C4graphGraph forms for C4 [ 336, 133 ] = HC(Rmap(84,46){3,8|8}_8)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 133 ] = HC(Rmap(84,46){3,8|8}_8).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {100, 101}, {21, 23}, {309, 311}, {268, 270}, {201, 203}, {245, 246}, {317, 318}, {249, 250}, {120, 124}, {320, 324}, {305, 309}, {176, 180}, {152, 157}, {58, 60}, {153, 159}, {277, 285}, {117, 124}, {132, 141}, {115, 121}, {224, 234}, {128, 138}, {214, 221}, {69, 73}, {293, 297}, {208, 220}, {17, 28}, {288, 301}, {197, 200}, {70, 75}, {70, 72}, {114, 124}, {65, 78}, {43, 59}, {300, 316}, {163, 179}, {36, 55}, {135, 147}, {298, 318}, {173, 185}, {2, 23}, {263, 274}, {256, 277}, {101, 115}, {129, 150}, {224, 247}, {197, 210}, {194, 218}, {2, 27}, {170, 179}, {40, 49}, {132, 158}, {233, 243}, {195, 216}, {296, 307}, {257, 282}, {135, 155}, {257, 285}, {192, 220}, {172, 176}, {226, 255}, {206, 208}, {12, 19}, {225, 254}, {193, 222}, {24, 56}, {198, 230}, {136, 169}, {217, 248}, {201, 235}, {201, 234}, {26, 62}, {26, 60}, {158, 184}, {74, 109}, {279, 304}, {144, 184}, {259, 299}, {7, 46}, {31, 53}, {211, 249}, {210, 248}, {84, 126}, {273, 314}, {12, 32}, {195, 239}, {93, 113}, {90, 119}, {4, 42}, {276, 314}, {260, 298}, {219, 235}, {284, 300}, {5, 52}, {287, 302}, {277, 292}, {216, 233}, {82, 96}, {198, 244}, {67, 112}, {223, 236}, {154, 169}, {199, 243}, {282, 302}, {128, 182}, {281, 303}, {276, 290}, {210, 228}, {14, 57}, {72, 112}, {64, 122}, {146, 168}, {15, 51}, {27, 39}, {69, 121}, {140, 177}, {5, 58}, {203, 244}, {155, 219}, {159, 223}, {52, 117}, {46, 109}, {152, 219}, {3, 70}, {171, 238}, {10, 79}, {1, 71}, {142, 201}, {132, 204}, {190, 247}, {150, 220}, {182, 253}, {27, 87}, {160, 236}, {49, 125}, {56, 116}, {2, 76}, {4, 74}, {18, 93}, {158, 206}, {33, 112}, {56, 106}, {186, 232}, {36, 119}, {20, 64}, {279, 323}, {39, 114}, {153, 207}, {14, 89}, {16, 73}, {35, 122}, {25, 67}, {50, 105}, {189, 230}, {1, 92}, {278, 331}, {187, 230}, {172, 241}, {34, 124}, {272, 334}, {55, 105}, {168, 247}, {9, 105}, {179, 211}, {165, 197}, {129, 225}, {141, 237}, {44, 77}, {162, 192}, {165, 198}, {169, 202}, {52, 80}, {53, 81}, {43, 78}, {299, 334}, {130, 231}, {33, 71}, {288, 326}, {47, 73}, {29, 122}, {128, 231}, {30, 118}, {175, 199}, {39, 79}, {62, 87}, {288, 329}, {161, 200}, {19, 121}, {54, 92}, {30, 117}, {299, 327}, {38, 75}, {294, 331}, {5, 107}, {44, 67}, {8, 120}, {304, 320}, {167, 215}, {28, 108}, {36, 85}, {57, 75}, {63, 77}, {139, 249}, {137, 253}, {13, 123}, {128, 246}, {151, 224}, {161, 214}, {9, 113}, {312, 320}, {181, 205}, {163, 219}, {20, 109}, {297, 336}, {32, 91}, {188, 199}, {137, 245}, {178, 206}, {153, 228}, {173, 208}, {50, 76}, {305, 335}, {63, 64}, {318, 321}, {6, 134}, {104, 232}, {63, 189}, {108, 238}, {126, 253}, {52, 176}, {79, 203}, {116, 240}, {103, 226}, {12, 139}, {47, 168}, {99, 228}, {122, 242}, {19, 154}, {48, 185}, {60, 181}, {95, 214}, {50, 184}, {47, 164}, {42, 166}, {59, 183}, {41, 167}, {14, 129}, {32, 175}, {66, 205}, {15, 159}, {121, 233}, {29, 140}, {76, 221}, {83, 194}, {112, 226}, {47, 188}, {70, 213}, {118, 229}, {126, 237}, {127, 236}, {37, 177}, {84, 193}, {113, 228}, {41, 191}, {48, 167}, {8, 145}, {17, 136}, {11, 150}, {24, 133}, {91, 198}, {20, 139}, {29, 130}, {87, 200}, {92, 195}, {87, 245}, {5, 166}, {41, 138}, {71, 227}, {42, 143}, {104, 205}, {123, 222}, {101, 195}, {105, 207}, {108, 202}, {15, 166}, {88, 241}, {91, 240}, {71, 235}, {95, 243}, {51, 157}, {1, 176}, {46, 159}, {63, 142}, {78, 255}, {98, 211}, {6, 180}, {11, 185}, {20, 166}, {35, 145}, {102, 212}, {80, 227}, {102, 213}, {23, 161}, {66, 244}, {45, 154}, {94, 231}, {26, 160}, {91, 225}, {110, 212}, {57, 133}, {94, 226}, {62, 131}, {103, 218}, {9, 183}, {120, 199}, {127, 192}, {45, 237}, {106, 170}, {22, 215}, {84, 149}, {61, 255}, {65, 131}, {114, 177}, {21, 209}, {74, 142}, {7, 194}, {22, 209}, {34, 229}, {61, 245}, {80, 152}, {104, 160}, {85, 156}, {98, 171}, {118, 191}, {72, 130}, {77, 135}, {107, 160}, {103, 171}, {24, 213}, {54, 251}, {81, 156}, {118, 187}, {33, 239}, {96, 175}, {116, 187}, {33, 241}, {86, 135}, {34, 240}, {48, 227}, {59, 232}, {89, 138}, {90, 137}, {31, 202}, {65, 148}, {103, 178}, {119, 162}, {123, 173}, {79, 152}, {4, 220}, {98, 186}, {99, 187}, {13, 212}, {14, 215}, {46, 247}, {123, 162}, {25, 196}, {49, 236}, {18, 204}, {57, 231}, {66, 156}, {7, 216}, {60, 227}, {66, 157}, {125, 162}, {11, 235}, {111, 143}, {21, 244}, {37, 196}, {54, 215}, {113, 144}, {116, 149}, {40, 202}, {10, 238}, {125, 153}, {26, 255}, {30, 251}, {34, 196}, {55, 209}, {76, 170}, {22, 254}, {41, 193}, {100, 140}, {110, 134}, {111, 134}, {69, 175}, {86, 188}, {110, 133}, {16, 252}, {95, 179}, {83, 190}, {31, 241}, {42, 196}, {36, 203}, {120, 151}, {3, 243}, {78, 190}, {99, 147}, {32, 209}, {43, 218}, {51, 194}, {82, 163}, {115, 130}, {68, 183}, {102, 149}, {45, 217}, {13, 248}, {19, 230}, {83, 164}, {43, 211}, {85, 173}, {24, 225}, {106, 144}, {117, 143}, {106, 150}, {16, 237}, {100, 154}, {73, 182}, {49, 304}, {7, 261}, {37, 294}, {18, 278}, {40, 300}, {62, 312}, {64, 326}, {53, 316}, {54, 319}, {61, 308}, {13, 257}, {11, 262}, {37, 296}, {65, 332}, {93, 336}, {1, 271}, {17, 286}, {30, 271}, {94, 332}, {40, 315}, {86, 322}, {6, 275}, {39, 306}, {2, 276}, {92, 324}, {48, 297}, {58, 291}, {12, 272}, {38, 314}, {80, 333}, {90, 324}, {95, 321}, {4, 283}, {25, 262}, {82, 333}, {88, 327}, {35, 258}, {3, 289}, {38, 260}, {44, 270}, {96, 322}, {56, 283}, {111, 332}, {45, 265}, {96, 327}, {17, 313}, {97, 329}, {61, 276}, {18, 312}, {111, 323}, {28, 305}, {23, 295}, {8, 313}, {29, 293}, {58, 258}, {38, 284}, {27, 294}, {3, 317}, {55, 264}, {81, 273}, {10, 331}, {88, 281}, {10, 328}, {15, 333}, {82, 272}, {101, 294}, {9, 335}, {68, 259}, {8, 321}, {68, 269}, {90, 275}, {127, 310}, {6, 330}, {69, 265}, {74, 262}, {94, 274}, {21, 325}, {114, 290}, {127, 303}, {31, 334}, {115, 289}, {22, 322}, {77, 281}, {98, 310}, {16, 325}, {25, 332}, {28, 330}, {85, 269}, {93, 261}, {83, 265}, {97, 317}, {108, 306}, {107, 308}, {119, 279}, {97, 256}, {81, 307}, {88, 315}, {109, 264}, {102, 270}, {68, 301}, {84, 318}, {97, 267}, {104, 259}, {72, 292}, {44, 323}, {86, 313}, {107, 283}, {89, 299}, {35, 336}, {125, 264}, {89, 303}, {50, 325}, {51, 331}, {67, 315}, {126, 263}, {100, 286}, {99, 280}, {59, 326}, {75, 309}, {110, 272}, {53, 330}, {183, 311}, {191, 319}, {165, 295}, {145, 274}, {143, 267}, {155, 287}, {157, 280}, {133, 259}, {178, 308}, {139, 268}, {172, 292}, {177, 313}, {131, 266}, {134, 268}, {170, 289}, {136, 260}, {138, 263}, {207, 322}, {188, 305}, {147, 286}, {146, 285}, {156, 275}, {142, 287}, {172, 317}, {151, 261}, {218, 328}, {148, 263}, {174, 315}, {197, 336}, {178, 292}, {132, 284}, {151, 271}, {184, 290}, {158, 261}, {191, 291}, {140, 274}, {190, 288}, {148, 267}, {146, 306}, {161, 258}, {189, 286}, {167, 258}, {141, 298}, {174, 265}, {129, 297}, {147, 319}, {171, 282}, {189, 268}, {185, 266}, {249, 333}, {144, 293}, {149, 291}, {164, 275}, {181, 269}, {163, 282}, {174, 279}, {137, 307}, {254, 324}, {250, 326}, {165, 280}, {136, 311}, {181, 266}, {180, 267}, {145, 302}, {224, 290}, {240, 307}, {246, 309}, {253, 312}, {204, 266}, {221, 283}, {223, 280}, {239, 296}, {232, 303}, {229, 300}, {131, 329}, {252, 310}, {251, 304}, {204, 256}, {141, 320}, {216, 278}, {208, 256}, {222, 270}, {148, 321}, {248, 301}, {254, 296}, {193, 281}, {234, 306}, {212, 269}, {146, 329}, {252, 295}, {250, 289}, {155, 327}, {217, 260}, {200, 278}, {242, 301}, {250, 293}, {169, 328}, {168, 330}, {234, 264}, {223, 316}, {210, 311}, {174, 328}, {233, 271}, {164, 323}, {251, 284}, {246, 273}, {222, 310}, {239, 262}, {242, 287}, {242, 285}, {207, 319}, {205, 316}, {192, 308}, {229, 273}, {206, 314}, {186, 335}, {214, 302}, {182, 335}, {180, 334}, {238, 277}, {252, 257}, {217, 295}, {221, 291}, {186, 325}, {213, 298} }>;

(II) A more general form is to represent the graph as the orbit of {100, 101} under the group generated by the following permutations:

a: (1, 2)(3, 203)(4, 297)(5, 258)(6, 217)(7, 177)(8, 51)(9, 67)(10, 199)(11, 106)(12, 285)(13, 110)(14, 192)(15, 145)(16, 31)(17, 83)(18, 34)(19, 146)(20, 122)(21, 172)(22, 178)(23, 176)(24, 173)(25, 113)(26, 191)(27, 271)(28, 265)(29, 109)(30, 87)(32, 277)(33, 50)(35, 166)(36, 70)(37, 261)(38, 90)(39, 233)(40, 182)(41, 160)(42, 336)(43, 135)(44, 183)(45, 330)(46, 140)(47, 169)(48, 283)(49, 128)(52, 161)(53, 237)(54, 61)(55, 72)(56, 185)(57, 162)(59, 77)(60, 291)(62, 118)(63, 326)(65, 99)(66, 318)(68, 270)(69, 108)(71, 76)(73, 202)(74, 293)(75, 119)(78, 147)(79, 243)(80, 214)(81, 141)(82, 282)(84, 205)(85, 213)(86, 218)(88, 186)(89, 127)(91, 256)(92, 276)(93, 196)(94, 153)(95, 152)(96, 171)(97, 198)(98, 327)(100, 247)(101, 224)(102, 269)(103, 322)(104, 193)(105, 112)(107, 167)(111, 210)(114, 216)(115, 234)(116, 266)(117, 200)(120, 331)(121, 306)(123, 133)(124, 278)(125, 231)(126, 316)(129, 220)(130, 264)(131, 187)(132, 307)(134, 248)(136, 164)(137, 284)(138, 236)(139, 242)(142, 250)(143, 197)(144, 262)(148, 280)(149, 181)(151, 294)(154, 168)(155, 211)(156, 298)(157, 321)(158, 296)(159, 274)(165, 267)(170, 235)(174, 305)(175, 238)(179, 219)(180, 295)(184, 239)(188, 328)(189, 288)(190, 286)(194, 313)(195, 290)(201, 289)(204, 240)(206, 254)(207, 226)(208, 225)(209, 292)(215, 308)(221, 227)(222, 259)(223, 263)(228, 332)(229, 312)(230, 329)(232, 281)(241, 325)(244, 317)(245, 251)(246, 304)(249, 287)(252, 334)(253, 300)(255, 319)(257, 272)(260, 275)(268, 301)(273, 320)(279, 309)(299, 310)(302, 333)(311, 323)(314, 324)(315, 335)
b: (2, 64)(3, 167)(4, 177)(5, 101)(6, 90)(7, 152)(8, 150)(9, 257)(10, 159)(11, 120)(12, 62)(13, 335)(14, 318)(15, 331)(16, 68)(17, 192)(18, 82)(19, 26)(20, 27)(21, 288)(22, 97)(23, 326)(24, 263)(25, 34)(28, 162)(29, 221)(30, 33)(31, 304)(32, 131)(35, 170)(36, 168)(37, 42)(38, 281)(39, 109)(41, 70)(43, 165)(44, 273)(45, 104)(46, 79)(47, 85)(48, 243)(49, 202)(50, 242)(52, 195)(53, 279)(54, 172)(55, 146)(56, 274)(57, 84)(58, 115)(59, 295)(60, 121)(61, 189)(63, 276)(65, 91)(66, 83)(67, 229)(69, 181)(71, 271)(72, 191)(73, 269)(74, 114)(75, 193)(76, 122)(77, 314)(78, 198)(80, 216)(81, 323)(86, 208)(87, 139)(88, 284)(89, 298)(92, 176)(93, 163)(94, 116)(95, 297)(96, 204)(98, 210)(99, 103)(100, 107)(102, 128)(105, 285)(106, 145)(108, 125)(110, 253)(111, 307)(112, 118)(113, 282)(117, 239)(119, 330)(123, 305)(124, 262)(126, 133)(127, 136)(129, 321)(130, 291)(132, 327)(134, 137)(135, 206)(138, 213)(140, 283)(141, 299)(142, 290)(143, 296)(144, 302)(147, 178)(148, 225)(149, 231)(151, 235)(153, 238)(154, 160)(155, 158)(156, 164)(157, 194)(161, 250)(166, 294)(169, 236)(171, 228)(173, 188)(174, 316)(175, 266)(179, 336)(180, 324)(182, 212)(183, 252)(184, 287)(185, 199)(186, 248)(187, 226)(190, 244)(197, 211)(200, 249)(201, 224)(203, 247)(205, 265)(207, 277)(209, 329)(214, 293)(215, 317)(217, 232)(218, 280)(219, 261)(220, 313)(222, 309)(223, 328)(227, 233)(230, 255)(237, 259)(240, 332)(241, 251)(245, 268)(246, 270)(254, 267)(256, 322)(258, 289)(260, 303)(264, 306)(272, 312)(278, 333)(286, 308)(292, 319)(300, 315)(301, 325)(310, 311)(320, 334)
c: (2, 246)(3, 167)(4, 332)(5, 112)(6, 201)(7, 304)(8, 225)(9, 16)(10, 316)(11, 267)(12, 135)(13, 301)(14, 95)(15, 315)(17, 198)(18, 132)(19, 147)(20, 44)(21, 305)(22, 199)(23, 309)(24, 145)(25, 42)(26, 178)(27, 273)(28, 244)(29, 149)(30, 195)(31, 152)(32, 86)(33, 52)(34, 37)(35, 213)(36, 168)(38, 200)(39, 81)(40, 51)(41, 289)(43, 127)(45, 228)(46, 279)(47, 55)(48, 317)(49, 194)(50, 182)(53, 79)(54, 233)(56, 274)(57, 214)(58, 72)(59, 310)(60, 292)(62, 206)(63, 268)(64, 270)(65, 220)(66, 108)(67, 166)(68, 257)(69, 207)(70, 258)(71, 176)(73, 105)(74, 111)(75, 161)(76, 128)(77, 139)(78, 192)(80, 241)(82, 327)(83, 125)(84, 293)(85, 146)(87, 314)(88, 333)(89, 179)(90, 224)(91, 313)(92, 271)(93, 141)(94, 283)(97, 185)(98, 232)(99, 154)(100, 187)(101, 118)(102, 122)(103, 160)(104, 171)(106, 263)(107, 226)(109, 323)(110, 287)(113, 237)(114, 307)(115, 191)(116, 140)(117, 239)(119, 247)(120, 254)(121, 319)(123, 288)(124, 296)(126, 144)(129, 321)(130, 291)(131, 208)(133, 302)(134, 142)(136, 165)(137, 290)(138, 170)(143, 262)(148, 150)(151, 324)(153, 265)(155, 272)(156, 306)(157, 202)(158, 312)(159, 174)(162, 190)(163, 299)(164, 264)(169, 280)(172, 227)(173, 329)(175, 322)(177, 240)(180, 235)(181, 277)(183, 252)(184, 253)(188, 209)(193, 250)(197, 260)(203, 330)(205, 238)(210, 217)(211, 303)(212, 242)(215, 243)(216, 251)(218, 236)(219, 334)(221, 231)(222, 326)(223, 328)(229, 294)(230, 286)(234, 275)(245, 276)(249, 281)(255, 308)(256, 266)(259, 282)(261, 320)(269, 285)(278, 284)(295, 311)(297, 318)(298, 336)(300, 331)(325, 335)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 133 ]
336
-1 176 92 71 271
-2 23 276 27 76
-3 243 289 70 317
-4 220 74 283 42
-5 166 58 52 107
-6 275 330 134 180
-7 46 194 216 261
-8 145 321 313 120
-9 113 335 105 183
-10 331 79 238 328
-11 235 150 185 262
-12 139 19 272 32
-13 123 212 257 248
-14 89 57 215 129
-15 166 333 159 51
-16 237 325 73 252
-17 286 136 313 28
-18 278 312 93 204
-19 121 154 12 230
-20 166 139 64 109
-21 209 23 244 325
-22 209 254 322 215
-23 2 161 295 21
-24 56 133 213 225
-25 67 332 196 262
-26 255 60 160 62
-27 2 39 294 87
-28 330 17 305 108
-29 122 293 140 130
-30 117 271 118 251
-31 202 334 53 241
-32 209 12 91 175
-33 112 71 239 241
-34 124 196 229 240
-35 122 145 258 336
-36 55 203 85 119
-37 177 294 196 296
-38 314 260 75 284
-39 79 114 27 306
-40 300 202 49 315
-41 167 191 138 193
-42 143 166 4 196
-43 78 211 59 218
-44 77 67 323 270
-45 154 265 237 217
-46 159 247 7 109
-47 188 168 73 164
-48 297 167 227 185
-49 125 236 40 304
-50 105 325 184 76
-51 331 157 15 194
-52 176 80 5 117
-53 330 81 316 31
-54 319 92 215 251
-55 209 264 36 105
-56 24 116 106 283
-57 231 133 14 75
-58 291 258 5 60
-59 232 183 326 43
-60 58 26 181 227
-61 308 276 255 245
-62 26 312 87 131
-63 77 189 64 142
-64 122 326 63 20
-65 78 332 148 131
-66 156 244 157 205
-67 44 112 25 315
-68 301 269 259 183
-69 121 265 73 175
-70 3 213 72 75
-71 33 1 235 227
-72 112 70 292 130
-73 47 69 16 182
-74 4 262 109 142
-75 309 57 70 38
-76 221 2 170 50
-77 44 135 281 63
-78 255 190 43 65
-79 203 39 152 10
-80 333 227 52 152
-81 156 53 273 307
-82 333 96 272 163
-83 265 190 194 164
-84 126 149 193 318
-85 156 36 269 173
-86 188 135 322 313
-87 200 245 27 62
-88 281 315 327 241
-89 299 14 138 303
-90 275 137 324 119
-91 198 225 240 32
-92 1 324 195 54
-93 113 336 18 261
-94 231 332 226 274
-95 243 321 179 214
-96 322 82 327 175
-97 256 267 317 329
-98 211 310 171 186
-99 187 147 280 228
-100 154 286 101 140
-101 100 115 195 294
-102 212 213 149 270
-103 178 171 226 218
-104 232 160 259 205
-105 55 50 9 207
-106 56 144 170 150
-107 308 5 160 283
-108 202 28 238 306
-109 264 46 74 20
-110 133 134 212 272
-111 143 134 332 323
-112 33 67 72 226
-113 144 93 228 9
-114 177 124 290 39
-115 121 101 289 130
-116 187 56 149 240
-117 143 124 30 52
-118 187 191 30 229
-119 90 36 279 162
-120 199 124 8 151
-121 233 69 115 19
-122 242 35 29 64
-123 13 222 162 173
-124 34 114 117 120
-125 264 49 162 153
-126 253 237 84 263
-127 310 192 236 303
-128 231 246 138 182
-129 297 14 225 150
-130 231 115 72 29
-131 266 62 65 329
-132 158 204 141 284
-133 110 24 57 259
-134 110 111 268 6
-135 77 155 147 86
-136 311 169 17 260
-137 253 90 245 307
-138 89 128 41 263
-139 12 268 249 20
-140 100 177 29 274
-141 132 298 320 237
-142 287 201 63 74
-143 111 267 117 42
-144 113 106 293 184
-145 35 302 8 274
-146 168 306 285 329
-147 99 286 319 135
-148 321 267 65 263
-149 102 291 116 84
-150 11 220 106 129
-151 224 271 261 120
-152 79 80 157 219
-153 125 159 228 207
-154 45 100 169 19
-155 287 135 327 219
-156 66 275 81 85
-157 66 280 51 152
-158 132 184 206 261
-159 46 223 15 153
-160 26 104 236 107
-161 23 200 214 258
-162 123 125 192 119
-163 179 82 282 219
-164 275 47 323 83
-165 198 280 295 197
-166 15 5 20 42
-167 48 258 215 41
-168 330 47 146 247
-169 154 136 202 328
-170 179 289 106 76
-171 103 238 282 98
-172 176 292 317 241
-173 123 85 185 208
-174 265 279 315 328
-175 199 69 96 32
-176 1 180 172 52
-177 37 114 313 140
-178 308 103 292 206
-179 211 170 95 163
-180 176 267 334 6
-181 266 60 269 205
-182 253 335 73 128
-183 68 311 59 9
-184 144 158 290 50
-185 11 266 48 173
-186 232 335 325 98
-187 99 116 118 230
-188 199 47 305 86
-189 286 268 63 230
-190 78 288 247 83
-191 319 291 41 118
-192 220 308 127 162
-193 222 281 84 41
-194 83 7 51 218
-195 101 92 216 239
-196 34 25 37 42
-197 165 210 200 336
-198 165 244 91 230
-199 188 243 120 175
-200 278 161 87 197
-201 234 235 203 142
-202 169 40 31 108
-203 79 244 36 201
-204 132 266 256 18
-205 66 104 181 316
-206 178 158 314 208
-207 319 322 105 153
-208 220 256 173 206
-209 22 55 21 32
-210 311 248 228 197
-211 179 249 43 98
-212 110 13 102 269
-213 298 24 102 70
-214 221 302 95 161
-215 22 167 14 54
-216 233 278 7 195
-217 45 248 260 295
-218 103 194 328 43
-219 155 235 152 163
-220 4 192 150 208
-221 214 291 283 76
-222 123 310 193 270
-223 159 236 280 316
-224 234 290 247 151
-225 254 24 91 129
-226 112 255 103 94
-227 80 48 60 71
-228 99 210 113 153
-229 34 300 118 273
-230 187 198 189 19
-231 57 94 128 130
-232 59 104 303 186
-233 121 243 216 271
-234 264 201 224 306
-235 11 201 71 219
-236 223 49 127 160
-237 45 16 126 141
-238 277 171 108 10
-239 33 195 262 296
-240 34 91 116 307
-241 33 88 172 31
-242 122 287 301 285
-243 199 233 3 95
-244 66 198 203 21
-245 246 137 61 87
-246 309 245 128 273
-247 46 168 190 224
-248 210 13 301 217
-249 211 333 139 250
-250 289 249 293 326
-251 304 30 284 54
-252 310 257 16 295
-253 312 126 137 182
-254 22 225 324 296
-255 78 26 61 226
-256 277 204 97 208
-257 13 282 252 285
-258 35 167 58 161
-259 133 68 299 104
-260 298 136 38 217
-261 158 93 7 151
-262 11 25 74 239
-263 126 148 138 274
-264 55 234 125 109
-265 45 69 83 174
-266 181 204 185 131
-267 143 180 148 97
-268 134 189 270 139
-269 68 212 181 85
-270 44 222 102 268
-271 1 233 30 151
-272 110 12 334 82
-273 81 246 314 229
-274 145 94 140 263
-275 90 156 6 164
-276 2 290 61 314
-277 256 292 238 285
-278 331 200 18 216
-279 323 304 119 174
-280 99 165 157 223
-281 77 88 193 303
-282 257 302 171 163
-283 56 221 4 107
-284 132 300 38 251
-285 242 277 146 257
-286 100 189 147 17
-287 242 155 302 142
-288 190 301 326 329
-289 3 115 170 250
-290 276 114 224 184
-291 221 58 191 149
-292 178 277 72 172
-293 297 144 29 250
-294 331 101 37 27
-295 165 23 217 252
-296 254 37 239 307
-297 48 336 293 129
-298 213 260 141 318
-299 89 334 259 327
-300 40 316 229 284
-301 242 68 288 248
-302 287 145 214 282
-303 89 232 127 281
-304 320 279 49 251
-305 188 309 335 28
-306 146 234 39 108
-307 81 137 240 296
-308 178 192 61 107
-309 311 246 305 75
-310 222 127 98 252
-311 210 309 136 183
-312 253 320 18 62
-313 177 17 8 86
-314 276 38 206 273
-315 88 67 40 174
-316 223 300 205 53
-317 3 172 97 318
-318 298 321 84 317
-319 147 191 207 54
-320 312 324 304 141
-321 148 95 8 318
-322 22 96 86 207
-323 44 111 279 164
-324 254 320 90 92
-325 16 50 21 186
-326 288 59 250 64
-327 88 155 299 96
-328 169 174 218 10
-329 288 146 97 131
-330 168 6 28 53
-331 278 51 294 10
-332 111 25 94 65
-333 80 15 82 249
-334 299 180 272 31
-335 182 305 9 186
-336 297 35 93 197
0

**************