[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 336, 157 ] =
BGCG(UG(ATD[168,64]);K1;{8,9}).
(I) Following is a form readable by MAGMA:
g:=Graph<336|{ {168, 185}, {168, 186}, {167, 186}, {162, 189}, {156, 189}, {154,
190}, {159, 187}, {157, 184}, {153, 190}, {158, 183}, {150, 188}, {128, 171},
{144, 187}, {154, 177}, {156, 178}, {129, 177}, {132, 181}, {136, 185}, {133,
177}, {155, 174}, {140, 187}, {144, 170}, {137, 183}, {141, 179}, {139, 203},
{167, 231}, {164, 229}, {135, 197}, {166, 228}, {134, 197}, {152, 219}, {145,
213}, {161, 228}, {140, 202}, {143, 201}, {150, 222}, {168, 224}, {128, 201},
{162, 235}, {154, 208}, {131, 200}, {160, 235}, {142, 194}, {143, 195}, {130,
207}, {167, 234}, {134, 200}, {165, 235}, {164, 234}, {148, 219}, {160, 241},
{139, 217}, {128, 212}, {137, 221}, {130, 213}, {133, 223}, {166, 252}, {134,
221}, {150, 205}, {151, 204}, {140, 211}, {138, 235}, {146, 246}, {166, 192},
{157, 250}, {168, 192}, {147, 250}, {131, 233}, {146, 249}, {152, 243}, {144,
252}, {131, 236}, {153, 232}, {164, 213}, {163, 208}, {148, 226}, {138, 253},
{145, 232}, {151, 237}, {158, 229}, {162, 222}, {141, 243}, {88, 217}, {47,
173}, {106, 232}, {69, 198}, {110, 237}, {73, 204}, {76, 201}, {42, 172}, {61,
186}, {104, 239}, {62, 182}, {91, 211}, {122, 242}, {127, 247}, {75, 194}, {68,
206}, {93, 215}, {81, 218}, {89, 210}, {87, 219}, {95, 211}, {111, 227}, {117,
249}, {60, 177}, {73, 196}, {109, 224}, {122, 247}, {35, 173}, {68, 202}, {115,
253}, {122, 244}, {38, 169}, {120, 247}, {40, 184}, {71, 214}, {78, 223}, {87,
196}, {75, 223}, {94, 202}, {76, 216}, {117, 225}, {123, 239}, {84, 193}, {88,
205}, {107, 254}, {87, 193}, {96, 246}, {109, 251}, {110, 248}, {37, 178}, {86,
193}, {81, 198}, {43, 179}, {122, 226}, {67, 218}, {89, 195}, {98, 248}, {114,
232}, {33, 186}, {91, 192}, {109, 246}, {101, 249}, {102, 250}, {104, 244},
{114, 238}, {55, 170}, {43, 181}, {121, 231}, {48, 175}, {71, 216}, {108, 243},
{9, 169}, {66, 226}, {95, 255}, {101, 197}, {108, 204}, {111, 207}, {77, 236},
{85, 244}, {23, 181}, {67, 225}, {102, 197}, {72, 236}, {90, 254}, {25, 188},
{27, 190}, {9, 175}, {31, 185}, {83, 244}, {90, 253}, {124, 219}, {117, 221},
{64, 233}, {19, 185}, {102, 204}, {120, 212}, {3, 174}, {105, 196}, {22, 184},
{65, 239}, {100, 202}, {14, 190}, {27, 171}, {70, 247}, {80, 225}, {72, 249},
{103, 214}, {119, 198}, {124, 205}, {1, 178}, {101, 214}, {5, 176}, {27, 173},
{80, 231}, {68, 252}, {118, 206}, {65, 248}, {74, 243}, {125, 196}, {83, 233},
{99, 217}, {18, 169}, {106, 209}, {18, 174}, {70, 250}, {65, 253}, {13, 176},
{94, 227}, {106, 215}, {107, 214}, {108, 209}, {76, 242}, {20, 171}, {22, 169},
{7, 199}, {116, 180}, {62, 255}, {126, 191}, {22, 212}, {57, 251}, {4, 199}, {8,
203}, {15, 203}, {37, 225}, {105, 172}, {113, 180}, {26, 220}, {51, 245}, {108,
170}, {112, 182}, {33, 230}, {60, 251}, {11, 195}, {57, 241}, {55, 255}, {54,
254}, {38, 239}, {63, 246}, {26, 208}, {40, 226}, {27, 209}, {25, 210}, {20,
216}, {35, 238}, {51, 254}, {38, 233}, {63, 240}, {10, 218}, {19, 195}, {13,
220}, {49, 224}, {41, 248}, {36, 245}, {101, 180}, {21, 199}, {35, 240}, {100,
183}, {104, 187}, {103, 178}, {11, 220}, {125, 170}, {11, 211}, {17, 200}, {6,
220}, {5, 222}, {32, 251}, {102, 189}, {2, 222}, {49, 236}, {107, 182}, {98,
189}, {99, 188}, {18, 242}, {17, 240}, {84, 181}, {53, 212}, {39, 198}, {48,
210}, {78, 173}, {92, 191}, {91, 191}, {15, 234}, {55, 210}, {16, 245}, {89,
191}, {42, 205}, {91, 188}, {33, 201}, {94, 182}, {88, 176}, {56, 208}, {39,
207}, {38, 206}, {35, 203}, {28, 245}, {89, 176}, {12, 230}, {82, 184}, {5,
238}, {13, 230}, {1, 237}, {95, 179}, {29, 241}, {15, 227}, {12, 224}, {7, 234},
{58, 215}, {50, 223}, {37, 200}, {31, 242}, {8, 229}, {30, 240}, {66, 172}, {51,
221}, {41, 199}, {2, 237}, {56, 215}, {46, 193}, {16, 255}, {11, 228}, {42,
218}, {95, 175}, {71, 183}, {13, 252}, {69, 180}, {21, 231}, {61, 207}, {2,
241}, {52, 192}, {16, 229}, {24, 238}, {93, 171}, {47, 217}, {68, 179}, {84,
172}, {55, 206}, {43, 209}, {56, 194}, {47, 213}, {57, 194}, {85, 174}, {24,
228}, {83, 175}, {36, 216}, {25, 230}, {28, 227}, {2, 259}, {6, 260}, {77, 335},
{32, 291}, {14, 266}, {58, 318}, {54, 306}, {44, 296}, {16, 277}, {50, 311},
{28, 281}, {21, 272}, {4, 259}, {79, 328}, {70, 321}, {58, 317}, {51, 308}, {29,
277}, {12, 261}, {60, 309}, {23, 286}, {14, 260}, {70, 332}, {58, 304}, {39,
298}, {26, 276}, {48, 319}, {74, 325}, {40, 312}, {7, 278}, {30, 271}, {20,
261}, {50, 288}, {88, 330}, {53, 288}, {86, 323}, {81, 324}, {92, 331}, {8,
272}, {61, 293}, {46, 310}, {54, 303}, {90, 323}, {41, 307}, {43, 305}, {82,
329}, {45, 304}, {46, 307}, {22, 264}, {82, 332}, {63, 289}, {52, 298}, {30,
256}, {34, 317}, {9, 297}, {57, 281}, {29, 317}, {42, 264}, {54, 276}, {5, 294},
{49, 274}, {28, 319}, {7, 292}, {103, 324}, {44, 264}, {110, 330}, {39, 258},
{44, 265}, {60, 282}, {9, 302}, {62, 281}, {52, 275}, {96, 327}, {12, 292}, {30,
311}, {36, 269}, {4, 302}, {31, 308}, {61, 278}, {59, 272}, {10, 294}, {20,
312}, {1, 300}, {53, 280}, {111, 321}, {3, 300}, {41, 262}, {1, 305}, {62, 270},
{53, 261}, {24, 296}, {118, 326}, {52, 261}, {124, 333}, {17, 291}, {56, 266},
{37, 279}, {98, 336}, {14, 317}, {36, 279}, {59, 271}, {127, 331}, {50, 263},
{59, 270}, {120, 333}, {4, 306}, {127, 329}, {17, 297}, {34, 282}, {23, 303},
{19, 298}, {46, 276}, {34, 281}, {48, 267}, {115, 328}, {121, 324}, {126, 323},
{32, 286}, {63, 257}, {47, 273}, {34, 284}, {120, 326}, {21, 298}, {31, 288},
{64, 257}, {73, 267}, {79, 269}, {97, 291}, {105, 299}, {65, 258}, {112, 308},
{115, 310}, {8, 334}, {84, 274}, {15, 329}, {109, 299}, {112, 310}, {10, 333},
{126, 313}, {3, 331}, {92, 276}, {123, 307}, {67, 266}, {87, 286}, {104, 289},
{117, 316}, {106, 288}, {99, 296}, {69, 265}, {125, 305}, {3, 334}, {6, 331},
{113, 316}, {6, 328}, {73, 263}, {10, 325}, {80, 287}, {69, 266}, {64, 273},
{77, 284}, {23, 325}, {24, 330}, {119, 293}, {105, 314}, {119, 292}, {121, 301},
{67, 278}, {83, 262}, {26, 332}, {118, 289}, {74, 274}, {118, 302}, {72, 273},
{116, 301}, {29, 327}, {25, 322}, {86, 269}, {19, 335}, {115, 303}, {66, 287},
{85, 264}, {123, 293}, {18, 333}, {125, 290}, {90, 314}, {111, 271}, {45, 332},
{116, 278}, {64, 291}, {114, 273}, {124, 287}, {86, 306}, {127, 283}, {75, 301},
{77, 299}, {103, 257}, {113, 279}, {112, 279}, {119, 272}, {44, 325}, {72, 289},
{66, 296}, {93, 311}, {100, 270}, {94, 309}, {116, 287}, {78, 290}, {92, 304},
{85, 312}, {33, 335}, {80, 318}, {45, 323}, {40, 326}, {98, 268}, {32, 335},
{81, 318}, {45, 322}, {99, 268}, {74, 314}, {113, 257}, {121, 265}, {71, 310},
{100, 277}, {59, 329}, {97, 275}, {96, 275}, {97, 274}, {107, 280}, {110, 282},
{78, 315}, {79, 314}, {49, 327}, {76, 315}, {123, 259}, {126, 260}, {75, 304},
{79, 307}, {97, 284}, {114, 271}, {82, 300}, {96, 286}, {93, 290}, {155, 283},
{133, 260}, {156, 285}, {137, 269}, {140, 267}, {161, 294}, {160, 295}, {156,
283}, {141, 263}, {130, 270}, {151, 283}, {132, 267}, {136, 280}, {141, 285},
{137, 280}, {145, 256}, {129, 277}, {149, 259}, {150, 256}, {165, 306}, {132,
285}, {159, 262}, {135, 285}, {163, 313}, {143, 275}, {129, 284}, {148, 265},
{153, 263}, {135, 295}, {158, 319}, {161, 256}, {147, 305}, {155, 313}, {153,
315}, {165, 262}, {138, 302}, {157, 313}, {167, 258}, {132, 290}, {165, 258},
{135, 300}, {158, 309}, {143, 292}, {151, 316}, {160, 268}, {161, 268}, {138,
293}, {144, 319}, {147, 316}, {136, 312}, {148, 294}, {149, 295}, {136, 315},
{152, 299}, {128, 308}, {147, 295}, {159, 297}, {152, 303}, {154, 301}, {162,
282}, {133, 318}, {142, 309}, {146, 297}, {139, 311}, {134, 324}, {131, 320},
{149, 336}, {142, 327}, {139, 320}, {130, 334}, {129, 336}, {145, 320}, {146,
320}, {157, 334}, {159, 326}, {155, 321}, {142, 336}, {149, 330}, {163, 322},
{166, 322}, {164, 321}, {163, 328} }>;
(II) A more general form is to represent the graph as the orbit of {168, 185}
under the group generated by the following permutations:
a: (1, 2)(3, 57)(4, 43)(5, 37)(6, 28)(7, 27)(8, 56)(9, 23)(10, 17)(11, 51)(12,
20)(13, 36)(14, 15)(16, 26)(18, 32)(19, 31)(21, 106)(22, 96)(24, 117)(25,
71)(29, 82)(30, 81)(33, 76)(34, 127)(35, 67)(38, 87)(39, 50)(40, 49)(41,
108)(42, 63)(44, 146)(45, 100)(46, 55)(47, 116)(48, 115)(52, 53)(54, 95)(58,
59)(60, 155)(61, 78)(62, 92)(64, 124)(65, 73)(66, 72)(68, 86)(69, 139)(70,
129)(74, 159)(75, 130)(77, 122)(79, 144)(80, 114)(83, 152)(84, 118)(85, 109)(88,
113)(89, 112)(90, 140)(91, 107)(93, 119)(94, 126)(97, 120)(98, 102)(99,
101)(103, 150)(104, 105)(110, 151)(111, 133)(121, 145)(123, 125)(128, 143)(131,
148)(132, 138)(134, 161)(135, 160)(136, 168)(137, 166)(141, 165)(142, 157)(147,
149)(153, 167)(154, 164)(156, 162)(158, 163)(169, 286)(170, 307)(171, 292)(172,
289)(173, 278)(174, 251)(175, 303)(176, 279)(177, 321)(178, 222)(179, 306)(180,
217)(181, 302)(182, 191)(183, 322)(184, 327)(186, 315)(187, 314)(188, 214)(190,
234)(192, 280)(193, 206)(194, 334)(195, 308)(196, 239)(197, 268)(198, 311)(199,
209)(200, 294)(202, 323)(203, 266)(204, 248)(205, 257)(207, 223)(208, 229)(210,
310)(211, 254)(212, 275)(213, 301)(215, 272)(216, 230)(218, 240)(219, 233)(220,
245)(221, 228)(224, 312)(225, 238)(226, 236)(227, 260)(231, 232)(235, 285)(241,
300)(242, 335)(243, 262)(244, 299)(246, 264)(247, 284)(249, 296)(250, 336)(252,
269)(253, 267)(255, 276)(256, 324)(258, 263)(259, 305)(265, 320)(270, 304)(271,
318)(273, 287)(274, 326)(277, 332)(281, 331)(282, 283)(288, 298)(290, 293)(291,
333)(297, 325)(309, 313)(316, 330)(317, 329)(319, 328) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 37, 3, 43)(4, 36, 6, 23)(5, 17, 8, 27)(7, 76, 11, 96)(9, 16, 14, 10)(12,
33, 19, 52)(13, 32, 21, 20)(15, 78, 24, 63)(18, 95, 29, 67)(22, 55, 34, 81)(25,
77, 39, 53)(26, 87, 41, 71)(28, 133, 44, 118)(30, 139, 47, 114)(31, 91, 49,
61)(38, 62, 58, 42)(40, 144, 60, 121)(45, 105, 65, 107)(48, 129, 69, 120)(50,
99, 72, 111)(51, 126, 74, 138)(54, 86, 79, 115)(56, 124, 83, 100)(57, 80, 85,
68)(59, 93, 88, 64)(66, 104, 94, 75)(70, 73, 98, 101)(82, 125, 110, 103)(84,
123, 112, 92)(89, 97, 119, 128)(106, 150, 131, 130)(108, 162, 134, 157)(109,
167, 136, 166)(113, 127, 132, 149)(116, 122, 140, 142)(117, 155, 141, 160)(135,
147, 151, 156)(137, 163, 152, 165)(146, 164, 153, 161)(148, 159, 158, 154)(169,
255, 317, 218)(170, 282, 324, 184)(171, 176, 291, 272)(172, 239, 182, 304)(173,
238, 240, 203)(174, 179, 241, 225)(175, 277, 266, 333)(177, 265, 326, 319)(178,
300, 305, 237)(180, 247, 267, 336)(181, 259, 279, 331)(183, 208, 219, 262)(185,
192, 224, 186)(187, 309, 301, 226)(188, 236, 207, 288)(189, 197, 250, 204)(190,
294, 297, 229)(191, 274, 293, 308)(193, 307, 310, 276)(194, 287, 244, 202)(195,
275, 292, 201)(196, 248, 214, 332)(198, 212, 210, 284)(199, 216, 220, 286)(200,
334, 209, 222)(205, 233, 270, 215)(206, 281, 318, 264)(211, 327, 278, 242)(213,
232, 256, 320)(217, 273, 271, 311)(221, 313, 243, 235)(223, 296, 289, 227)(228,
246, 234, 315)(230, 335, 298, 261)(231, 312, 252, 251)(245, 260, 325, 302)(249,
321, 263, 268)(253, 254, 323, 314)(257, 329, 290, 330)(258, 280, 322, 299)(269,
328, 303, 306)(283, 285, 295, 316)
C4[ 336, 157 ]
336
-1 178 300 237 305
-2 222 237 259 241
-3 331 300 334 174
-4 199 302 259 306
-5 176 222 238 294
-6 220 331 260 328
-7 199 234 278 292
-8 334 203 272 229
-9 297 169 302 175
-10 333 325 294 218
-11 220 211 195 228
-12 224 292 261 230
-13 176 220 230 252
-14 266 190 260 317
-15 234 203 227 329
-16 255 277 245 229
-17 297 200 291 240
-18 242 333 169 174
-19 298 335 195 185
-20 312 171 216 261
-21 231 199 298 272
-22 264 212 169 184
-23 286 181 303 325
-24 330 238 228 296
-25 188 210 322 230
-26 220 276 332 208
-27 209 190 171 173
-28 319 245 281 227
-29 277 327 317 241
-30 256 311 271 240
-31 242 308 288 185
-32 286 291 335 251
-33 201 335 186 230
-34 281 282 284 317
-35 203 238 173 240
-36 245 279 269 216
-37 178 200 279 225
-38 233 169 206 239
-39 198 298 258 207
-40 312 226 326 184
-41 199 248 262 307
-42 264 172 205 218
-43 209 179 181 305
-44 264 265 325 296
-45 332 322 323 304
-46 276 310 193 307
-47 213 173 217 273
-48 319 210 267 175
-49 224 236 327 274
-50 288 223 311 263
-51 308 221 254 245
-52 275 298 192 261
-53 288 212 280 261
-54 254 276 303 306
-55 210 255 170 206
-56 266 215 194 208
-57 281 194 251 241
-58 215 304 317 318
-59 270 271 272 329
-60 177 309 282 251
-61 278 293 207 186
-62 255 182 270 281
-63 289 246 257 240
-64 233 257 291 273
-65 253 258 248 239
-66 287 226 172 296
-67 266 278 225 218
-68 179 202 206 252
-69 198 265 266 180
-70 321 332 247 250
-71 310 214 183 216
-72 289 236 249 273
-73 267 204 196 263
-74 243 314 325 274
-75 223 301 194 304
-76 242 201 216 315
-77 299 236 335 284
-78 223 290 315 173
-79 269 314 328 307
-80 231 287 225 318
-81 198 324 218 318
-82 332 300 184 329
-83 233 244 262 175
-84 181 193 172 274
-85 264 244 312 174
-86 323 269 193 306
-87 286 193 196 219
-88 176 330 205 217
-89 176 210 191 195
-90 253 254 323 314
-91 188 211 191 192
-92 276 331 191 304
-93 311 290 171 215
-94 309 202 182 227
-95 211 255 179 175
-96 275 286 246 327
-97 275 291 284 274
-98 189 268 248 336
-99 188 268 217 296
-100 277 202 270 183
-101 180 214 249 197
-102 189 204 250 197
-103 178 257 214 324
-104 187 244 289 239
-105 299 314 172 196
-106 209 232 288 215
-107 254 214 280 182
-108 209 243 170 204
-109 299 224 246 251
-110 330 237 248 282
-111 321 227 271 207
-112 308 310 279 182
-113 180 257 279 316
-114 232 238 271 273
-115 253 310 303 328
-116 287 278 180 301
-117 221 225 249 316
-118 289 302 326 206
-119 198 292 293 272
-120 212 333 247 326
-121 231 265 301 324
-122 242 244 247 226
-123 259 293 239 307
-124 287 333 205 219
-125 290 170 305 196
-126 191 323 313 260
-127 331 247 283 329
-128 308 201 212 171
-129 177 277 336 284
-130 213 334 270 207
-131 320 200 233 236
-132 267 290 181 285
-133 177 223 260 318
-134 221 200 324 197
-135 300 295 197 285
-136 312 280 315 185
-137 221 269 280 183
-138 253 235 302 293
-139 320 311 203 217
-140 187 211 267 202
-141 243 179 263 285
-142 309 336 194 327
-143 275 201 292 195
-144 187 319 170 252
-145 232 320 256 213
-146 297 320 246 249
-147 250 305 316 295
-148 265 226 294 219
-149 330 259 336 295
-150 188 222 256 205
-151 204 237 283 316
-152 243 299 303 219
-153 232 190 315 263
-154 177 190 301 208
-155 321 313 283 174
-156 178 189 283 285
-157 334 313 184 250
-158 319 309 183 229
-159 187 297 326 262
-160 235 268 295 241
-161 256 268 228 294
-162 189 222 235 282
-163 322 313 328 208
-164 321 234 213 229
-165 235 258 262 306
-166 322 192 228 252
-167 231 234 258 186
-168 224 192 185 186
-169 22 38 18 9
-170 55 144 125 108
-171 27 93 128 20
-172 66 105 84 42
-173 78 35 47 27
-174 155 3 18 85
-175 48 83 95 9
-176 88 89 13 5
-177 154 133 60 129
-178 1 156 37 103
-179 68 95 141 43
-180 101 69 113 116
-181 132 23 84 43
-182 112 94 62 107
-183 100 158 71 137
-184 22 157 82 40
-185 168 136 19 31
-186 33 167 168 61
-187 144 104 159 140
-188 99 25 91 150
-189 156 102 162 98
-190 154 14 27 153
-191 89 91 92 126
-192 166 91 168 52
-193 46 84 86 87
-194 56 57 75 142
-195 11 143 89 19
-196 125 105 73 87
-197 101 134 102 135
-198 69 81 39 119
-199 4 7 41 21
-200 134 37 17 131
-201 33 143 128 76
-202 100 68 94 140
-203 35 15 139 8
-204 102 73 151 108
-205 88 124 150 42
-206 55 68 38 118
-207 111 39 61 130
-208 154 56 26 163
-209 27 106 108 43
-210 55 89 25 48
-211 11 91 95 140
-212 22 128 53 120
-213 145 47 130 164
-214 101 103 71 107
-215 56 58 93 106
-216 36 71 20 76
-217 88 99 47 139
-218 67 81 42 10
-219 124 148 152 87
-220 11 13 26 6
-221 134 137 51 117
-222 2 5 150 162
-223 78 133 50 75
-224 12 168 49 109
-225 67 80 37 117
-226 66 122 148 40
-227 111 15 28 94
-228 11 166 24 161
-229 158 16 8 164
-230 33 12 13 25
-231 121 167 80 21
-232 145 114 106 153
-233 38 83 64 131
-234 167 15 7 164
-235 165 138 160 162
-236 77 49 72 131
-237 110 1 2 151
-238 24 35 114 5
-239 123 38 104 65
-240 35 17 30 63
-241 2 57 160 29
-242 122 18 31 76
-243 74 108 141 152
-244 122 104 83 85
-245 36 16 28 51
-246 146 63 96 109
-247 122 70 127 120
-248 110 41 65 98
-249 101 146 72 117
-250 102 157 70 147
-251 57 60 32 109
-252 144 166 13 68
-253 90 115 138 65
-254 90 51 107 54
-255 55 16 62 95
-256 145 150 161 30
-257 113 103 63 64
-258 165 167 39 65
-259 2 123 4 149
-260 133 14 126 6
-261 12 52 20 53
-262 165 159 83 41
-263 50 73 141 153
-264 22 44 85 42
-265 44 121 69 148
-266 56 67 14 69
-267 132 48 73 140
-268 99 160 161 98
-269 79 36 137 86
-270 100 59 62 130
-271 111 59 114 30
-272 59 8 119 21
-273 47 114 72 64
-274 49 84 74 97
-275 143 52 96 97
-276 46 26 92 54
-277 100 16 29 129
-278 67 61 116 7
-279 112 36 113 37
-280 136 137 107 53
-281 34 57 28 62
-282 110 34 60 162
-283 155 156 127 151
-284 77 34 129 97
-285 132 156 135 141
-286 23 96 32 87
-287 66 80 124 116
-288 50 106 31 53
-289 104 72 63 118
-290 132 78 125 93
-291 17 64 97 32
-292 143 12 7 119
-293 123 61 138 119
-294 5 148 161 10
-295 135 147 149 160
-296 44 66 99 24
-297 146 159 17 9
-298 39 19 52 21
-299 77 105 152 109
-300 1 3 135 82
-301 121 154 116 75
-302 4 138 118 9
-303 23 115 152 54
-304 45 58 92 75
-305 1 125 147 43
-306 165 4 86 54
-307 46 79 123 41
-308 112 51 128 31
-309 158 60 94 142
-310 46 112 71 115
-311 93 50 139 30
-312 136 40 85 20
-313 155 157 126 163
-314 79 90 105 74
-315 78 136 76 153
-316 113 147 117 151
-317 34 14 58 29
-318 133 58 80 81
-319 144 48 158 28
-320 145 146 139 131
-321 111 155 70 164
-322 45 166 25 163
-323 45 90 126 86
-324 121 134 81 103
-325 44 23 74 10
-326 159 40 118 120
-327 49 29 96 142
-328 79 115 6 163
-329 15 59 82 127
-330 88 110 24 149
-331 3 92 6 127
-332 45 26 70 82
-333 124 18 10 120
-334 3 157 8 130
-335 33 77 19 32
-336 149 129 98 142
0