C4graphGraph forms for C4 [ 345, 3 ] = C_345(1,139)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 345, 3 ] = C_345(1,139).

(I) Following is a form readable by MAGMA:

g:=Graph<345|{ {2, 3}, {344, 345}, {342, 343}, {340, 341}, {338, 339}, {336, 337}, {334, 335}, {332, 333}, {330, 331}, {328, 329}, {326, 327}, {324, 325}, {322, 323}, {320, 321}, {318, 319}, {316, 317}, {314, 315}, {312, 313}, {310, 311}, {308, 309}, {306, 307}, {304, 305}, {302, 303}, {300, 301}, {298, 299}, {296, 297}, {294, 295}, {292, 293}, {290, 291}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280, 281}, {278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200, 201}, {202, 203}, {204, 205}, {206, 207}, {208, 209}, {210, 211}, {212, 213}, {214, 215}, {216, 217}, {218, 219}, {220, 221}, {222, 223}, {224, 225}, {226, 227}, {228, 229}, {230, 231}, {232, 233}, {234, 235}, {236, 237}, {238, 239}, {240, 241}, {242, 243}, {244, 245}, {246, 247}, {248, 249}, {250, 251}, {252, 253}, {254, 255}, {256, 257}, {258, 259}, {260, 261}, {262, 263}, {264, 265}, {266, 267}, {1, 2}, {341, 342}, {337, 338}, {333, 334}, {329, 330}, {325, 326}, {321, 322}, {317, 318}, {313, 314}, {309, 310}, {305, 306}, {301, 302}, {297, 298}, {293, 294}, {289, 290}, {285, 286}, {281, 282}, {277, 278}, {273, 274}, {269, 270}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201, 202}, {205, 206}, {209, 210}, {213, 214}, {217, 218}, {221, 222}, {225, 226}, {229, 230}, {233, 234}, {237, 238}, {241, 242}, {245, 246}, {249, 250}, {253, 254}, {257, 258}, {261, 262}, {265, 266}, {3, 4}, {339, 340}, {331, 332}, {323, 324}, {315, 316}, {307, 308}, {299, 300}, {291, 292}, {283, 284}, {275, 276}, {267, 268}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {67, 68}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {203, 204}, {211, 212}, {219, 220}, {227, 228}, {235, 236}, {243, 244}, {251, 252}, {259, 260}, {7, 8}, {343, 344}, {327, 328}, {311, 312}, {295, 296}, {279, 280}, {103, 104}, {87, 88}, {23, 24}, {39, 40}, {55, 56}, {71, 72}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {215, 216}, {231, 232}, {247, 248}, {263, 264}, {15, 16}, {335, 336}, {303, 304}, {271, 272}, {111, 112}, {79, 80}, {47, 48}, {143, 144}, {175, 176}, {207, 208}, {239, 240}, {31, 32}, {287, 288}, {95, 96}, {159, 160}, {223, 224}, {63, 64}, {319, 320}, {191, 192}, {4, 143}, {116, 255}, {112, 251}, {100, 239}, {96, 235}, {84, 223}, {80, 219}, {16, 155}, {20, 159}, {32, 171}, {36, 175}, {48, 187}, {52, 191}, {64, 203}, {68, 207}, {1, 140}, {115, 254}, {113, 252}, {99, 238}, {97, 236}, {83, 222}, {81, 220}, {3, 142}, {17, 156}, {19, 158}, {33, 172}, {35, 174}, {49, 188}, {51, 190}, {65, 204}, {67, 206}, {2, 141}, {114, 253}, {98, 237}, {82, 221}, {18, 157}, {34, 173}, {50, 189}, {66, 205}, {5, 144}, {111, 250}, {109, 248}, {103, 242}, {101, 240}, {79, 218}, {77, 216}, {7, 146}, {13, 152}, {15, 154}, {37, 176}, {39, 178}, {45, 184}, {47, 186}, {69, 208}, {71, 210}, {6, 145}, {110, 249}, {102, 241}, {78, 217}, {14, 153}, {38, 177}, {46, 185}, {70, 209}, {8, 147}, {108, 247}, {104, 243}, {76, 215}, {72, 211}, {12, 151}, {40, 179}, {44, 183}, {9, 148}, {107, 246}, {105, 244}, {75, 214}, {73, 212}, {11, 150}, {41, 180}, {43, 182}, {10, 149}, {106, 245}, {74, 213}, {42, 181}, {21, 160}, {95, 234}, {93, 232}, {87, 226}, {85, 224}, {23, 162}, {29, 168}, {31, 170}, {22, 161}, {94, 233}, {86, 225}, {30, 169}, {24, 163}, {92, 231}, {88, 227}, {28, 167}, {25, 164}, {91, 230}, {89, 228}, {27, 166}, {26, 165}, {90, 229}, {1, 207}, {16, 222}, {17, 223}, {32, 238}, {33, 239}, {48, 254}, {49, 255}, {2, 208}, {3, 209}, {6, 212}, {7, 213}, {10, 216}, {11, 217}, {14, 220}, {15, 221}, {34, 240}, {35, 241}, {38, 244}, {39, 245}, {42, 248}, {43, 249}, {46, 252}, {47, 253}, {4, 210}, {5, 211}, {12, 218}, {13, 219}, {36, 242}, {37, 243}, {44, 250}, {45, 251}, {8, 214}, {9, 215}, {40, 246}, {41, 247}, {18, 224}, {19, 225}, {22, 228}, {23, 229}, {26, 232}, {27, 233}, {30, 236}, {31, 237}, {53, 192}, {55, 194}, {61, 200}, {63, 202}, {20, 226}, {21, 227}, {28, 234}, {29, 235}, {54, 193}, {62, 201}, {56, 195}, {60, 199}, {57, 196}, {59, 198}, {24, 230}, {25, 231}, {58, 197}, {127, 128}, {50, 256}, {115, 321}, {114, 320}, {51, 257}, {54, 260}, {55, 261}, {58, 264}, {59, 265}, {62, 268}, {63, 269}, {118, 324}, {119, 325}, {122, 328}, {123, 329}, {126, 332}, {127, 333}, {52, 258}, {117, 323}, {116, 322}, {53, 259}, {60, 266}, {61, 267}, {124, 330}, {125, 331}, {56, 262}, {57, 263}, {120, 326}, {121, 327}, {64, 270}, {113, 319}, {112, 318}, {97, 303}, {96, 302}, {81, 287}, {80, 286}, {65, 271}, {66, 272}, {111, 317}, {110, 316}, {107, 313}, {106, 312}, {103, 309}, {102, 308}, {99, 305}, {98, 304}, {79, 285}, {78, 284}, {75, 281}, {74, 280}, {67, 273}, {70, 276}, {71, 277}, {68, 274}, {109, 315}, {108, 314}, {101, 307}, {100, 306}, {77, 283}, {76, 282}, {69, 275}, {1, 345}, {72, 278}, {105, 311}, {104, 310}, {73, 279}, {82, 288}, {95, 301}, {94, 300}, {91, 297}, {90, 296}, {87, 293}, {86, 292}, {83, 289}, {117, 256}, {119, 258}, {125, 264}, {127, 266}, {84, 290}, {93, 299}, {92, 298}, {85, 291}, {118, 257}, {126, 265}, {120, 259}, {124, 263}, {121, 260}, {123, 262}, {88, 294}, {89, 295}, {122, 261}, {128, 267}, {132, 271}, {144, 283}, {148, 287}, {160, 299}, {164, 303}, {176, 315}, {180, 319}, {192, 331}, {196, 335}, {129, 268}, {131, 270}, {145, 284}, {147, 286}, {161, 300}, {163, 302}, {177, 316}, {179, 318}, {193, 332}, {195, 334}, {130, 269}, {146, 285}, {162, 301}, {178, 317}, {194, 333}, {133, 272}, {135, 274}, {141, 280}, {143, 282}, {165, 304}, {167, 306}, {173, 312}, {175, 314}, {197, 336}, {199, 338}, {205, 344}, {134, 273}, {142, 281}, {166, 305}, {174, 313}, {198, 337}, {206, 345}, {136, 275}, {140, 279}, {168, 307}, {172, 311}, {200, 339}, {204, 343}, {137, 276}, {139, 278}, {169, 308}, {171, 310}, {201, 340}, {203, 342}, {138, 277}, {170, 309}, {202, 341}, {149, 288}, {151, 290}, {157, 296}, {159, 298}, {150, 289}, {158, 297}, {152, 291}, {156, 295}, {153, 292}, {155, 294}, {154, 293}, {128, 334}, {129, 335}, {130, 336}, {131, 337}, {134, 340}, {135, 341}, {138, 344}, {139, 345}, {132, 338}, {133, 339}, {136, 342}, {137, 343}, {181, 320}, {183, 322}, {189, 328}, {191, 330}, {182, 321}, {190, 329}, {184, 323}, {188, 327}, {185, 324}, {187, 326}, {186, 325}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345)
b: (2, 140)(3, 279)(4, 73)(5, 212)(7, 145)(8, 284)(9, 78)(10, 217)(12, 150)(13, 289)(14, 83)(15, 222)(17, 155)(18, 294)(19, 88)(20, 227)(22, 160)(23, 299)(24, 93)(25, 232)(27, 165)(28, 304)(29, 98)(30, 237)(32, 170)(33, 309)(34, 103)(35, 242)(37, 175)(38, 314)(39, 108)(40, 247)(42, 180)(43, 319)(44, 113)(45, 252)(47, 185)(48, 324)(49, 118)(50, 257)(52, 190)(53, 329)(54, 123)(55, 262)(57, 195)(58, 334)(59, 128)(60, 267)(62, 200)(63, 339)(64, 133)(65, 272)(67, 205)(68, 344)(69, 138)(70, 277)(72, 210)(74, 143)(75, 282)(77, 215)(79, 148)(80, 287)(82, 220)(84, 153)(85, 292)(87, 225)(89, 158)(90, 297)(92, 230)(94, 163)(95, 302)(97, 235)(99, 168)(100, 307)(102, 240)(104, 173)(105, 312)(107, 245)(109, 178)(110, 317)(112, 250)(114, 183)(115, 322)(117, 255)(119, 188)(120, 327)(122, 260)(124, 193)(125, 332)(127, 265)(129, 198)(130, 337)(132, 270)(134, 203)(135, 342)(137, 275)(139, 208)(142, 280)(144, 213)(147, 285)(149, 218)(152, 290)(154, 223)(157, 295)(159, 228)(162, 300)(164, 233)(167, 305)(169, 238)(172, 310)(174, 243)(177, 315)(179, 248)(182, 320)(184, 253)(187, 325)(189, 258)(192, 330)(194, 263)(197, 335)(199, 268)(202, 340)(204, 273)(207, 345)(209, 278)(214, 283)(219, 288)(224, 293)(229, 298)(234, 303)(239, 308)(244, 313)(249, 318)(254, 323)(259, 328)(264, 333)(269, 338)(274, 343)
c: (2, 207)(3, 68)(4, 274)(5, 135)(6, 341)(7, 202)(8, 63)(9, 269)(10, 130)(11, 336)(12, 197)(13, 58)(14, 264)(15, 125)(16, 331)(17, 192)(18, 53)(19, 259)(20, 120)(21, 326)(22, 187)(23, 48)(24, 254)(25, 115)(26, 321)(27, 182)(28, 43)(29, 249)(30, 110)(31, 316)(32, 177)(33, 38)(34, 244)(35, 105)(36, 311)(37, 172)(39, 239)(40, 100)(41, 306)(42, 167)(44, 234)(45, 95)(46, 301)(47, 162)(49, 229)(50, 90)(51, 296)(52, 157)(54, 224)(55, 85)(56, 291)(57, 152)(59, 219)(60, 80)(61, 286)(62, 147)(64, 214)(65, 75)(66, 281)(67, 142)(69, 209)(71, 276)(72, 137)(73, 343)(74, 204)(76, 271)(77, 132)(78, 338)(79, 199)(81, 266)(82, 127)(83, 333)(84, 194)(86, 261)(87, 122)(88, 328)(89, 189)(91, 256)(92, 117)(93, 323)(94, 184)(96, 251)(97, 112)(98, 318)(99, 179)(101, 246)(102, 107)(103, 313)(104, 174)(106, 241)(108, 308)(109, 169)(111, 236)(113, 303)(114, 164)(116, 231)(118, 298)(119, 159)(121, 226)(123, 293)(124, 154)(126, 221)(128, 288)(129, 149)(131, 216)(133, 283)(134, 144)(136, 211)(138, 278)(140, 345)(141, 206)(143, 273)(145, 340)(146, 201)(148, 268)(150, 335)(151, 196)(153, 263)(155, 330)(156, 191)(158, 258)(160, 325)(161, 186)(163, 253)(165, 320)(166, 181)(168, 248)(170, 315)(171, 176)(173, 243)(175, 310)(178, 238)(180, 305)(183, 233)(185, 300)(188, 228)(190, 295)(193, 223)(195, 290)(198, 218)(200, 285)(203, 213)(205, 280)(210, 275)(212, 342)(215, 270)(217, 337)(220, 265)(222, 332)(225, 260)(227, 327)(230, 255)(232, 322)(235, 250)(237, 317)(240, 245)(242, 312)(247, 307)(252, 302)(257, 297)(262, 292)(267, 287)(272, 282)(279, 344)(284, 339)(289, 334)(294, 329)(299, 324)(304, 319)(309, 314)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 345, 3 ]
345
-1 2 345 140 207
-2 1 3 141 208
-3 209 2 4 142
-4 143 210 3 5
-5 144 211 4 6
-6 145 212 5 7
-7 146 213 6 8
-8 147 214 7 9
-9 148 215 8 10
-10 11 149 216 9
-11 12 150 217 10
-12 11 13 151 218
-13 12 14 152 219
-14 220 13 15 153
-15 154 221 14 16
-16 155 222 15 17
-17 156 223 16 18
-18 157 224 17 19
-19 158 225 18 20
-20 159 226 19 21
-21 22 160 227 20
-22 23 161 228 21
-23 22 24 162 229
-24 23 25 163 230
-25 231 24 26 164
-26 165 232 25 27
-27 166 233 26 28
-28 167 234 27 29
-29 168 235 28 30
-30 169 236 29 31
-31 170 237 30 32
-32 33 171 238 31
-33 34 172 239 32
-34 33 35 173 240
-35 34 36 174 241
-36 242 35 37 175
-37 176 243 36 38
-38 177 244 37 39
-39 178 245 38 40
-40 179 246 39 41
-41 180 247 40 42
-42 181 248 41 43
-43 44 182 249 42
-44 45 183 250 43
-45 44 46 184 251
-46 45 47 185 252
-47 253 46 48 186
-48 187 254 47 49
-49 188 255 48 50
-50 189 256 49 51
-51 190 257 50 52
-52 191 258 51 53
-53 192 259 52 54
-54 55 193 260 53
-55 56 194 261 54
-56 55 57 195 262
-57 56 58 196 263
-58 264 57 59 197
-59 198 265 58 60
-60 199 266 59 61
-61 200 267 60 62
-62 201 268 61 63
-63 202 269 62 64
-64 203 270 63 65
-65 66 204 271 64
-66 67 205 272 65
-67 66 68 206 273
-68 67 69 207 274
-69 275 68 70 208
-70 209 276 69 71
-71 210 277 70 72
-72 211 278 71 73
-73 212 279 72 74
-74 213 280 73 75
-75 214 281 74 76
-76 77 215 282 75
-77 78 216 283 76
-78 77 79 217 284
-79 78 80 218 285
-80 286 79 81 219
-81 220 287 80 82
-82 221 288 81 83
-83 222 289 82 84
-84 223 290 83 85
-85 224 291 84 86
-86 225 292 85 87
-87 88 226 293 86
-88 89 227 294 87
-89 88 90 228 295
-90 89 91 229 296
-91 297 90 92 230
-92 231 298 91 93
-93 232 299 92 94
-94 233 300 93 95
-95 234 301 94 96
-96 235 302 95 97
-97 236 303 96 98
-98 99 237 304 97
-99 100 238 305 98
-100 99 101 239 306
-101 100 102 240 307
-102 308 101 103 241
-103 242 309 102 104
-104 243 310 103 105
-105 244 311 104 106
-106 245 312 105 107
-107 246 313 106 108
-108 247 314 107 109
-109 110 248 315 108
-110 111 249 316 109
-111 110 112 250 317
-112 111 113 251 318
-113 319 112 114 252
-114 253 320 113 115
-115 254 321 114 116
-116 255 322 115 117
-117 256 323 116 118
-118 257 324 117 119
-119 258 325 118 120
-120 121 259 326 119
-121 122 260 327 120
-122 121 123 261 328
-123 122 124 262 329
-124 330 123 125 263
-125 264 331 124 126
-126 265 332 125 127
-127 266 333 126 128
-128 267 334 127 129
-129 268 335 128 130
-130 269 336 129 131
-131 132 270 337 130
-132 133 271 338 131
-133 132 134 272 339
-134 133 135 273 340
-135 341 134 136 274
-136 275 342 135 137
-137 276 343 136 138
-138 277 344 137 139
-139 278 345 138 140
-140 1 279 139 141
-141 2 280 140 142
-142 143 3 281 141
-143 144 4 282 142
-144 143 145 5 283
-145 144 146 6 284
-146 145 147 7 285
-147 286 146 148 8
-148 287 147 149 9
-149 288 148 150 10
-150 11 289 149 151
-151 12 290 150 152
-152 13 291 151 153
-153 154 14 292 152
-154 155 15 293 153
-155 154 156 16 294
-156 155 157 17 295
-157 156 158 18 296
-158 297 157 159 19
-159 298 158 160 20
-160 299 159 161 21
-161 22 300 160 162
-162 23 301 161 163
-163 24 302 162 164
-164 165 25 303 163
-165 166 26 304 164
-166 165 167 27 305
-167 166 168 28 306
-168 167 169 29 307
-169 308 168 170 30
-170 309 169 171 31
-171 310 170 172 32
-172 33 311 171 173
-173 34 312 172 174
-174 35 313 173 175
-175 176 36 314 174
-176 177 37 315 175
-177 176 178 38 316
-178 177 179 39 317
-179 178 180 40 318
-180 319 179 181 41
-181 320 180 182 42
-182 321 181 183 43
-183 44 322 182 184
-184 45 323 183 185
-185 46 324 184 186
-186 187 47 325 185
-187 188 48 326 186
-188 187 189 49 327
-189 188 190 50 328
-190 189 191 51 329
-191 330 190 192 52
-192 331 191 193 53
-193 332 192 194 54
-194 55 333 193 195
-195 56 334 194 196
-196 57 335 195 197
-197 198 58 336 196
-198 199 59 337 197
-199 198 200 60 338
-200 199 201 61 339
-201 200 202 62 340
-202 341 201 203 63
-203 342 202 204 64
-204 343 203 205 65
-205 66 344 204 206
-206 67 345 205 207
-207 1 68 206 208
-208 209 2 69 207
-209 210 3 70 208
-210 209 211 4 71
-211 210 212 5 72
-212 211 213 6 73
-213 212 214 7 74
-214 213 215 8 75
-215 214 216 9 76
-216 77 215 217 10
-217 11 78 216 218
-218 12 79 217 219
-219 220 13 80 218
-220 221 14 81 219
-221 220 222 15 82
-222 221 223 16 83
-223 222 224 17 84
-224 223 225 18 85
-225 224 226 19 86
-226 225 227 20 87
-227 88 226 228 21
-228 22 89 227 229
-229 23 90 228 230
-230 231 24 91 229
-231 232 25 92 230
-232 231 233 26 93
-233 232 234 27 94
-234 233 235 28 95
-235 234 236 29 96
-236 235 237 30 97
-237 236 238 31 98
-238 99 237 239 32
-239 33 100 238 240
-240 34 101 239 241
-241 242 35 102 240
-242 243 36 103 241
-243 242 244 37 104
-244 243 245 38 105
-245 244 246 39 106
-246 245 247 40 107
-247 246 248 41 108
-248 247 249 42 109
-249 110 248 250 43
-250 44 111 249 251
-251 45 112 250 252
-252 253 46 113 251
-253 254 47 114 252
-254 253 255 48 115
-255 254 256 49 116
-256 255 257 50 117
-257 256 258 51 118
-258 257 259 52 119
-259 258 260 53 120
-260 121 259 261 54
-261 55 122 260 262
-262 56 123 261 263
-263 264 57 124 262
-264 265 58 125 263
-265 264 266 59 126
-266 265 267 60 127
-267 266 268 61 128
-268 267 269 62 129
-269 268 270 63 130
-270 269 271 64 131
-271 132 270 272 65
-272 66 133 271 273
-273 67 134 272 274
-274 275 68 135 273
-275 276 69 136 274
-276 275 277 70 137
-277 276 278 71 138
-278 277 279 72 139
-279 278 280 73 140
-280 279 281 74 141
-281 280 282 75 142
-282 143 281 283 76
-283 77 144 282 284
-284 78 145 283 285
-285 286 79 146 284
-286 287 80 147 285
-287 286 288 81 148
-288 287 289 82 149
-289 288 290 83 150
-290 289 291 84 151
-291 290 292 85 152
-292 291 293 86 153
-293 154 292 294 87
-294 88 155 293 295
-295 89 156 294 296
-296 297 90 157 295
-297 298 91 158 296
-298 297 299 92 159
-299 298 300 93 160
-300 299 301 94 161
-301 300 302 95 162
-302 301 303 96 163
-303 302 304 97 164
-304 165 303 305 98
-305 99 166 304 306
-306 100 167 305 307
-307 308 101 168 306
-308 309 102 169 307
-309 308 310 103 170
-310 309 311 104 171
-311 310 312 105 172
-312 311 313 106 173
-313 312 314 107 174
-314 313 315 108 175
-315 176 314 316 109
-316 110 177 315 317
-317 111 178 316 318
-318 319 112 179 317
-319 320 113 180 318
-320 319 321 114 181
-321 320 322 115 182
-322 321 323 116 183
-323 322 324 117 184
-324 323 325 118 185
-325 324 326 119 186
-326 187 325 327 120
-327 121 188 326 328
-328 122 189 327 329
-329 330 123 190 328
-330 331 124 191 329
-331 330 332 125 192
-332 331 333 126 193
-333 332 334 127 194
-334 333 335 128 195
-335 334 336 129 196
-336 335 337 130 197
-337 198 336 338 131
-338 132 199 337 339
-339 133 200 338 340
-340 341 134 201 339
-341 342 135 202 340
-342 341 343 136 203
-343 342 344 137 204
-344 343 345 138 205
-345 1 344 139 206
0

**************