C4graphGraph forms for C4 [ 348, 6 ] = PS(4,87;17)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 348, 6 ] = PS(4,87;17).

(I) Following is a form readable by MAGMA:

g:=Graph<348|{ {87, 88}, {160, 177}, {162, 179}, {164, 181}, {166, 183}, {168, 185}, {170, 187}, {172, 189}, {174, 191}, {161, 178}, {165, 182}, {169, 186}, {173, 190}, {163, 180}, {171, 188}, {256, 284}, {259, 287}, {258, 286}, {257, 285}, {167, 184}, {260, 288}, {261, 289}, {159, 176}, {158, 175}, {256, 315}, {260, 319}, {257, 316}, {259, 318}, {258, 317}, {261, 320}, {128, 198}, {129, 199}, {136, 206}, {137, 207}, {144, 214}, {145, 215}, {152, 222}, {153, 223}, {160, 230}, {161, 231}, {168, 238}, {169, 239}, {130, 200}, {131, 201}, {134, 204}, {135, 205}, {146, 216}, {147, 217}, {150, 220}, {151, 221}, {162, 232}, {163, 233}, {166, 236}, {167, 237}, {132, 202}, {133, 203}, {148, 218}, {149, 219}, {164, 234}, {165, 235}, {8, 94}, {9, 95}, {32, 118}, {33, 119}, {40, 126}, {41, 127}, {1, 89}, {2, 90}, {3, 91}, {4, 92}, {5, 93}, {6, 94}, {7, 95}, {32, 120}, {33, 121}, {34, 122}, {35, 123}, {36, 124}, {37, 125}, {38, 126}, {39, 127}, {2, 88}, {3, 89}, {6, 92}, {7, 93}, {34, 120}, {35, 121}, {38, 124}, {39, 125}, {138, 208}, {139, 209}, {142, 212}, {143, 213}, {170, 240}, {171, 241}, {174, 244}, {4, 90}, {5, 91}, {36, 122}, {37, 123}, {140, 210}, {141, 211}, {172, 242}, {173, 243}, {8, 96}, {9, 97}, {10, 98}, {11, 99}, {12, 100}, {13, 101}, {14, 102}, {15, 103}, {24, 112}, {25, 113}, {26, 114}, {27, 115}, {28, 116}, {29, 117}, {30, 118}, {31, 119}, {128, 232}, {129, 233}, {130, 234}, {131, 235}, {132, 236}, {133, 237}, {134, 238}, {135, 239}, {144, 248}, {145, 249}, {146, 250}, {147, 251}, {148, 252}, {149, 253}, {150, 254}, {151, 255}, {10, 96}, {11, 97}, {14, 100}, {15, 101}, {26, 112}, {27, 113}, {30, 116}, {31, 117}, {12, 98}, {13, 99}, {28, 114}, {29, 115}, {16, 102}, {17, 103}, {24, 110}, {25, 111}, {16, 104}, {17, 105}, {18, 106}, {19, 107}, {20, 108}, {21, 109}, {22, 110}, {23, 111}, {136, 240}, {137, 241}, {138, 242}, {139, 243}, {140, 244}, {141, 245}, {142, 246}, {143, 247}, {18, 104}, {19, 105}, {22, 108}, {23, 109}, {154, 224}, {155, 225}, {158, 228}, {159, 229}, {20, 106}, {21, 107}, {156, 226}, {157, 227}, {88, 192}, {95, 199}, {94, 198}, {93, 197}, {92, 196}, {91, 195}, {90, 194}, {89, 193}, {120, 224}, {121, 225}, {122, 226}, {123, 227}, {124, 228}, {125, 229}, {126, 230}, {127, 231}, {96, 253}, {98, 255}, {97, 254}, {91, 248}, {95, 252}, {92, 249}, {94, 251}, {93, 250}, {40, 128}, {112, 216}, {103, 207}, {102, 206}, {101, 205}, {100, 204}, {99, 203}, {98, 202}, {97, 201}, {96, 200}, {63, 151}, {62, 150}, {61, 149}, {60, 148}, {59, 147}, {58, 146}, {41, 129}, {42, 130}, {43, 131}, {44, 132}, {45, 133}, {46, 134}, {47, 135}, {56, 144}, {57, 145}, {113, 217}, {114, 218}, {115, 219}, {116, 220}, {117, 221}, {118, 222}, {119, 223}, {42, 128}, {63, 149}, {62, 148}, {59, 145}, {58, 144}, {43, 129}, {46, 132}, {47, 133}, {88, 245}, {90, 247}, {44, 130}, {61, 147}, {60, 146}, {45, 131}, {1, 174}, {89, 246}, {48, 134}, {49, 135}, {56, 142}, {57, 143}, {48, 136}, {111, 215}, {110, 214}, {109, 213}, {108, 212}, {107, 211}, {106, 210}, {105, 209}, {104, 208}, {49, 137}, {50, 138}, {51, 139}, {52, 140}, {53, 141}, {54, 142}, {55, 143}, {50, 136}, {51, 137}, {54, 140}, {55, 141}, {122, 192}, {123, 193}, {126, 196}, {127, 197}, {52, 138}, {53, 139}, {124, 194}, {125, 195}, {105, 175}, {112, 182}, {113, 183}, {120, 190}, {121, 191}, {114, 184}, {115, 185}, {118, 188}, {119, 189}, {116, 186}, {117, 187}, {64, 150}, {73, 159}, {72, 158}, {65, 151}, {64, 152}, {71, 159}, {70, 158}, {69, 157}, {68, 156}, {67, 155}, {66, 154}, {65, 153}, {66, 152}, {111, 181}, {110, 180}, {107, 177}, {106, 176}, {71, 157}, {70, 156}, {67, 153}, {68, 154}, {109, 179}, {108, 178}, {69, 155}, {72, 160}, {79, 167}, {78, 166}, {77, 165}, {76, 164}, {75, 163}, {74, 162}, {73, 161}, {74, 160}, {79, 165}, {78, 164}, {75, 161}, {76, 162}, {77, 163}, {80, 166}, {81, 167}, {80, 168}, {86, 174}, {85, 173}, {84, 172}, {83, 171}, {82, 170}, {81, 169}, {82, 168}, {87, 173}, {86, 172}, {83, 169}, {84, 170}, {85, 171}, {44, 264}, {63, 283}, {62, 282}, {61, 281}, {60, 280}, {45, 265}, {46, 266}, {47, 267}, {52, 272}, {53, 273}, {54, 274}, {55, 275}, {47, 262}, {63, 278}, {61, 276}, {59, 274}, {57, 272}, {58, 273}, {62, 277}, {42, 262}, {59, 279}, {58, 278}, {43, 263}, {56, 276}, {57, 277}, {1, 303}, {16, 318}, {17, 319}, {60, 275}, {2, 304}, {3, 305}, {6, 308}, {7, 309}, {10, 312}, {11, 313}, {14, 316}, {15, 317}, {4, 311}, {8, 315}, {12, 319}, {1, 308}, {3, 310}, {9, 316}, {11, 318}, {4, 306}, {5, 307}, {12, 314}, {13, 315}, {2, 309}, {10, 317}, {48, 263}, {56, 271}, {49, 264}, {51, 266}, {53, 268}, {55, 270}, {50, 265}, {54, 269}, {48, 268}, {49, 269}, {50, 270}, {51, 271}, {5, 312}, {7, 314}, {8, 310}, {9, 311}, {6, 313}, {52, 267}, {13, 320}, {15, 322}, {29, 336}, {31, 338}, {14, 321}, {30, 337}, {18, 320}, {19, 321}, {22, 324}, {23, 325}, {26, 328}, {27, 329}, {30, 332}, {31, 333}, {16, 323}, {20, 327}, {24, 331}, {28, 335}, {17, 324}, {19, 326}, {25, 332}, {27, 334}, {20, 322}, {21, 323}, {28, 330}, {29, 331}, {18, 325}, {72, 287}, {64, 279}, {26, 333}, {65, 280}, {71, 286}, {69, 284}, {67, 282}, {66, 281}, {70, 285}, {64, 284}, {67, 287}, {66, 286}, {65, 285}, {21, 328}, {23, 330}, {24, 326}, {25, 327}, {22, 329}, {68, 283}, {99, 256}, {103, 260}, {68, 288}, {87, 307}, {86, 306}, {85, 305}, {84, 304}, {79, 299}, {78, 298}, {77, 297}, {76, 296}, {71, 291}, {70, 290}, {69, 289}, {100, 257}, {102, 259}, {101, 258}, {73, 288}, {79, 294}, {77, 292}, {75, 290}, {74, 289}, {78, 293}, {72, 292}, {75, 295}, {74, 294}, {73, 293}, {104, 261}, {32, 334}, {33, 335}, {76, 291}, {34, 336}, {35, 337}, {38, 340}, {39, 341}, {42, 344}, {43, 345}, {46, 348}, {32, 339}, {36, 343}, {40, 347}, {33, 340}, {35, 342}, {41, 348}, {36, 338}, {37, 339}, {44, 346}, {45, 347}, {34, 341}, {80, 295}, {81, 296}, {87, 302}, {85, 300}, {83, 298}, {82, 297}, {86, 301}, {80, 300}, {83, 303}, {82, 302}, {81, 301}, {37, 344}, {39, 346}, {40, 342}, {41, 343}, {38, 345}, {84, 299}, {175, 290}, {189, 304}, {191, 306}, {205, 320}, {207, 322}, {221, 336}, {223, 338}, {190, 305}, {206, 321}, {222, 337}, {192, 338}, {193, 339}, {196, 342}, {197, 343}, {200, 346}, {201, 347}, {176, 291}, {180, 295}, {184, 299}, {188, 303}, {208, 323}, {212, 327}, {216, 331}, {220, 335}, {177, 292}, {179, 294}, {185, 300}, {187, 302}, {209, 324}, {211, 326}, {217, 332}, {219, 334}, {194, 340}, {195, 341}, {202, 348}, {178, 293}, {186, 301}, {210, 325}, {218, 333}, {152, 256}, {153, 257}, {154, 258}, {155, 259}, {156, 260}, {157, 261}, {181, 296}, {183, 298}, {213, 328}, {215, 330}, {198, 344}, {199, 345}, {182, 297}, {214, 329}, {224, 339}, {228, 343}, {232, 347}, {225, 340}, {227, 342}, {233, 348}, {226, 341}, {229, 344}, {231, 346}, {230, 345}, {205, 264}, {255, 314}, {207, 266}, {213, 272}, {215, 274}, {221, 280}, {223, 282}, {229, 288}, {231, 290}, {237, 296}, {239, 298}, {245, 304}, {247, 306}, {253, 312}, {206, 265}, {254, 313}, {214, 273}, {222, 281}, {230, 289}, {238, 297}, {246, 305}, {204, 263}, {216, 275}, {220, 279}, {232, 291}, {236, 295}, {248, 307}, {252, 311}, {203, 262}, {217, 276}, {219, 278}, {233, 292}, {235, 294}, {249, 308}, {251, 310}, {218, 277}, {234, 293}, {250, 309}, {208, 267}, {212, 271}, {240, 299}, {244, 303}, {209, 268}, {211, 270}, {241, 300}, {243, 302}, {210, 269}, {242, 301}, {236, 264}, {255, 283}, {254, 282}, {237, 265}, {238, 266}, {239, 267}, {244, 272}, {245, 273}, {246, 274}, {247, 275}, {252, 280}, {253, 281}, {234, 262}, {235, 263}, {248, 276}, {249, 277}, {250, 278}, {251, 279}, {175, 321}, {190, 336}, {191, 337}, {176, 322}, {177, 323}, {180, 326}, {181, 327}, {184, 330}, {185, 331}, {188, 334}, {189, 335}, {192, 307}, {196, 311}, {200, 315}, {204, 319}, {193, 308}, {195, 310}, {201, 316}, {203, 318}, {178, 324}, {179, 325}, {186, 332}, {187, 333}, {194, 309}, {202, 317}, {224, 283}, {228, 287}, {240, 268}, {241, 269}, {242, 270}, {243, 271}, {197, 312}, {199, 314}, {225, 284}, {227, 286}, {182, 328}, {183, 329}, {198, 313}, {226, 285} }>;

(II) A more general form is to represent the graph as the orbit of {87, 88} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87)(88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174)(175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261)(262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348)
b: (2, 87)(3, 86)(4, 85)(5, 84)(6, 83)(7, 82)(8, 81)(9, 80)(10, 79)(11, 78)(12, 77)(13, 76)(14, 75)(15, 74)(16, 73)(17, 72)(18, 71)(19, 70)(20, 69)(21, 68)(22, 67)(23, 66)(24, 65)(25, 64)(26, 63)(27, 62)(28, 61)(29, 60)(30, 59)(31, 58)(32, 57)(33, 56)(34, 55)(35, 54)(36, 53)(37, 52)(38, 51)(39, 50)(40, 49)(41, 48)(42, 47)(43, 46)(44, 45)(89, 174)(90, 173)(91, 172)(92, 171)(93, 170)(94, 169)(95, 168)(96, 167)(97, 166)(98, 165)(99, 164)(100, 163)(101, 162)(102, 161)(103, 160)(104, 159)(105, 158)(106, 157)(107, 156)(108, 155)(109, 154)(110, 153)(111, 152)(112, 151)(113, 150)(114, 149)(115, 148)(116, 147)(117, 146)(118, 145)(119, 144)(120, 143)(121, 142)(122, 141)(123, 140)(124, 139)(125, 138)(126, 137)(127, 136)(128, 135)(129, 134)(130, 133)(131, 132)(176, 261)(177, 260)(178, 259)(179, 258)(180, 257)(181, 256)(182, 255)(183, 254)(184, 253)(185, 252)(186, 251)(187, 250)(188, 249)(189, 248)(190, 247)(191, 246)(192, 245)(193, 244)(194, 243)(195, 242)(196, 241)(197, 240)(198, 239)(199, 238)(200, 237)(201, 236)(202, 235)(203, 234)(204, 233)(205, 232)(206, 231)(207, 230)(208, 229)(209, 228)(210, 227)(211, 226)(212, 225)(213, 224)(214, 223)(215, 222)(216, 221)(217, 220)(218, 219)(263, 348)(264, 347)(265, 346)(266, 345)(267, 344)(268, 343)(269, 342)(270, 341)(271, 340)(272, 339)(273, 338)(274, 337)(275, 336)(276, 335)(277, 334)(278, 333)(279, 332)(280, 331)(281, 330)(282, 329)(283, 328)(284, 327)(285, 326)(286, 325)(287, 324)(288, 323)(289, 322)(290, 321)(291, 320)(292, 319)(293, 318)(294, 317)(295, 316)(296, 315)(297, 314)(298, 313)(299, 312)(300, 311)(301, 310)(302, 309)(303, 308)(304, 307)(305, 306)
c: (1, 88, 175, 262)(2, 158, 203, 308)(3, 141, 231, 267)(4, 124, 259, 313)(5, 107, 200, 272)(6, 90, 228, 318)(7, 160, 256, 277)(8, 143, 197, 323)(9, 126, 225, 282)(10, 109, 253, 328)(11, 92, 194, 287)(12, 162, 222, 333)(13, 145, 250, 292)(14, 128, 191, 338)(15, 111, 219, 297)(16, 94, 247, 343)(17, 164, 188, 302)(18, 147, 216, 348)(19, 130, 244, 307)(20, 113, 185, 266)(21, 96, 213, 312)(22, 166, 241, 271)(23, 149, 182, 317)(24, 132, 210, 276)(25, 115, 238, 322)(26, 98, 179, 281)(27, 168, 207, 327)(28, 151, 235, 286)(29, 134, 176, 332)(30, 117, 204, 291)(31, 100, 232, 337)(32, 170, 260, 296)(33, 153, 201, 342)(34, 136, 229, 301)(35, 119, 257, 347)(36, 102, 198, 306)(37, 172, 226, 265)(38, 155, 254, 311)(39, 138, 195, 270)(40, 121, 223, 316)(41, 104, 251, 275)(42, 174, 192, 321)(43, 157, 220, 280)(44, 140, 248, 326)(45, 123, 189, 285)(46, 106, 217, 331)(47, 89, 245, 290)(48, 159, 186, 336)(49, 142, 214, 295)(50, 125, 242, 341)(51, 108, 183, 300)(52, 91, 211, 346)(53, 161, 239, 305)(54, 144, 180, 264)(55, 127, 208, 310)(56, 110, 236, 269)(57, 93, 177, 315)(58, 163, 205, 274)(59, 146, 233, 320)(60, 129, 261, 279)(61, 112, 202, 325)(62, 95, 230, 284)(63, 165, 258, 330)(64, 148, 199, 289)(65, 131, 227, 335)(66, 114, 255, 294)(67, 97, 196, 340)(68, 167, 224, 299)(69, 150, 252, 345)(70, 133, 193, 304)(71, 116, 221, 263)(72, 99, 249, 309)(73, 169, 190, 268)(74, 152, 218, 314)(75, 135, 246, 273)(76, 118, 187, 319)(77, 101, 215, 278)(78, 171, 243, 324)(79, 154, 184, 283)(80, 137, 212, 329)(81, 120, 240, 288)(82, 103, 181, 334)(83, 173, 209, 293)(84, 156, 237, 339)(85, 139, 178, 298)(86, 122, 206, 344)(87, 105, 234, 303)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 348, 6 ]
348
-1 308 89 303 174
-2 88 309 90 304
-3 89 310 91 305
-4 90 311 92 306
-5 91 312 93 307
-6 308 92 313 94
-7 309 93 314 95
-8 310 94 315 96
-9 311 95 316 97
-10 312 96 317 98
-11 99 313 97 318
-12 319 100 314 98
-13 99 320 101 315
-14 100 321 102 316
-15 101 322 103 317
-16 102 323 104 318
-17 319 103 324 105
-18 320 104 325 106
-19 321 105 326 107
-20 322 106 327 108
-21 323 107 328 109
-22 110 324 108 329
-23 330 111 325 109
-24 110 331 112 326
-25 111 332 113 327
-26 112 333 114 328
-27 113 334 115 329
-28 330 114 335 116
-29 331 115 336 117
-30 332 116 337 118
-31 333 117 338 119
-32 334 118 339 120
-33 121 335 119 340
-34 341 122 336 120
-35 121 342 123 337
-36 122 343 124 338
-37 123 344 125 339
-38 124 345 126 340
-39 341 125 346 127
-40 342 126 347 128
-41 343 127 348 129
-42 344 128 130 262
-43 345 129 131 263
-44 132 264 346 130
-45 133 265 347 131
-46 132 134 266 348
-47 133 135 267 262
-48 134 136 268 263
-49 264 135 137 269
-50 265 136 138 270
-51 266 137 139 271
-52 267 138 140 272
-53 268 139 141 273
-54 269 140 142 274
-55 143 275 270 141
-56 144 276 271 142
-57 143 145 277 272
-58 144 146 278 273
-59 145 147 279 274
-60 275 146 148 280
-61 276 147 149 281
-62 277 148 150 282
-63 278 149 151 283
-64 279 150 152 284
-65 280 151 153 285
-66 154 286 281 152
-67 155 287 282 153
-68 154 156 288 283
-69 155 157 289 284
-70 156 158 290 285
-71 286 157 159 291
-72 287 158 160 292
-73 288 159 161 293
-74 289 160 162 294
-75 290 161 163 295
-76 291 162 164 296
-77 165 297 292 163
-78 166 298 293 164
-79 165 167 299 294
-80 166 168 300 295
-81 167 169 301 296
-82 297 168 170 302
-83 298 169 171 303
-84 299 170 172 304
-85 300 171 173 305
-86 301 172 174 306
-87 88 302 173 307
-88 2 245 192 87
-89 1 3 246 193
-90 2 4 247 194
-91 3 5 248 195
-92 4 6 249 196
-93 5 7 250 197
-94 198 6 8 251
-95 199 7 9 252
-96 253 200 8 10
-97 11 254 201 9
-98 12 255 202 10
-99 11 13 256 203
-100 12 14 257 204
-101 13 15 258 205
-102 14 16 259 206
-103 15 17 260 207
-104 16 18 261 208
-105 209 17 19 175
-106 176 210 18 20
-107 177 211 19 21
-108 22 178 212 20
-109 23 179 213 21
-110 22 24 180 214
-111 23 25 181 215
-112 24 26 182 216
-113 25 27 183 217
-114 26 28 184 218
-115 27 29 185 219
-116 220 28 30 186
-117 187 221 29 31
-118 188 222 30 32
-119 33 189 223 31
-120 34 190 224 32
-121 33 35 191 225
-122 34 36 192 226
-123 35 37 193 227
-124 36 38 194 228
-125 37 39 195 229
-126 38 40 196 230
-127 231 39 41 197
-128 198 232 40 42
-129 199 233 41 43
-130 44 200 234 42
-131 45 201 235 43
-132 44 46 202 236
-133 45 47 203 237
-134 46 48 204 238
-135 47 49 205 239
-136 48 50 206 240
-137 49 51 207 241
-138 242 50 52 208
-139 209 243 51 53
-140 210 244 52 54
-141 55 211 245 53
-142 56 212 246 54
-143 55 57 213 247
-144 56 58 214 248
-145 57 59 215 249
-146 58 60 216 250
-147 59 61 217 251
-148 60 62 218 252
-149 253 61 63 219
-150 220 254 62 64
-151 221 255 63 65
-152 66 222 256 64
-153 67 223 257 65
-154 66 68 224 258
-155 67 69 225 259
-156 68 70 226 260
-157 69 71 227 261
-158 70 72 228 175
-159 176 71 73 229
-160 177 72 74 230
-161 231 178 73 75
-162 232 179 74 76
-163 77 233 180 75
-164 78 234 181 76
-165 77 79 235 182
-166 78 80 236 183
-167 79 81 237 184
-168 80 82 238 185
-169 81 83 239 186
-170 187 82 84 240
-171 188 83 85 241
-172 242 189 84 86
-173 243 190 85 87
-174 1 244 191 86
-175 321 158 290 105
-176 322 159 291 106
-177 323 160 292 107
-178 324 161 293 108
-179 325 162 294 109
-180 110 326 163 295
-181 111 327 164 296
-182 165 297 112 328
-183 166 298 113 329
-184 330 167 299 114
-185 331 168 300 115
-186 332 169 301 116
-187 333 170 302 117
-188 334 171 303 118
-189 335 172 304 119
-190 336 173 305 120
-191 121 337 174 306
-192 88 122 338 307
-193 308 89 123 339
-194 309 90 124 340
-195 341 310 91 125
-196 342 311 92 126
-197 343 312 93 127
-198 344 313 94 128
-199 345 314 95 129
-200 346 315 96 130
-201 347 316 97 131
-202 132 348 317 98
-203 99 133 262 318
-204 319 100 134 263
-205 264 320 101 135
-206 265 321 102 136
-207 266 322 103 137
-208 267 323 104 138
-209 268 324 105 139
-210 269 325 106 140
-211 270 326 107 141
-212 271 327 108 142
-213 143 272 328 109
-214 110 144 273 329
-215 330 111 145 274
-216 275 331 112 146
-217 276 332 113 147
-218 277 333 114 148
-219 278 334 115 149
-220 279 335 116 150
-221 280 336 117 151
-222 281 337 118 152
-223 282 338 119 153
-224 154 283 339 120
-225 121 155 284 340
-226 341 122 156 285
-227 286 342 123 157
-228 287 343 124 158
-229 288 344 125 159
-230 289 345 126 160
-231 290 346 127 161
-232 291 347 128 162
-233 292 348 129 163
-234 293 130 262 164
-235 165 294 131 263
-236 132 264 166 295
-237 133 265 167 296
-238 297 134 266 168
-239 298 135 267 169
-240 299 136 268 170
-241 300 137 269 171
-242 301 138 270 172
-243 302 139 271 173
-244 303 140 272 174
-245 88 304 141 273
-246 89 305 142 274
-247 143 275 90 306
-248 144 276 91 307
-249 308 145 277 92
-250 309 146 278 93
-251 310 147 279 94
-252 311 148 280 95
-253 312 149 281 96
-254 313 150 282 97
-255 314 151 283 98
-256 99 315 152 284
-257 100 316 153 285
-258 154 286 101 317
-259 155 287 102 318
-260 319 156 288 103
-261 320 157 289 104
-262 47 234 203 42
-263 48 235 204 43
-264 44 49 236 205
-265 45 50 237 206
-266 46 51 238 207
-267 47 52 239 208
-268 209 48 53 240
-269 210 49 54 241
-270 55 242 211 50
-271 56 243 212 51
-272 57 244 213 52
-273 58 245 214 53
-274 59 246 215 54
-275 55 60 247 216
-276 56 61 248 217
-277 57 62 249 218
-278 58 63 250 219
-279 220 59 64 251
-280 221 60 65 252
-281 66 253 222 61
-282 67 254 223 62
-283 68 255 224 63
-284 69 256 225 64
-285 70 257 226 65
-286 66 71 258 227
-287 67 72 259 228
-288 68 73 260 229
-289 69 74 261 230
-290 231 70 75 175
-291 176 232 71 76
-292 77 177 233 72
-293 78 178 234 73
-294 79 179 235 74
-295 80 180 236 75
-296 81 181 237 76
-297 77 82 182 238
-298 78 83 183 239
-299 79 84 184 240
-300 80 85 185 241
-301 242 81 86 186
-302 187 243 82 87
-303 1 188 244 83
-304 2 189 245 84
-305 3 190 246 85
-306 4 191 247 86
-307 5 192 248 87
-308 1 6 193 249
-309 2 7 194 250
-310 3 8 195 251
-311 4 9 196 252
-312 253 5 10 197
-313 11 198 254 6
-314 12 199 255 7
-315 13 200 256 8
-316 14 201 257 9
-317 15 202 258 10
-318 11 16 203 259
-319 12 17 204 260
-320 13 18 205 261
-321 14 19 206 175
-322 176 15 20 207
-323 177 16 21 208
-324 22 209 178 17
-325 23 210 179 18
-326 24 211 180 19
-327 25 212 181 20
-328 26 213 182 21
-329 22 27 214 183
-330 23 28 215 184
-331 24 29 216 185
-332 25 30 217 186
-333 187 26 31 218
-334 188 27 32 219
-335 33 220 189 28
-336 34 221 190 29
-337 35 222 191 30
-338 36 223 192 31
-339 37 224 193 32
-340 33 38 225 194
-341 34 39 226 195
-342 35 40 227 196
-343 36 41 228 197
-344 198 37 42 229
-345 199 38 43 230
-346 44 231 200 39
-347 45 232 201 40
-348 46 233 202 41
0

**************