C4graphGraph forms for C4 [ 336, 161 ] = BGCG(UG(Rmap(336,307){8,4|6}_28);K1;{1,5})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 336, 161 ] = BGCG(UG(Rmap(336,307){8,4|6}_28);K1;{1,5}).

(I) Following is a form readable by MAGMA:

g:=Graph<336|{ {162, 179}, {163, 178}, {167, 190}, {163, 190}, {138, 169}, {155, 184}, {143, 170}, {151, 176}, {159, 184}, {156, 187}, {132, 173}, {149, 190}, {130, 172}, {157, 179}, {156, 178}, {134, 182}, {137, 185}, {158, 175}, {155, 174}, {147, 171}, {141, 182}, {128, 188}, {130, 190}, {135, 187}, {140, 176}, {146, 175}, {151, 170}, {138, 181}, {139, 203}, {168, 232}, {130, 192}, {133, 205}, {152, 211}, {156, 208}, {137, 196}, {158, 211}, {142, 192}, {166, 232}, {154, 213}, {159, 208}, {166, 246}, {133, 215}, {161, 243}, {139, 217}, {129, 210}, {162, 241}, {153, 205}, {131, 218}, {165, 252}, {164, 255}, {167, 252}, {142, 208}, {165, 251}, {141, 237}, {144, 241}, {140, 238}, {140, 239}, {152, 251}, {158, 250}, {141, 232}, {151, 255}, {158, 246}, {153, 241}, {147, 250}, {128, 235}, {154, 246}, {132, 234}, {164, 212}, {128, 241}, {136, 249}, {138, 248}, {166, 212}, {156, 239}, {165, 208}, {144, 230}, {129, 246}, {162, 213}, {140, 240}, {143, 243}, {145, 236}, {133, 251}, {134, 249}, {144, 239}, {48, 176}, {69, 197}, {63, 191}, {56, 184}, {107, 235}, {91, 218}, {51, 177}, {103, 229}, {111, 237}, {120, 250}, {53, 182}, {115, 240}, {118, 245}, {102, 227}, {40, 174}, {47, 169}, {85, 210}, {95, 216}, {126, 249}, {66, 202}, {78, 198}, {100, 236}, {112, 248}, {87, 222}, {84, 222}, {89, 211}, {36, 175}, {77, 193}, {91, 215}, {85, 217}, {66, 207}, {64, 206}, {110, 224}, {125, 243}, {94, 206}, {46, 191}, {107, 250}, {127, 238}, {59, 169}, {106, 248}, {42, 185}, {93, 206}, {75, 216}, {32, 180}, {80, 196}, {35, 181}, {72, 222}, {101, 242}, {68, 220}, {83, 203}, {100, 252}, {75, 210}, {82, 200}, {54, 173}, {121, 226}, {43, 183}, {116, 232}, {73, 212}, {87, 202}, {98, 255}, {91, 197}, {12, 173}, {66, 227}, {22, 180}, {68, 230}, {30, 188}, {80, 243}, {96, 195}, {97, 194}, {101, 198}, {111, 204}, {124, 223}, {71, 227}, {26, 191}, {82, 247}, {76, 233}, {67, 230}, {98, 199}, {67, 229}, {31, 184}, {90, 253}, {108, 203}, {66, 234}, {96, 200}, {19, 186}, {81, 248}, {72, 226}, {115, 217}, {79, 228}, {94, 245}, {109, 198}, {116, 223}, {16, 188}, {71, 235}, {30, 178}, {17, 189}, {18, 191}, {23, 185}, {99, 205}, {113, 223}, {117, 219}, {65, 238}, {81, 254}, {114, 221}, {107, 219}, {77, 252}, {65, 242}, {123, 200}, {103, 211}, {120, 204}, {123, 207}, {127, 203}, {86, 224}, {122, 204}, {5, 189}, {12, 180}, {95, 230}, {108, 213}, {118, 207}, {108, 215}, {122, 193}, {127, 196}, {11, 182}, {122, 199}, {20, 171}, {85, 234}, {84, 235}, {74, 245}, {97, 222}, {57, 249}, {3, 194}, {114, 179}, {124, 189}, {35, 225}, {61, 255}, {105, 171}, {39, 228}, {52, 247}, {109, 174}, {114, 177}, {21, 209}, {37, 225}, {34, 231}, {5, 195}, {54, 240}, {40, 238}, {6, 193}, {60, 251}, {48, 247}, {46, 233}, {112, 183}, {125, 186}, {1, 201}, {41, 224}, {45, 231}, {102, 172}, {17, 218}, {57, 242}, {53, 254}, {23, 220}, {5, 201}, {33, 237}, {98, 174}, {36, 233}, {51, 254}, {116, 185}, {21, 219}, {15, 192}, {99, 172}, {1, 209}, {63, 239}, {18, 194}, {11, 219}, {7, 214}, {28, 205}, {9, 216}, {15, 221}, {32, 242}, {5, 214}, {54, 229}, {100, 183}, {121, 170}, {30, 202}, {54, 226}, {8, 221}, {49, 228}, {22, 192}, {53, 227}, {39, 240}, {58, 237}, {14, 214}, {52, 236}, {37, 253}, {27, 195}, {8, 209}, {4, 216}, {59, 231}, {33, 253}, {10, 214}, {103, 187}, {24, 197}, {41, 244}, {21, 202}, {62, 225}, {82, 178}, {92, 188}, {11, 233}, {22, 244}, {42, 201}, {88, 187}, {52, 215}, {16, 244}, {77, 169}, {37, 193}, {9, 236}, {27, 254}, {27, 253}, {34, 197}, {76, 171}, {50, 213}, {52, 220}, {89, 177}, {82, 186}, {92, 181}, {36, 206}, {10, 225}, {89, 181}, {92, 176}, {24, 245}, {89, 180}, {41, 199}, {55, 217}, {4, 244}, {55, 199}, {47, 223}, {45, 221}, {56, 201}, {46, 218}, {94, 170}, {28, 234}, {62, 200}, {48, 198}, {18, 229}, {70, 177}, {64, 183}, {14, 247}, {40, 209}, {27, 226}, {38, 220}, {86, 172}, {71, 189}, {64, 186}, {79, 179}, {83, 175}, {26, 231}, {29, 224}, {26, 228}, {83, 173}, {58, 196}, {49, 207}, {43, 212}, {61, 194}, {60, 195}, {51, 204}, {45, 210}, {1, 256}, {12, 269}, {2, 256}, {70, 324}, {55, 309}, {21, 279}, {11, 265}, {3, 257}, {64, 323}, {18, 278}, {63, 315}, {44, 296}, {1, 260}, {35, 294}, {10, 268}, {76, 330}, {74, 332}, {38, 288}, {15, 265}, {12, 266}, {3, 260}, {39, 288}, {6, 257}, {4, 259}, {6, 270}, {17, 281}, {37, 300}, {3, 265}, {36, 302}, {31, 276}, {41, 293}, {72, 324}, {9, 260}, {68, 329}, {24, 278}, {65, 335}, {2, 269}, {42, 293}, {63, 303}, {19, 258}, {33, 304}, {15, 285}, {88, 330}, {25, 266}, {90, 329}, {61, 302}, {30, 269}, {20, 256}, {29, 265}, {13, 280}, {53, 288}, {24, 270}, {39, 305}, {19, 260}, {7, 287}, {87, 335}, {26, 259}, {58, 291}, {40, 306}, {88, 323}, {28, 256}, {84, 328}, {50, 302}, {50, 303}, {90, 327}, {58, 292}, {78, 336}, {16, 271}, {2, 290}, {60, 284}, {59, 283}, {25, 312}, {25, 315}, {7, 292}, {28, 319}, {6, 290}, {109, 329}, {2, 292}, {62, 280}, {44, 266}, {4, 290}, {23, 304}, {104, 335}, {47, 263}, {62, 279}, {111, 326}, {51, 281}, {22, 317}, {49, 282}, {33, 266}, {107, 320}, {32, 268}, {49, 285}, {56, 277}, {57, 276}, {106, 324}, {13, 290}, {29, 306}, {119, 327}, {14, 319}, {121, 333}, {50, 263}, {126, 331}, {32, 278}, {48, 262}, {47, 280}, {59, 268}, {44, 276}, {57, 257}, {8, 305}, {38, 287}, {105, 336}, {55, 269}, {13, 310}, {43, 278}, {29, 291}, {46, 272}, {16, 303}, {35, 284}, {78, 270}, {90, 282}, {10, 331}, {95, 286}, {105, 296}, {113, 307}, {104, 299}, {110, 301}, {95, 283}, {105, 300}, {88, 286}, {9, 334}, {72, 271}, {124, 315}, {73, 257}, {124, 308}, {125, 309}, {8, 321}, {96, 297}, {119, 318}, {112, 314}, {99, 296}, {118, 317}, {85, 281}, {97, 301}, {99, 303}, {14, 320}, {7, 328}, {13, 322}, {106, 293}, {125, 306}, {17, 321}, {77, 285}, {110, 318}, {19, 322}, {78, 287}, {25, 328}, {118, 295}, {73, 282}, {80, 259}, {117, 294}, {31, 330}, {101, 304}, {115, 294}, {23, 321}, {93, 267}, {84, 258}, {104, 318}, {119, 289}, {69, 274}, {73, 286}, {70, 273}, {97, 313}, {100, 317}, {104, 305}, {113, 296}, {123, 289}, {20, 335}, {106, 311}, {108, 305}, {126, 291}, {31, 321}, {109, 307}, {20, 331}, {75, 276}, {44, 332}, {76, 301}, {38, 324}, {120, 282}, {115, 272}, {123, 287}, {81, 308}, {92, 313}, {102, 259}, {103, 258}, {117, 275}, {91, 316}, {120, 272}, {69, 300}, {67, 297}, {43, 320}, {96, 267}, {34, 334}, {86, 314}, {75, 295}, {42, 326}, {126, 274}, {45, 320}, {101, 264}, {111, 258}, {74, 292}, {34, 333}, {68, 299}, {113, 286}, {74, 314}, {119, 263}, {71, 310}, {127, 270}, {60, 334}, {81, 291}, {117, 262}, {114, 262}, {56, 333}, {102, 275}, {93, 299}, {112, 262}, {93, 298}, {65, 312}, {79, 310}, {98, 280}, {61, 326}, {110, 277}, {116, 271}, {79, 307}, {86, 298}, {67, 317}, {87, 297}, {80, 302}, {70, 312}, {69, 315}, {94, 288}, {121, 263}, {83, 300}, {122, 261}, {145, 273}, {144, 273}, {149, 279}, {149, 272}, {164, 289}, {159, 279}, {128, 268}, {159, 274}, {154, 277}, {167, 311}, {165, 308}, {153, 267}, {164, 311}, {145, 261}, {136, 285}, {161, 308}, {160, 309}, {137, 273}, {157, 261}, {150, 271}, {146, 264}, {130, 281}, {135, 284}, {129, 284}, {143, 274}, {152, 261}, {138, 277}, {166, 313}, {163, 316}, {168, 264}, {136, 297}, {155, 313}, {142, 301}, {157, 318}, {145, 306}, {154, 319}, {149, 307}, {146, 314}, {148, 316}, {143, 294}, {161, 267}, {162, 264}, {148, 319}, {151, 316}, {134, 299}, {132, 298}, {129, 304}, {148, 293}, {150, 295}, {135, 309}, {147, 289}, {152, 298}, {148, 295}, {168, 283}, {160, 275}, {131, 311}, {142, 312}, {161, 283}, {168, 275}, {137, 310}, {131, 323}, {132, 327}, {134, 325}, {136, 333}, {139, 334}, {131, 328}, {139, 326}, {157, 336}, {135, 329}, {141, 323}, {133, 330}, {147, 322}, {150, 327}, {150, 325}, {146, 331}, {153, 322}, {155, 325}, {160, 325}, {160, 332}, {163, 332}, {167, 336} }>;

(II) A more general form is to represent the graph as the orbit of {162, 179} under the group generated by the following permutations:

a: (2, 5, 9)(3, 20, 56)(4, 7, 60)(6, 10, 34)(8, 40, 21)(11, 104, 155)(12, 124, 100)(13, 14, 139)(15, 65, 159)(16, 131, 152)(17, 145, 30)(18, 105, 138)(19, 28, 42)(22, 25, 165)(23, 125, 66)(24, 37, 59)(26, 78, 35)(27, 95, 74)(29, 87, 31)(32, 69, 77)(33, 161, 118)(36, 119, 166)(38, 135, 102)(39, 109, 117)(41, 84, 133)(43, 83, 47)(44, 81, 67)(45, 127, 62)(46, 157, 92)(48, 115, 79)(49, 101, 143)(50, 164, 158)(51, 144, 163)(52, 55, 71)(53, 68, 160)(54, 113, 112)(57, 126, 136)(58, 96, 75)(61, 147, 154)(63, 167, 89)(64, 132, 116)(70, 156, 130)(72, 88, 86)(73, 146, 121)(76, 110, 97)(80, 123, 129)(82, 85, 137)(90, 168, 94)(91, 122, 128)(93, 150, 141)(98, 107, 108)(99, 106, 103)(111, 153, 148)(114, 140, 149)(120, 162, 151)(169, 278, 300)(170, 282, 264)(171, 277, 194)(172, 324, 187)(173, 223, 183)(174, 219, 305)(175, 263, 212)(176, 272, 179)(177, 239, 190)(178, 281, 273)(180, 315, 252)(181, 191, 336)(182, 299, 325)(184, 265, 335)(185, 186, 234)(188, 218, 261)(189, 236, 269)(192, 312, 208)(193, 268, 197)(195, 216, 292)(196, 200, 210)(198, 294, 228)(199, 235, 215)(201, 260, 256)(202, 321, 306)(203, 280, 320)(204, 241, 316)(205, 293, 258)(206, 327, 232)(207, 304, 243)(211, 303, 311)(213, 255, 250)(214, 334, 290)(217, 310, 247)(220, 309, 227)(221, 238, 279)(222, 330, 224)(225, 231, 270)(226, 286, 314)(229, 296, 248)(230, 332, 254)(233, 318, 313)(237, 267, 295)(240, 307, 262)(242, 274, 285)(244, 328, 251)(245, 253, 283)(246, 302, 289)(257, 331, 333)(259, 287, 284)(266, 308, 317)(271, 323, 298)(275, 288, 329)(276, 291, 297)(319, 326, 322)
b: (1, 2)(3, 4)(5, 7)(6, 9)(8, 12)(10, 14)(11, 16)(13, 19)(15, 22)(17, 25)(18, 26)(20, 28)(21, 30)(23, 33)(24, 34)(27, 38)(29, 41)(31, 44)(32, 45)(35, 48)(36, 50)(37, 52)(39, 54)(40, 55)(42, 58)(43, 59)(46, 63)(47, 64)(49, 67)(51, 70)(53, 72)(56, 74)(57, 75)(60, 78)(61, 80)(62, 82)(65, 85)(66, 87)(68, 90)(69, 91)(71, 84)(73, 95)(76, 99)(77, 100)(79, 103)(81, 106)(83, 108)(86, 110)(88, 113)(89, 114)(92, 117)(93, 119)(94, 121)(96, 123)(97, 102)(98, 125)(101, 129)(104, 132)(105, 133)(107, 128)(109, 135)(111, 137)(112, 138)(115, 140)(116, 141)(118, 136)(120, 144)(122, 145)(124, 131)(126, 148)(127, 139)(130, 142)(134, 150)(143, 151)(146, 154)(147, 153)(149, 156)(152, 157)(155, 160)(158, 162)(159, 163)(161, 164)(165, 167)(166, 168)(169, 183)(171, 205)(172, 301)(173, 305)(174, 309)(175, 213)(176, 294)(178, 279)(179, 211)(180, 221)(181, 262)(182, 271)(184, 332)(185, 237)(186, 280)(187, 307)(188, 219)(189, 328)(190, 208)(193, 236)(194, 259)(195, 287)(196, 326)(198, 284)(199, 306)(201, 292)(204, 273)(206, 263)(207, 297)(209, 269)(210, 242)(212, 283)(215, 300)(216, 257)(217, 238)(218, 315)(220, 253)(222, 227)(223, 323)(225, 247)(226, 288)(228, 229)(230, 282)(231, 278)(233, 303)(234, 335)(239, 272)(241, 250)(243, 255)(244, 265)(245, 333)(246, 264)(249, 295)(251, 336)(254, 324)(258, 310)(260, 290)(266, 321)(267, 289)(268, 320)(270, 334)(274, 316)(275, 313)(277, 314)(281, 312)(285, 317)(291, 293)(296, 330)(298, 318)(299, 327)(308, 311)(319, 331)
c: (3, 9)(4, 6)(5, 21)(7, 30)(8, 56)(10, 66)(11, 60)(12, 74)(14, 87)(15, 34)(16, 78)(17, 159)(18, 100)(20, 28)(22, 24)(23, 155)(25, 163)(26, 77)(27, 117)(29, 139)(32, 118)(33, 160)(35, 53)(36, 152)(37, 102)(38, 92)(39, 138)(40, 42)(41, 127)(43, 67)(45, 136)(46, 165)(47, 79)(48, 72)(49, 59)(50, 157)(51, 143)(52, 97)(54, 112)(55, 58)(57, 75)(61, 145)(62, 71)(63, 167)(64, 103)(65, 148)(68, 166)(69, 130)(70, 151)(73, 95)(76, 133)(80, 122)(81, 115)(82, 84)(83, 86)(85, 126)(89, 94)(90, 168)(91, 142)(93, 158)(96, 107)(98, 137)(99, 105)(101, 150)(104, 154)(106, 140)(108, 110)(109, 116)(111, 125)(114, 121)(119, 162)(120, 161)(123, 128)(124, 149)(129, 134)(131, 156)(132, 146)(135, 141)(144, 164)(147, 153)(169, 228)(170, 177)(171, 205)(172, 300)(173, 314)(174, 185)(175, 298)(176, 324)(178, 328)(179, 263)(180, 245)(181, 288)(182, 284)(183, 229)(184, 321)(186, 258)(187, 323)(188, 287)(189, 279)(190, 315)(191, 252)(192, 197)(193, 259)(194, 236)(195, 219)(196, 199)(198, 271)(200, 235)(201, 209)(202, 214)(203, 224)(204, 243)(206, 211)(207, 268)(208, 218)(210, 249)(212, 230)(213, 318)(215, 301)(216, 257)(217, 291)(220, 313)(221, 333)(222, 247)(223, 307)(225, 227)(226, 262)(231, 285)(232, 329)(233, 251)(234, 331)(237, 309)(238, 293)(239, 311)(240, 248)(241, 289)(242, 295)(244, 270)(246, 299)(250, 267)(253, 275)(254, 294)(255, 273)(261, 302)(264, 327)(265, 334)(266, 332)(269, 292)(272, 308)(274, 281)(277, 305)(278, 317)(280, 310)(282, 283)(297, 320)(303, 336)(304, 325)(306, 326)(312, 316)(319, 335)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 336, 161 ]
336
-1 209 201 256 260
-2 256 290 269 292
-3 265 257 194 260
-4 244 290 259 216
-5 189 201 214 195
-6 257 290 193 270
-7 287 214 292 328
-8 209 221 321 305
-9 334 236 216 260
-10 331 268 214 225
-11 265 233 182 219
-12 266 180 269 173
-13 310 322 290 280
-14 319 320 214 247
-15 221 265 192 285
-16 188 244 303 271
-17 189 321 281 218
-18 278 191 194 229
-19 322 258 260 186
-20 331 256 335 171
-21 209 202 279 219
-22 244 180 192 317
-23 220 321 304 185
-24 245 278 270 197
-25 266 312 315 328
-26 231 191 259 228
-27 253 254 226 195
-28 319 234 256 205
-29 265 224 291 306
-30 188 178 202 269
-31 330 276 321 184
-32 242 278 180 268
-33 253 266 237 304
-34 231 333 334 197
-35 181 225 294 284
-36 233 302 206 175
-37 253 300 225 193
-38 220 287 288 324
-39 288 228 305 240
-40 209 238 174 306
-41 199 244 224 293
-42 201 293 326 185
-43 320 212 278 183
-44 276 266 332 296
-45 231 210 221 320
-46 233 191 272 218
-47 223 169 280 263
-48 176 198 247 262
-49 282 228 207 285
-50 213 302 303 263
-51 177 254 204 281
-52 220 236 247 215
-53 254 288 182 227
-54 226 173 229 240
-55 199 309 269 217
-56 277 201 333 184
-57 242 276 257 249
-58 291 237 292 196
-59 231 169 268 283
-60 334 195 251 284
-61 255 302 194 326
-62 200 279 225 280
-63 191 303 315 239
-64 323 183 206 186
-65 242 312 335 238
-66 234 202 227 207
-67 297 229 317 230
-68 220 299 230 329
-69 300 315 197 274
-70 177 312 324 273
-71 189 310 235 227
-72 222 324 226 271
-73 286 212 257 282
-74 332 245 292 314
-75 210 276 216 295
-76 330 233 301 171
-77 169 193 252 285
-78 198 287 270 336
-79 310 179 228 307
-80 243 302 259 196
-81 308 254 291 248
-82 178 200 247 186
-83 300 203 173 175
-84 222 235 258 328
-85 210 234 281 217
-86 298 224 314 172
-87 297 222 202 335
-88 187 286 330 323
-89 177 211 180 181
-90 253 282 327 329
-91 215 316 218 197
-92 176 188 181 313
-93 298 299 267 206
-94 288 245 170 206
-95 286 216 283 230
-96 297 200 267 195
-97 222 301 313 194
-98 199 255 280 174
-99 303 172 205 296
-100 236 183 317 252
-101 198 242 264 304
-102 275 259 172 227
-103 187 211 258 229
-104 299 335 305 318
-105 300 171 336 296
-106 311 324 248 293
-107 320 235 250 219
-108 213 203 215 305
-109 198 174 307 329
-110 277 224 301 318
-111 258 204 237 326
-112 248 314 183 262
-113 286 223 296 307
-114 177 221 179 262
-115 217 272 294 240
-116 232 223 271 185
-117 275 294 262 219
-118 245 207 295 317
-119 289 327 263 318
-120 204 282 250 272
-121 333 170 226 263
-122 199 193 204 261
-123 287 200 289 207
-124 308 189 223 315
-125 243 309 306 186
-126 331 291 249 274
-127 203 270 238 196
-128 188 235 268 241
-129 210 246 304 284
-130 190 192 281 172
-131 311 323 218 328
-132 298 234 173 327
-133 330 215 205 251
-134 299 182 325 249
-135 187 309 284 329
-136 297 333 249 285
-137 310 185 196 273
-138 277 169 181 248
-139 334 203 326 217
-140 176 238 239 240
-141 232 323 182 237
-142 301 312 192 208
-143 243 170 294 274
-144 239 273 230 241
-145 236 261 273 306
-146 264 331 314 175
-147 289 322 171 250
-148 319 293 316 295
-149 190 279 272 307
-150 325 271 327 295
-151 176 255 170 316
-152 298 211 261 251
-153 267 322 205 241
-154 319 277 213 246
-155 313 325 184 174
-156 187 178 239 208
-157 179 336 261 318
-158 211 246 250 175
-159 279 184 208 274
-160 275 309 332 325
-161 308 243 267 283
-162 264 179 213 241
-163 178 332 190 316
-164 255 212 289 311
-165 308 251 208 252
-166 232 212 246 313
-167 190 311 336 252
-168 264 275 232 283
-169 77 47 59 138
-170 121 143 94 151
-171 147 105 20 76
-172 99 102 86 130
-173 132 12 83 54
-174 155 40 98 109
-175 36 146 158 83
-176 48 92 140 151
-177 89 70 114 51
-178 156 82 30 163
-179 79 157 114 162
-180 22 12 89 32
-181 89 35 92 138
-182 11 134 53 141
-183 100 112 64 43
-184 56 155 159 31
-185 23 137 116 42
-186 125 82 19 64
-187 88 156 135 103
-188 92 16 128 30
-189 124 5 71 17
-190 167 149 130 163
-191 46 26 18 63
-192 22 15 130 142
-193 77 122 37 6
-194 3 61 18 97
-195 5 27 60 96
-196 58 80 137 127
-197 34 24 69 91
-198 78 101 48 109
-199 55 122 41 98
-200 123 82 62 96
-201 1 56 5 42
-202 66 30 21 87
-203 83 127 139 108
-204 111 122 51 120
-205 99 133 28 153
-206 36 93 94 64
-207 66 123 49 118
-208 165 156 159 142
-209 1 40 8 21
-210 45 85 129 75
-211 89 103 158 152
-212 166 73 43 164
-213 154 50 162 108
-214 14 5 7 10
-215 133 91 52 108
-216 4 95 9 75
-217 55 115 139 85
-218 46 91 17 131
-219 11 117 107 21
-220 23 68 38 52
-221 45 15 114 8
-222 72 84 97 87
-223 47 113 124 116
-224 110 29 41 86
-225 35 37 62 10
-226 121 27 72 54
-227 66 102 71 53
-228 79 26 49 39
-229 67 103 18 54
-230 67 144 68 95
-231 34 45 26 59
-232 166 168 116 141
-233 11 46 36 76
-234 66 132 28 85
-235 71 84 128 107
-236 100 145 52 9
-237 33 111 58 141
-238 127 40 140 65
-239 144 156 63 140
-240 115 39 140 54
-241 144 128 162 153
-242 57 101 32 65
-243 143 80 125 161
-244 22 4 16 41
-245 24 94 74 118
-246 154 166 158 129
-247 14 48 82 52
-248 112 81 138 106
-249 57 134 136 126
-250 147 158 107 120
-251 165 133 60 152
-252 77 165 100 167
-253 33 90 37 27
-254 81 27 51 53
-255 61 151 98 164
-256 1 2 28 20
-257 57 3 6 73
-258 111 103 84 19
-259 80 102 4 26
-260 1 3 19 9
-261 122 145 157 152
-262 112 48 114 117
-263 121 47 50 119
-264 101 146 168 162
-265 11 3 15 29
-266 33 44 12 25
-267 93 161 96 153
-268 59 128 10 32
-269 55 12 2 30
-270 78 24 6 127
-271 16 72 116 150
-272 46 115 149 120
-273 144 145 70 137
-274 143 69 126 159
-275 102 168 160 117
-276 44 57 31 75
-277 110 154 56 138
-278 24 18 32 43
-279 159 149 62 21
-280 13 47 62 98
-281 17 51 85 130
-282 90 49 73 120
-283 168 59 95 161
-284 35 135 60 129
-285 77 15 136 49
-286 88 113 73 95
-287 78 123 38 7
-288 38 39 94 53
-289 123 147 119 164
-290 2 13 4 6
-291 58 81 126 29
-292 2 58 7 74
-293 148 106 41 42
-294 143 35 115 117
-295 148 150 118 75
-296 44 99 113 105
-297 67 136 96 87
-298 132 93 86 152
-299 68 134 93 104
-300 69 37 83 105
-301 110 97 76 142
-302 36 80 50 61
-303 99 16 50 63
-304 33 23 101 129
-305 104 39 8 108
-306 145 125 29 40
-307 79 113 149 109
-308 165 124 81 161
-309 55 135 125 160
-310 13 79 71 137
-311 167 106 131 164
-312 25 70 65 142
-313 155 166 92 97
-314 112 146 74 86
-315 25 69 124 63
-316 91 148 151 163
-317 22 67 100 118
-318 110 157 104 119
-319 154 14 148 28
-320 45 14 107 43
-321 23 17 8 31
-322 13 147 19 153
-323 88 64 141 131
-324 70 38 72 106
-325 155 134 160 150
-326 111 61 139 42
-327 132 90 150 119
-328 25 7 84 131
-329 68 90 135 109
-330 88 133 31 76
-331 146 126 20 10
-332 44 160 74 163
-333 121 34 56 136
-334 34 60 139 9
-335 104 20 65 87
-336 78 167 157 105
0

**************