, {142, 321}, {144, 320}, {149, 327}, {157, 335}, {154, 329}, {145, 325}, {133, 336}, {158, 331}, {157, 328}, {134, 336}, {152, 334}, {147, 331}, {148, 332}, {152, 323}, {154, 321}, {153, 322}, {152, 325}, {147, 332}, {148, 331}, {167, 322}, {166, 320}, {161, 330}, {161, 333} }>;

(II) A more general form is to represent the graph as the orbit of {137, 190} under the group generated by the following permutations:

a: (23, 130)
b: (113, 114)
c: (121, 122)
d: (78, 136)
e: (1, 2)(3, 7)(4, 10)(5, 13)(6, 8)(9, 16)(11, 23)(12, 25)(14, 30)(15, 29)(17, 22)(18, 19)(20, 35)(21, 38)(24, 44)(26, 43)(27, 40)(28, 50)(31, 53)(32, 54)(33, 36)(34, 47)(37, 57)(39, 61)(41, 59)(42, 66)(45, 69)(46, 60)(48, 71)(49, 74)(51, 79)(52, 78)(55, 83)(56, 82)(58, 63)(62, 87)(64, 91)(65, 86)(67, 97)(68, 96)(70, 85)(72, 102)(73, 88)(75, 100)(76, 90)(77, 105)(80, 108)(81, 109)(84, 112)(89, 116)(92, 120)(93, 119)(94, 113)(95, 124)(98, 126)(99, 127)(101, 114)(103, 130)(104, 115)(106, 132)(107, 118)(110, 136)(111, 135)(117, 140)(121, 142)(122, 143)(123, 139)(125, 147)(128, 150)(129, 149)(131, 138)(133, 141)(134, 152)(137, 155)(144, 159)(145, 158)(146, 156)(148, 161)(151, 163)(153, 164)(154, 157)(160, 167)(162, 168)(165, 166)(170, 173)(171, 176)(172, 178)(174, 184)(175, 186)(177, 192)(179, 191)(181, 195)(182, 189)(183, 194)(185, 204)(187, 203)(188, 200)(190, 209)(193, 212)(196, 217)(197, 219)(198, 213)(199, 208)(201, 215)(202, 225)(205, 228)(206, 216)(207, 230)(210, 236)(211, 235)(218, 246)(220, 245)(221, 242)(222, 233)(223, 249)(224, 241)(226, 255)(227, 254)(229, 240)(231, 260)(232, 259)(234, 262)(237, 265)(238, 243)(239, 248)(244, 257)(247, 274)(250, 279)(251, 278)(252, 269)(253, 281)(256, 284)(258, 287)(261, 290)(263, 294)(264, 293)(266, 275)(267, 271)(270, 276)(272, 291)(273, 286)(277, 303)(280, 306)(282, 310)(283, 309)(285, 312)(288, 318)(289, 317)(292, 320)(295, 323)(296, 299)(297, 307)(298, 302)(300, 315)(301, 322)(304, 327)(305, 308)(311, 330)(313, 331)(314, 316)(319, 334)(321, 335)(324, 326)(325, 336)(328, 329)(332, 333)
f: (41, 146)
g: (93, 144)
h: (27, 34)
m: (64, 160)
n1: (26, 72)
a1: (95, 168)
b1: (2, 4)(5, 11)(6, 12)(7, 17)(10, 21)(14, 24)(15, 26)(16, 27)(18, 34)(22, 39)(23, 41)(25, 46)(31, 45)(32, 48)(33, 49)(35, 58)(40, 62)(42, 64)(43, 65)(44, 70)(47, 73)(50, 66)(55, 72)(56, 75)(57, 76)(63, 89)(67, 92)(68, 93)(69, 94)(71, 101)(74, 104)(77, 95)(78, 96)(79, 97)(84, 103)(90, 117)(98, 121)(99, 122)(100, 123)(102, 131)(106, 125)(107, 124)(108, 126)(109, 127)(128, 144)(129, 145)(130, 146)(133, 147)(134, 148)(135, 149)(136, 150)(151, 160)(153, 162)(154, 161)(155, 163)(165, 168)(169, 170)(171, 174)(172, 175)(173, 181)(176, 189)(177, 185)(178, 194)(179, 187)(180, 188)(182, 196)(183, 197)(184, 201)(186, 206)(190, 207)(191, 208)(192, 213)(193, 205)(195, 214)(198, 218)(199, 220)(200, 221)(202, 223)(203, 224)(204, 229)(209, 225)(210, 231)(211, 232)(212, 233)(215, 238)(216, 239)(217, 243)(219, 248)(222, 247)(226, 250)(227, 251)(228, 252)(230, 257)(234, 253)(235, 254)(236, 255)(237, 261)(240, 266)(241, 267)(242, 268)(244, 270)(245, 271)(246, 275)(249, 276)(256, 280)(258, 285)(259, 286)(260, 291)(262, 287)(263, 282)(264, 283)(265, 284)(269, 296)(272, 297)(273, 298)(274, 299)(277, 301)(278, 302)(279, 307)(281, 303)(288, 313)(289, 314)(290, 315)(292, 316)(293, 317)(294, 318)(295, 311)(300, 324)(304, 325)(305, 320)(306, 326)(308, 309)(310, 327)(312, 322)(319, 332)(321, 333)(323, 334)(328, 335)(329, 330)(331, 336)
c1: (21, 117)
d1: (44, 100)
e1: (46, 89)
f1: (107, 153)
g1: (108, 109)
h1: (60, 116)
m1: (118, 164)
n2: (30, 82)
a2: (62, 73)
b2: (8, 20)
c2: (51, 111)
d2: (10, 90)
e2: (98, 99)
f2: (119, 159)
g2: (7, 33)
h2: (124, 162)
m2: (25, 63)
n3: (53, 54)
a3: (125, 161)
b3: (15, 55)
c3: (43, 102)
d3: (147, 148)
e3: (40, 47)
f3: (66, 163)
g3: (91, 167)
h3: (9, 19)
m3: (92, 145)
n4: (38, 140)
a4: (6, 35)
b4: (5, 84)
c4: (2, 57)
d4: (12, 58)
e4: (120, 158)
f4: (11, 103)
g4: (17, 49)
h4: (16, 18)
m4: (68, 128)
n5: (22, 74)
a5: (29, 83)
b5: (61, 115)
c5: (142, 143)
d5: (69, 71)
e5: (45, 48)
f5: (50, 155)
g5: (39, 104)
h5: (70, 123)
m5: (105, 166)
n6: (94, 101)
a6: (80, 81)
b6: (96, 150)
c6: (2, 5)(3, 8)(4, 11)(6, 15)(7, 14)(12, 26)(13, 28)(16, 31)(17, 24)(18, 32)(20, 36)(22, 25)(23, 42)(27, 45)(29, 52)(30, 51)(33, 56)(34, 48)(35, 55)(38, 59)(39, 46)(41, 64)(43, 68)(44, 67)(49, 75)(50, 77)(53, 80)(54, 81)(57, 84)(58, 72)(60, 86)(61, 85)(63, 74)(65, 93)(66, 95)(69, 98)(70, 92)(71, 99)(76, 103)(78, 107)(79, 106)(82, 111)(83, 110)(87, 113)(88, 114)(89, 104)(91, 118)(94, 121)(96, 124)(97, 125)(100, 129)(101, 122)(102, 128)(105, 119)(108, 133)(109, 134)(112, 137)(115, 139)(116, 138)(120, 141)(123, 145)(126, 147)(127, 148)(130, 151)(131, 144)(132, 142)(135, 154)(136, 153)(140, 156)(143, 157)(146, 160)(149, 161)(150, 162)(152, 158)(155, 165)(159, 166)(163, 168)(164, 167)(169, 171)(170, 174)(172, 179)(173, 182)(175, 187)(176, 190)(177, 178)(180, 193)(181, 196)(183, 199)(184, 202)(185, 194)(186, 198)(188, 205)(189, 207)(191, 211)(192, 210)(195, 215)(197, 220)(200, 222)(201, 223)(203, 227)(204, 226)(206, 218)(208, 232)(209, 234)(212, 237)(213, 231)(214, 238)(216, 241)(217, 244)(219, 240)(221, 247)(224, 251)(225, 253)(228, 256)(229, 250)(230, 258)(233, 261)(235, 264)(236, 263)(239, 267)(242, 269)(243, 270)(245, 273)(246, 272)(248, 266)(249, 277)(252, 280)(254, 283)(255, 282)(257, 285)(259, 289)(260, 288)(262, 292)(265, 295)(268, 296)(271, 298)(274, 300)(275, 297)(276, 301)(278, 305)(279, 304)(281, 308)(284, 311)(286, 314)(287, 316)(290, 319)(291, 313)(293, 322)(294, 321)(299, 324)(302, 320)(303, 309)(306, 328)(307, 325)(310, 329)(312, 317)(315, 332)(318, 333)(323, 336)(326, 335)(327, 330)(331, 334)
d6: (79, 135)
e6: (42, 151)
f6: (31, 32)
g6: (141, 152)
h6: (126, 127)
m6: (28, 137)
n7: (4, 76)
a7: (59, 156)
b7: (3, 36)
c7: (14, 56)
d7: (77, 165)
e7: (13, 112)
f7: (67, 129)
g7: (65, 131)
h7: (85, 139)
m7: (52, 110)
n8: (106, 154)
a8: (97, 149)
b8: (24, 75)
c8: (87, 88)
d8: (86, 138)
e8: (132, 157)
f8: (133, 134)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 121 ]
336
-1 169 170 171 174
-2 176 169 173 184
-3 177 172 185 175
-4 189 201 170 181
-5 190 202 171 182
-6 191 203 172 183
-7 178 192 204 186
-8 187 178 179 194
-9 188 180 193 205
-10 182 215 173 195
-11 223 174 196 207
-12 224 175 197 208
-13 176 209 189 225
-14 198 177 210 226
-15 199 211 179 227
-16 200 212 180 228
-17 213 194 206 229
-18 200 212 180 228
-19 188 180 193 205
-20 187 178 179 194
-21 181 214 238 196
-22 198 183 216 240
-23 249 184 217 230
-24 231 250 185 218
-25 199 186 219 241
-26 187 220 232 251
-27 188 221 233 252
-28 253 190 234 207
-29 254 191 235 208
-30 255 213 192 236
-31 222 256 193 237
-32 222 256 193 237
-33 178 192 204 186
-34 188 221 233 252
-35 191 203 172 183
-36 177 172 185 175
-37 169 170 171 174
-38 243 214 195 217
-39 266 239 218 197
-40 242 200 222 269
-41 243 276 201 257
-42 244 277 202 258
-43 245 278 203 259
-44 246 279 204 260
-45 247 280 205 261
-46 220 267 248 206
-47 242 200 222 269
-48 247 280 205 261
-49 213 194 206 229
-50 209 281 262 230
-51 231 210 282 263
-52 264 232 211 283
-53 265 233 212 284
-54 265 233 212 284
-55 199 211 179 227
-56 198 177 210 226
-57 176 169 173 184
-58 224 175 197 208
-59 244 215 270 238
-60 245 216 271 239
-61 275 246 248 219
-62 221 268 247 296
-63 199 186 219 241
-64 223 301 270 285
-65 286 224 302 271
-66 287 257 225 303
-67 288 226 304 272
-68 289 227 305 273
-69 290 228 306 274
-70 275 291 229 307
-71 290 228 306 274
-72 187 220 232 251
-73 221 268 247 296
-74 198 183 216 240
-75 231 250 185 218
-76 189 201 170 181
-77 308 234 258 292
-78 309 235 259 293
-79 310 236 260 294
-80 311 237 261 295
-81 311 237 261 295
-82 255 213 192 236
-83 254 191 235 208
-84 190 202 171 182
-85 297 266 272 240
-86 298 267 273 241
-87 242 299 268 274
-88 242 299 268 274
-89 220 267 248 206
-90 182 215 173 195
-91 276 322 312 249
-92 297 313 325 250
-93 298 320 314 251
-94 299 315 326 252
-95 253 309 316 285
-96 286 308 254 317
-97 255 291 327 318
-98 319 256 300 328
-99 319 256 300 328
-100 246 279 204 260
-101 299 315 326 252
-102 245 278 203 259
-103 223 174 196 207
-104 266 239 218 197
-105 287 320 305 262
-106 288 321 263 329
-107 264 289 322 303
-108 330 265 290 323
-109 330 265 290 323
-110 264 232 211 283
-111 231 210 282 263
-112 176 209 189 225
-113 300 269 324 296
-114 300 269 324 296
-115 275 246 248 219
-116 245 216 271 239
-117 181 214 238 196
-118 277 301 293 317
-119 278 302 292 316
-120 331 279 336 307
-121 332 280 324 335
-122 332 280 324 335
-123 275 291 229 307
-124 312 281 314 283
-125 330 333 313 282
-126 334 315 284 329
-127 334 315 284 329
-128 289 227 305 273
-129 288 226 304 272
-130 249 184 217 230
-131 286 224 302 271
-132 335 294 328 318
-133 319 336 327 295
-134 319 336 327 295
-135 310 236 260 294
-136 309 235 259 293
-137 253 190 234 207
-138 298 267 273 241
-139 297 266 272 240
-140 243 214 195 217
-141 323 334 325 304
-142 321 333 326 306
-143 321 333 326 306
-144 298 320 314 251
-145 297 313 325 250
-146 243 276 201 257
-147 331 310 332 311
-148 331 310 332 311
-149 255 291 327 318
-150 286 308 254 317
-151 244 277 202 258
-152 323 334 325 304
-153 264 289 322 303
-154 288 321 263 329
-155 209 281 262 230
-156 244 215 270 238
-157 335 294 328 318
-158 331 279 336 307
-159 278 302 292 316
-160 223 301 270 285
-161 330 333 313 282
-162 312 281 314 283
-163 287 257 225 303
-164 277 301 293 317
-165 308 234 258 292
-166 287 320 305 262
-167 276 322 312 249
-168 253 309 316 285
-169 1 2 57 37
-170 1 4 37 76
-171 1 37 5 84
-172 35 3 36 6
-173 2 57 90 10
-174 11 1 37 103
-175 12 3 36 58
-176 2 57 112 13
-177 56 3 14 36
-178 33 7 8 20
-179 55 15 8 20
-180 16 18 19 9
-181 4 117 21 76
-182 90 5 84 10
-183 22 35 6 74
-184 23 2 57 130
-185 24 3 36 75
-186 33 25 7 63
-187 26 72 8 20
-188 34 27 19 9
-189 13 112 4 76
-190 5 137 28 84
-191 35 6 83 29
-192 33 82 7 30
-193 19 9 31 32
-194 49 17 8 20
-195 90 38 140 10
-196 11 103 117 21
-197 12 58 104 39
-198 22 56 14 74
-199 55 25 15 63
-200 47 16 18 40
-201 146 4 41 76
-202 5 84 151 42
-203 35 102 6 43
-204 33 44 100 7
-205 45 48 19 9
-206 89 46 49 17
-207 11 103 137 28
-208 12 58 83 29
-209 155 13 112 50
-210 56 111 14 51
-211 55 110 15 52
-212 16 18 53 54
-213 49 82 17 30
-214 38 117 140 21
-215 90 156 59 10
-216 22 60 116 74
-217 23 38 140 130
-218 24 104 39 75
-219 25 115 61 63
-220 89 46 26 72
-221 34 27 62 73
-222 47 40 31 32
-223 11 103 160 64
-224 12 58 65 131
-225 66 13 112 163
-226 56 67 14 129
-227 55 68 15 128
-228 69 16 71 18
-229 123 70 49 17
-230 23 155 50 130
-231 111 24 51 75
-232 110 26 72 52
-233 34 27 53 54
-234 77 165 137 28
-235 78 136 83 29
-236 79 135 82 30
-237 80 81 31 32
-238 156 59 117 21
-239 60 104 39 116
-240 22 139 74 85
-241 25 138 63 86
-242 88 47 40 87
-243 146 38 41 140
-244 156 59 151 42
-245 102 60 116 43
-246 44 100 115 61
-247 45 48 62 73
-248 89 46 115 61
-249 23 167 91 130
-250 24 145 92 75
-251 144 26 93 72
-252 34 101 27 94
-253 168 137 28 95
-254 83 29 150 96
-255 82 149 30 97
-256 99 31 32 98
-257 66 146 41 163
-258 77 165 151 42
-259 78 102 136 43
-260 44 100 79 135
-261 45 80 48 81
-262 155 166 50 105
-263 154 111 51 106
-264 110 52 107 153
-265 53 108 54 109
-266 104 39 139 85
-267 89 46 138 86
-268 88 62 73 87
-269 47 113 114 40
-270 156 59 160 64
-271 60 116 65 131
-272 67 139 85 129
-273 68 138 128 86
-274 88 69 71 87
-275 123 70 115 61
-276 167 91 146 41
-277 118 151 42 164
-278 102 159 119 43
-279 44 100 158 120
-280 121 45 122 48
-281 155 124 50 162
-282 111 125 51 161
-283 110 124 52 162
-284 126 127 53 54
-285 168 160 95 64
-286 150 96 65 131
-287 66 166 105 163
-288 154 67 106 129
-289 68 128 107 153
-290 69 71 108 109
-291 123 70 149 97
-292 77 165 159 119
-293 78 136 118 164
-294 132 79 135 157
-295 133 134 80 81
-296 113 114 62 73
-297 145 92 139 85
-298 144 93 138 86
-299 88 101 94 87
-300 99 113 114 98
-301 160 118 64 164
-302 159 119 65 131
-303 66 107 163 153
-304 67 129 141 152
-305 166 68 105 128
-306 143 69 71 142
-307 123 70 158 120
-308 77 165 150 96
-309 78 168 136 95
-310 79 135 147 148
-311 80 81 147 148
-312 167 91 124 162
-313 145 92 125 161
-314 144 124 93 162
-315 101 126 94 127
-316 168 159 95 119
-317 150 96 118 164
-318 132 157 149 97
-319 99 133 134 98
-320 144 166 93 105
-321 143 154 106 142
-322 167 91 107 153
-323 108 141 152 109
-324 121 122 113 114
-325 145 92 141 152
-326 143 101 94 142
-327 133 134 149 97
-328 99 132 157 98
-329 154 126 127 106
-330 125 161 108 109
-331 147 158 148 120
-332 121 122 147 148
-333 143 125 161 142
-334 126 127 141 152
-335 121 132 122 157
-336 133 134 158 120
0

**************