C4graphGraph forms for C4 [ 336, 159 ] = BGCG(UG(ATD[168,74]);K1;{10,12})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 159 ] = BGCG(UG(ATD[168,74]);K1;{10,12}).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {168, 169}, {167, 175}, {167, 182}, {164, 188}, {160, 190}, {168, 182}, {163, 188}, {148, 180}, {159, 191}, {149, 181}, {150, 180}, {157, 191}, {138, 175}, {157, 187}, {153, 177}, {152, 177}, {154, 176}, {155, 176}, {146, 191}, {145, 191}, {143, 189}, {128, 179}, {129, 184}, {150, 171}, {135, 185}, {142, 176}, {149, 171}, {143, 176}, {166, 230}, {146, 211}, {167, 230}, {148, 210}, {142, 198}, {165, 236}, {147, 217}, {165, 239}, {144, 219}, {164, 239}, {146, 217}, {156, 209}, {143, 193}, {138, 218}, {148, 196}, {144, 193}, {155, 202}, {149, 196}, {166, 244}, {163, 240}, {142, 219}, {165, 240}, {128, 214}, {158, 200}, {159, 200}, {146, 203}, {159, 198}, {129, 222}, {164, 251}, {139, 234}, {152, 249}, {148, 246}, {145, 242}, {155, 248}, {138, 226}, {136, 226}, {150, 252}, {137, 227}, {153, 242}, {165, 206}, {147, 255}, {161, 204}, {145, 255}, {151, 249}, {154, 245}, {132, 244}, {152, 232}, {132, 245}, {154, 235}, {136, 250}, {136, 251}, {153, 234}, {137, 250}, {160, 212}, {161, 212}, {156, 235}, {162, 218}, {147, 238}, {158, 225}, {79, 207}, {67, 194}, {91, 218}, {69, 196}, {102, 231}, {126, 255}, {76, 206}, {78, 204}, {125, 255}, {42, 169}, {80, 211}, {100, 231}, {97, 229}, {104, 236}, {112, 244}, {59, 190}, {72, 205}, {123, 254}, {47, 169}, {68, 194}, {107, 237}, {62, 185}, {85, 210}, {67, 196}, {98, 229}, {116, 243}, {121, 254}, {58, 178}, {38, 175}, {92, 213}, {96, 233}, {65, 203}, {84, 222}, {82, 217}, {112, 251}, {32, 173}, {84, 217}, {113, 252}, {60, 178}, {118, 248}, {103, 247}, {114, 227}, {38, 180}, {39, 180}, {93, 206}, {67, 208}, {58, 174}, {116, 224}, {59, 174}, {117, 224}, {122, 239}, {83, 197}, {121, 239}, {44, 187}, {33, 185}, {77, 213}, {69, 221}, {101, 253}, {68, 221}, {75, 210}, {100, 253}, {119, 238}, {82, 200}, {93, 199}, {111, 245}, {83, 200}, {92, 199}, {42, 183}, {49, 172}, {94, 195}, {117, 232}, {41, 183}, {81, 207}, {79, 209}, {66, 220}, {50, 172}, {96, 254}, {104, 246}, {96, 192}, {120, 216}, {95, 254}, {21, 183}, {126, 220}, {16, 179}, {96, 195}, {19, 183}, {82, 246}, {31, 187}, {27, 189}, {75, 236}, {26, 178}, {90, 242}, {27, 179}, {98, 202}, {79, 230}, {127, 214}, {25, 178}, {126, 213}, {99, 207}, {6, 171}, {73, 228}, {5, 171}, {94, 240}, {97, 207}, {118, 216}, {75, 228}, {87, 248}, {78, 225}, {95, 240}, {88, 232}, {9, 184}, {91, 234}, {69, 244}, {12, 189}, {102, 215}, {7, 181}, {73, 251}, {101, 215}, {105, 219}, {117, 199}, {64, 243}, {70, 245}, {99, 208}, {30, 170}, {86, 226}, {115, 199}, {87, 226}, {10, 188}, {80, 230}, {11, 188}, {105, 222}, {2, 186}, {86, 238}, {66, 250}, {113, 201}, {116, 205}, {1, 186}, {65, 250}, {114, 201}, {103, 219}, {89, 228}, {83, 237}, {90, 228}, {110, 208}, {99, 220}, {117, 202}, {122, 197}, {110, 174}, {15, 205}, {59, 249}, {121, 187}, {109, 174}, {118, 181}, {2, 198}, {28, 216}, {21, 209}, {110, 170}, {60, 249}, {10, 204}, {30, 216}, {36, 227}, {49, 246}, {11, 195}, {100, 173}, {15, 197}, {25, 211}, {26, 209}, {60, 247}, {32, 235}, {44, 224}, {13, 192}, {45, 224}, {18, 223}, {50, 252}, {63, 241}, {100, 170}, {125, 179}, {12, 195}, {62, 241}, {16, 223}, {53, 229}, {121, 169}, {54, 229}, {38, 242}, {41, 253}, {98, 182}, {11, 222}, {40, 253}, {34, 247}, {99, 182}, {26, 204}, {56, 238}, {42, 252}, {123, 173}, {58, 237}, {59, 236}, {106, 189}, {4, 221}, {40, 241}, {6, 221}, {42, 241}, {17, 202}, {109, 177}, {46, 243}, {31, 193}, {55, 233}, {111, 177}, {33, 193}, {89, 184}, {3, 225}, {93, 190}, {38, 194}, {72, 172}, {48, 212}, {18, 247}, {20, 243}, {77, 170}, {39, 192}, {37, 194}, {1, 233}, {62, 215}, {81, 184}, {57, 211}, {70, 172}, {61, 215}, {6, 237}, {46, 197}, {19, 248}, {82, 190}, {87, 186}, {88, 181}, {37, 203}, {67, 173}, {61, 210}, {85, 186}, {47, 223}, {57, 201}, {46, 223}, {94, 175}, {56, 201}, {40, 218}, {52, 198}, {16, 227}, {61, 206}, {35, 208}, {20, 231}, {19, 231}, {31, 235}, {28, 234}, {35, 213}, {58, 205}, {65, 185}, {19, 232}, {48, 203}, {47, 212}, {45, 214}, {29, 225}, {60, 192}, {32, 220}, {43, 214}, {22, 233}, {2, 258}, {49, 305}, {24, 280}, {15, 271}, {23, 278}, {74, 331}, {41, 296}, {13, 271}, {73, 331}, {51, 305}, {7, 260}, {31, 284}, {8, 268}, {49, 309}, {9, 268}, {18, 279}, {17, 279}, {33, 295}, {1, 262}, {37, 301}, {48, 313}, {69, 332}, {64, 330}, {66, 329}, {8, 260}, {51, 319}, {22, 280}, {26, 276}, {24, 278}, {27, 276}, {5, 277}, {52, 292}, {44, 316}, {4, 277}, {53, 292}, {52, 293}, {62, 300}, {84, 326}, {57, 301}, {18, 263}, {92, 329}, {53, 288}, {5, 275}, {46, 313}, {71, 336}, {48, 295}, {72, 336}, {17, 264}, {81, 328}, {4, 286}, {95, 323}, {28, 257}, {88, 325}, {54, 299}, {51, 302}, {89, 326}, {90, 325}, {5, 293}, {39, 263}, {107, 331}, {3, 290}, {7, 294}, {34, 256}, {1, 290}, {35, 256}, {111, 332}, {12, 296}, {54, 274}, {34, 262}, {30, 314}, {24, 316}, {23, 306}, {56, 285}, {21, 307}, {52, 274}, {103, 321}, {29, 314}, {108, 331}, {44, 261}, {63, 275}, {43, 262}, {29, 307}, {43, 261}, {102, 328}, {9, 294}, {45, 258}, {23, 312}, {108, 323}, {32, 272}, {55, 263}, {37, 277}, {122, 330}, {3, 306}, {40, 281}, {33, 272}, {27, 298}, {7, 310}, {10, 312}, {50, 256}, {39, 277}, {123, 329}, {25, 298}, {57, 266}, {51, 256}, {47, 284}, {34, 273}, {14, 314}, {56, 268}, {123, 335}, {25, 300}, {36, 273}, {122, 335}, {13, 314}, {41, 286}, {17, 297}, {16, 297}, {14, 308}, {120, 322}, {55, 268}, {29, 289}, {28, 289}, {55, 266}, {125, 320}, {3, 317}, {9, 311}, {2, 317}, {20, 299}, {14, 334}, {107, 299}, {15, 334}, {80, 274}, {95, 285}, {11, 328}, {90, 281}, {81, 274}, {12, 335}, {4, 320}, {73, 269}, {110, 298}, {8, 333}, {10, 335}, {101, 288}, {111, 298}, {76, 266}, {105, 303}, {77, 266}, {104, 303}, {14, 326}, {86, 287}, {85, 287}, {124, 310}, {101, 302}, {6, 330}, {13, 321}, {109, 288}, {113, 316}, {115, 318}, {8, 327}, {20, 324}, {91, 267}, {83, 259}, {21, 324}, {102, 311}, {23, 325}, {22, 325}, {108, 319}, {127, 300}, {78, 282}, {98, 310}, {22, 321}, {92, 267}, {84, 259}, {77, 282}, {30, 329}, {93, 261}, {127, 295}, {119, 302}, {24, 322}, {106, 304}, {114, 296}, {74, 278}, {108, 304}, {66, 287}, {75, 278}, {105, 308}, {91, 261}, {64, 287}, {87, 264}, {94, 257}, {85, 309}, {64, 290}, {65, 290}, {72, 299}, {36, 320}, {120, 284}, {74, 300}, {97, 263}, {74, 301}, {97, 262}, {78, 294}, {88, 304}, {115, 283}, {86, 319}, {89, 304}, {43, 321}, {76, 294}, {45, 327}, {112, 282}, {113, 282}, {116, 283}, {50, 322}, {68, 308}, {109, 285}, {120, 265}, {63, 333}, {106, 280}, {124, 270}, {35, 336}, {68, 311}, {107, 280}, {125, 270}, {36, 336}, {71, 307}, {106, 286}, {112, 260}, {124, 264}, {127, 267}, {71, 306}, {53, 323}, {114, 260}, {79, 312}, {80, 295}, {103, 272}, {70, 318}, {104, 272}, {119, 271}, {61, 324}, {76, 309}, {118, 271}, {63, 324}, {54, 330}, {71, 315}, {70, 315}, {126, 259}, {115, 269}, {119, 265}, {124, 259}, {162, 291}, {166, 292}, {151, 276}, {160, 291}, {134, 258}, {133, 269}, {129, 267}, {150, 284}, {133, 265}, {168, 292}, {153, 276}, {134, 265}, {145, 257}, {158, 270}, {139, 281}, {161, 307}, {157, 270}, {168, 316}, {160, 309}, {137, 286}, {154, 269}, {166, 318}, {129, 283}, {139, 273}, {128, 283}, {140, 273}, {142, 275}, {149, 264}, {131, 285}, {130, 291}, {163, 258}, {162, 257}, {133, 289}, {135, 289}, {158, 312}, {132, 291}, {128, 296}, {141, 293}, {131, 297}, {135, 301}, {130, 297}, {131, 302}, {152, 310}, {156, 306}, {144, 319}, {144, 288}, {163, 275}, {151, 293}, {156, 303}, {137, 317}, {155, 303}, {162, 279}, {130, 308}, {161, 279}, {136, 318}, {141, 315}, {138, 317}, {140, 315}, {131, 313}, {139, 305}, {140, 311}, {141, 305}, {132, 313}, {167, 281}, {134, 334}, {133, 332}, {135, 334}, {130, 328}, {140, 326}, {141, 327}, {134, 333}, {143, 320}, {147, 323}, {159, 327}, {151, 333}, {157, 322}, {164, 332} }>;

(II) A more general form is to represent the graph as the orbit of {168, 169} under the group generated by the following permutations:

a: (2, 43)(3, 22)(4, 30)(5, 92)(6, 77)(7, 72)(8, 116)(9, 20)(10, 74)(11, 62)(12, 135)(13, 137)(14, 41)(15, 114)(16, 119)(17, 51)(18, 86)(19, 140)(21, 89)(24, 158)(25, 164)(26, 73)(27, 133)(28, 143)(29, 106)(31, 145)(32, 38)(33, 94)(34, 87)(35, 149)(36, 118)(37, 123)(39, 66)(40, 105)(42, 84)(44, 159)(46, 56)(47, 147)(48, 95)(49, 98)(50, 124)(52, 93)(53, 160)(54, 76)(55, 64)(57, 122)(58, 112)(59, 166)(60, 136)(61, 81)(63, 129)(65, 96)(68, 100)(69, 110)(70, 152)(71, 88)(75, 79)(78, 107)(80, 165)(82, 168)(83, 113)(85, 97)(90, 156)(91, 142)(99, 148)(101, 130)(103, 138)(104, 167)(108, 161)(109, 132)(115, 151)(117, 141)(120, 125)(121, 146)(126, 150)(127, 163)(128, 134)(139, 155)(144, 162)(153, 154)(169, 217)(170, 221)(171, 213)(172, 310)(173, 194)(174, 244)(175, 272)(176, 234)(177, 245)(178, 251)(179, 265)(180, 220)(181, 336)(182, 246)(183, 326)(184, 324)(185, 195)(186, 262)(187, 191)(188, 300)(189, 289)(190, 292)(192, 250)(193, 257)(196, 208)(197, 201)(198, 261)(199, 293)(200, 316)(202, 305)(203, 254)(204, 331)(205, 260)(206, 274)(207, 210)(209, 228)(211, 239)(212, 323)(214, 258)(215, 328)(216, 320)(218, 219)(222, 241)(223, 238)(224, 327)(225, 280)(226, 247)(227, 271)(229, 309)(230, 236)(231, 311)(232, 315)(233, 290)(235, 242)(237, 282)(240, 295)(243, 268)(248, 273)(249, 318)(252, 259)(253, 308)(255, 284)(256, 264)(263, 287)(266, 330)(267, 275)(269, 276)(270, 322)(277, 329)(278, 312)(279, 319)(281, 303)(283, 333)(285, 313)(286, 314)(288, 291)(294, 299)(296, 334)(297, 302)(298, 332)(301, 335)(304, 307)(306, 325)(317, 321)
b: (2, 64)(3, 85)(4, 119)(5, 15)(6, 134)(7, 74)(8, 107)(9, 24)(10, 165)(11, 121)(12, 95)(13, 39)(14, 150)(16, 144)(17, 33)(18, 103)(19, 146)(20, 159)(21, 82)(22, 55)(23, 76)(25, 152)(26, 59)(27, 109)(28, 67)(29, 148)(30, 38)(31, 130)(32, 162)(35, 139)(36, 51)(37, 118)(40, 126)(41, 147)(42, 84)(43, 97)(44, 81)(45, 54)(46, 142)(47, 105)(48, 155)(49, 71)(50, 140)(52, 116)(53, 128)(56, 106)(57, 88)(58, 151)(61, 158)(62, 124)(63, 83)(65, 87)(66, 138)(68, 120)(69, 133)(72, 141)(73, 112)(75, 78)(77, 90)(79, 93)(80, 117)(86, 137)(89, 113)(91, 99)(92, 167)(94, 123)(98, 127)(100, 145)(101, 125)(102, 157)(104, 161)(108, 114)(110, 153)(115, 166)(122, 163)(129, 168)(131, 143)(132, 154)(135, 149)(156, 160)(169, 222)(170, 242)(171, 334)(172, 315)(173, 257)(174, 276)(175, 329)(176, 313)(177, 298)(178, 249)(179, 288)(180, 314)(181, 301)(182, 267)(183, 217)(184, 316)(185, 264)(186, 290)(187, 328)(188, 239)(189, 285)(190, 209)(191, 231)(193, 297)(194, 216)(195, 254)(196, 289)(197, 275)(198, 243)(199, 230)(200, 324)(201, 304)(202, 295)(203, 248)(204, 236)(205, 293)(206, 312)(207, 261)(208, 234)(210, 225)(211, 232)(212, 303)(213, 281)(214, 229)(215, 270)(218, 220)(219, 223)(221, 265)(224, 274)(226, 250)(227, 319)(228, 282)(235, 291)(237, 333)(238, 286)(240, 335)(241, 259)(244, 269)(246, 307)(252, 326)(253, 255)(256, 273)(258, 330)(260, 331)(263, 321)(266, 325)(268, 280)(271, 277)(272, 279)(278, 294)(283, 292)(284, 308)(287, 317)(296, 323)(299, 327)(300, 310)(302, 320)(305, 336)(306, 309)(311, 322)
c: (1, 2, 87, 85)(3, 138, 86, 64)(4, 112, 92, 33)(5, 7, 93, 103)(6, 78, 91, 144)(8, 117, 104, 39)(9, 44, 105, 150)(10, 28, 101, 107)(11, 120, 102, 24)(12, 133, 100, 74)(13, 63, 88, 165)(14, 42, 89, 121)(15, 21, 90, 95)(16, 70, 99, 146)(17, 49, 97, 159)(18, 141, 98, 82)(19, 75, 96, 134)(20, 23, 94, 119)(22, 163, 118, 61)(25, 27, 111, 110)(26, 153, 109, 58)(29, 40, 108, 122)(30, 62, 106, 164)(31, 68, 113, 129)(32, 37, 114, 115)(34, 52, 124, 160)(35, 80, 125, 132)(36, 166, 126, 48)(38, 56, 116, 156)(41, 73, 123, 135)(43, 142, 149, 76)(45, 155, 148, 55)(46, 71, 167, 147)(47, 140, 168, 84)(50, 81, 157, 130)(51, 54, 158, 162)(53, 83, 161, 139)(57, 128, 154, 67)(59, 60, 151, 152)(65, 137, 136, 66)(69, 77, 127, 143)(72, 79, 145, 131)(169, 326)(170, 300, 189, 332)(171, 294, 261, 219)(172, 207, 191, 297)(173, 301, 296, 269)(174, 178, 276, 177)(175, 238, 243, 306)(176, 196, 266, 214)(179, 245, 208, 211)(180, 268, 224, 303)(181, 206, 321, 275)(182, 217, 223, 315)(183, 228, 254, 334)(184, 187, 308, 252)(185, 286, 251, 329)(188, 216, 215, 280)(190, 247, 293, 310)(192, 333, 232, 236)(193, 221, 282, 267)(194, 201, 283, 235)(195, 265, 231, 278)(197, 307, 281, 323)(198, 264, 309, 262)(199, 272, 277, 260)(200, 279, 305, 229)(202, 246, 263, 327)(203, 227, 318, 220)(204, 234, 288, 237)(205, 209, 242, 285)(210, 233, 258, 248)(212, 273, 292, 259)(213, 295, 320, 244)(218, 319, 330, 225)(222, 284, 311, 316)(226, 287, 290, 317)(230, 255, 313, 336)(239, 314, 241, 304)(240, 271, 324, 325)(253, 331, 335, 289)(256, 274, 270, 291)(257, 302, 299, 312)(322, 328)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 159 ]
336
-1 233 290 262 186
-2 198 258 317 186
-3 290 225 306 317
-4 286 221 320 277
-5 275 277 171 293
-6 330 221 171 237
-7 310 181 260 294
-8 333 268 260 327
-9 311 268 184 294
-10 188 312 335 204
-11 188 222 195 328
-12 189 335 195 296
-13 321 192 314 271
-14 308 334 314 326
-15 334 205 271 197
-16 297 179 223 227
-17 264 297 202 279
-18 223 279 247 263
-19 231 232 248 183
-20 231 243 299 324
-21 209 324 183 307
-22 233 321 280 325
-23 278 312 325 306
-24 278 322 280 316
-25 298 178 211 300
-26 209 276 178 204
-27 276 298 189 179
-28 234 289 257 216
-29 289 225 314 307
-30 170 314 216 329
-31 187 235 193 284
-32 220 235 173 272
-33 193 272 185 295
-34 256 247 262 273
-35 256 213 336 208
-36 320 336 227 273
-37 277 301 203 194
-38 242 180 194 175
-39 277 180 192 263
-40 253 281 218 241
-41 253 286 183 296
-42 169 183 241 252
-43 321 214 261 262
-44 187 224 261 316
-45 224 214 258 327
-46 243 223 313 197
-47 212 223 169 284
-48 212 203 313 295
-49 309 246 172 305
-50 256 322 172 252
-51 319 256 302 305
-52 198 292 293 274
-53 288 323 292 229
-54 330 299 229 274
-55 233 266 268 263
-56 201 268 238 285
-57 211 266 201 301
-58 178 237 205 174
-59 190 236 249 174
-60 178 192 247 249
-61 210 324 215 206
-62 300 215 185 241
-63 275 333 324 241
-64 330 243 287 290
-65 290 203 250 185
-66 220 287 250 329
-67 194 173 196 208
-68 308 221 311 194
-69 221 244 332 196
-70 245 172 315 318
-71 336 315 306 307
-72 299 336 172 205
-73 331 269 228 251
-74 331 278 300 301
-75 210 278 236 228
-76 309 266 206 294
-77 266 213 170 282
-78 225 204 282 294
-79 209 312 207 230
-80 211 295 230 274
-81 184 207 328 274
-82 200 190 246 217
-83 200 237 259 197
-84 222 259 326 217
-85 210 287 309 186
-86 319 287 226 238
-87 264 226 248 186
-88 232 181 325 304
-89 304 326 184 228
-90 242 281 325 228
-91 234 267 261 218
-92 199 267 213 329
-93 199 190 206 261
-94 257 195 240 175
-95 254 323 240 285
-96 254 233 192 195
-97 207 229 262 263
-98 310 202 182 229
-99 220 182 207 208
-100 231 253 170 173
-101 253 288 302 215
-102 231 311 215 328
-103 321 247 272 219
-104 246 236 303 272
-105 308 222 303 219
-106 286 189 280 304
-107 331 299 280 237
-108 319 331 323 304
-109 177 288 174 285
-110 298 170 174 208
-111 177 298 332 245
-112 244 260 282 251
-113 201 282 316 252
-114 201 227 260 296
-115 199 269 283 318
-116 243 224 205 283
-117 199 232 202 224
-118 181 248 216 271
-119 265 302 238 271
-120 265 322 216 284
-121 187 254 169 239
-122 330 335 239 197
-123 254 335 173 329
-124 264 310 259 270
-125 320 255 179 270
-126 220 255 213 259
-127 267 300 214 295
-128 179 214 283 296
-129 222 267 184 283
-130 297 308 291 328
-131 297 302 313 285
-132 244 245 291 313
-133 265 332 289 269
-134 265 333 334 258
-135 289 301 334 185
-136 226 250 251 318
-137 286 227 250 317
-138 226 218 317 175
-139 234 281 305 273
-140 311 315 326 273
-141 293 315 305 327
-142 176 198 275 219
-143 176 320 189 193
-144 319 288 193 219
-145 242 255 191 257
-146 211 191 203 217
-147 255 323 238 217
-148 210 180 246 196
-149 264 181 171 196
-150 180 171 284 252
-151 276 333 249 293
-152 177 232 310 249
-153 242 177 276 234
-154 176 245 235 269
-155 176 202 248 303
-156 209 235 303 306
-157 187 322 191 270
-158 200 312 225 270
-159 198 200 191 327
-160 309 190 212 291
-161 212 279 204 307
-162 257 279 291 218
-163 275 188 258 240
-164 188 332 239 251
-165 236 206 239 240
-166 244 292 230 318
-167 182 281 175 230
-168 169 182 292 316
-169 121 47 168 42
-170 77 110 100 30
-171 5 6 149 150
-172 70 49 50 72
-173 67 100 123 32
-174 110 58 59 109
-175 167 38 94 138
-176 143 154 155 142
-177 111 152 109 153
-178 25 58 26 60
-179 125 16 27 128
-180 38 148 39 150
-181 88 149 7 118
-182 99 167 168 98
-183 19 41 42 21
-184 89 81 129 9
-185 33 135 62 65
-186 1 2 85 87
-187 44 121 157 31
-188 11 163 10 164
-189 143 12 27 106
-190 59 82 93 160
-191 145 146 157 159
-192 13 60 39 96
-193 33 143 144 31
-194 67 68 37 38
-195 11 12 94 96
-196 67 69 148 149
-197 122 46 15 83
-198 2 159 52 142
-199 92 93 115 117
-200 158 82 159 83
-201 56 57 113 114
-202 155 17 117 98
-203 146 37 48 65
-204 78 26 161 10
-205 58 15 72 116
-206 165 93 61 76
-207 99 79 81 97
-208 99 110 67 35
-209 79 156 26 21
-210 148 61 85 75
-211 57 25 80 146
-212 47 48 160 161
-213 77 35 92 126
-214 45 127 128 43
-215 101 102 61 62
-216 28 30 118 120
-217 146 147 82 84
-218 91 138 40 162
-219 144 103 105 142
-220 66 99 126 32
-221 68 69 4 6
-222 11 105 84 129
-223 46 47 16 18
-224 44 45 116 117
-225 78 3 158 29
-226 136 138 86 87
-227 36 114 16 137
-228 89 90 73 75
-229 53 97 54 98
-230 166 79 167 80
-231 100 102 19 20
-232 88 117 19 152
-233 22 55 1 96
-234 91 28 139 153
-235 154 156 31 32
-236 165 59 104 75
-237 58 6 83 107
-238 56 147 86 119
-239 121 165 122 164
-240 165 94 95 163
-241 40 62 63 42
-242 90 145 38 153
-243 46 116 20 64
-244 132 166 112 69
-245 132 154 111 70
-246 104 148 82 49
-247 34 103 60 18
-248 155 19 118 87
-249 59 60 151 152
-250 66 136 137 65
-251 112 136 73 164
-252 113 50 150 42
-253 100 101 40 41
-254 121 123 95 96
-255 145 125 147 126
-256 34 35 50 51
-257 145 28 94 162
-258 45 2 134 163
-259 124 126 83 84
-260 112 114 7 8
-261 44 91 93 43
-262 1 34 97 43
-263 55 39 18 97
-264 124 17 149 87
-265 133 134 119 120
-266 55 77 57 76
-267 91 92 127 129
-268 55 56 8 9
-269 154 133 115 73
-270 124 157 125 158
-271 13 15 118 119
-272 33 103 104 32
-273 34 36 139 140
-274 80 81 52 54
-275 5 63 163 142
-276 26 27 151 153
-277 4 37 5 39
-278 23 24 74 75
-279 17 18 161 162
-280 22 24 106 107
-281 90 167 40 139
-282 77 78 112 113
-283 115 116 128 129
-284 47 150 31 120
-285 56 95 109 131
-286 4 137 106 41
-287 66 85 64 86
-288 144 101 53 109
-289 133 135 28 29
-290 1 3 64 65
-291 132 160 162 130
-292 166 168 52 53
-293 5 52 151 141
-294 78 7 9 76
-295 33 80 48 127
-296 12 114 128 41
-297 16 17 130 131
-298 110 111 25 27
-299 72 107 20 54
-300 25 127 62 74
-301 57 135 37 74
-302 101 51 119 131
-303 155 156 104 105
-304 88 89 106 108
-305 49 51 139 141
-306 23 156 3 71
-307 71 29 161 21
-308 68 14 105 130
-309 49 160 85 76
-310 124 7 152 98
-311 68 102 140 9
-312 23 79 158 10
-313 132 46 48 131
-314 13 14 29 30
-315 70 71 140 141
-316 44 24 113 168
-317 2 3 137 138
-318 166 70 136 115
-319 144 51 86 108
-320 143 36 4 125
-321 22 13 103 43
-322 24 157 50 120
-323 147 95 53 108
-324 61 63 20 21
-325 22 88 23 90
-326 89 14 84 140
-327 45 159 8 141
-328 11 102 81 130
-329 66 123 92 30
-330 122 6 64 54
-331 73 74 107 108
-332 111 133 69 164
-333 134 8 63 151
-334 134 14 135 15
-335 12 122 123 10
-336 35 36 71 72
0

**************