C4graphGraph forms for C4 [ 351, 7 ] = PS(3,117;16)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 351, 7 ] = PS(3,117;16).

(I) Following is a form readable by MAGMA:

g:=Graph<351|{ {117, 118}, {224, 240}, {234, 250}, {233, 249}, {232, 248}, {231, 247}, {230, 246}, {229, 245}, {228, 244}, {227, 243}, {226, 242}, {225, 241}, {219, 235}, {223, 239}, {222, 238}, {221, 237}, {220, 236}, {136, 237}, {138, 239}, {144, 245}, {146, 247}, {152, 253}, {154, 255}, {137, 238}, {145, 246}, {153, 254}, {135, 236}, {147, 248}, {151, 252}, {134, 235}, {148, 249}, {150, 251}, {149, 250}, {2, 118}, {3, 119}, {8, 124}, {9, 125}, {10, 126}, {11, 127}, {1, 119}, {8, 126}, {9, 127}, {2, 120}, {3, 121}, {6, 124}, {7, 125}, {139, 240}, {143, 244}, {4, 120}, {5, 121}, {6, 122}, {7, 123}, {140, 241}, {142, 243}, {4, 122}, {5, 123}, {141, 242}, {120, 253}, {122, 255}, {121, 254}, {10, 128}, {79, 197}, {78, 196}, {75, 193}, {74, 192}, {63, 181}, {62, 180}, {59, 177}, {58, 176}, {11, 129}, {14, 132}, {15, 133}, {26, 144}, {27, 145}, {30, 148}, {31, 149}, {42, 160}, {43, 161}, {46, 164}, {47, 165}, {90, 208}, {91, 209}, {94, 212}, {95, 213}, {106, 224}, {107, 225}, {110, 228}, {111, 229}, {96, 235}, {100, 239}, {112, 251}, {116, 255}, {119, 252}, {12, 128}, {79, 195}, {78, 194}, {77, 193}, {76, 192}, {63, 179}, {62, 178}, {61, 177}, {60, 176}, {13, 129}, {14, 130}, {15, 131}, {28, 144}, {29, 145}, {30, 146}, {31, 147}, {44, 160}, {45, 161}, {46, 162}, {47, 163}, {92, 208}, {93, 209}, {94, 210}, {95, 211}, {108, 224}, {109, 225}, {110, 226}, {111, 227}, {97, 236}, {99, 238}, {113, 252}, {115, 254}, {118, 251}, {12, 130}, {77, 195}, {76, 194}, {61, 179}, {60, 178}, {13, 131}, {28, 146}, {29, 147}, {44, 162}, {45, 163}, {92, 210}, {93, 211}, {108, 226}, {109, 227}, {98, 237}, {114, 253}, {16, 132}, {88, 204}, {83, 199}, {82, 198}, {81, 197}, {80, 196}, {59, 175}, {58, 174}, {57, 173}, {56, 172}, {17, 133}, {18, 134}, {19, 135}, {24, 140}, {25, 141}, {26, 142}, {27, 143}, {48, 164}, {49, 165}, {50, 166}, {51, 167}, {89, 205}, {90, 206}, {91, 207}, {112, 228}, {113, 229}, {114, 230}, {115, 231}, {101, 240}, {103, 242}, {109, 248}, {111, 250}, {16, 134}, {88, 206}, {81, 199}, {80, 198}, {57, 175}, {56, 174}, {17, 135}, {24, 142}, {25, 143}, {48, 166}, {49, 167}, {89, 207}, {112, 230}, {113, 231}, {102, 241}, {110, 249}, {18, 136}, {87, 205}, {86, 204}, {83, 201}, {82, 200}, {55, 173}, {54, 172}, {19, 137}, {22, 140}, {23, 141}, {50, 168}, {51, 169}, {114, 232}, {115, 233}, {104, 243}, {108, 247}, {20, 136}, {87, 203}, {86, 202}, {85, 201}, {84, 200}, {55, 171}, {54, 170}, {21, 137}, {22, 138}, {23, 139}, {52, 168}, {53, 169}, {116, 232}, {117, 233}, {105, 244}, {107, 246}, {20, 138}, {85, 203}, {84, 202}, {21, 139}, {52, 170}, {53, 171}, {116, 234}, {106, 245}, {32, 148}, {33, 149}, {34, 150}, {35, 151}, {40, 156}, {41, 157}, {42, 158}, {43, 159}, {96, 212}, {97, 213}, {98, 214}, {99, 215}, {104, 220}, {105, 221}, {106, 222}, {107, 223}, {32, 150}, {33, 151}, {40, 158}, {41, 159}, {96, 214}, {97, 215}, {104, 222}, {105, 223}, {34, 152}, {35, 153}, {38, 156}, {39, 157}, {98, 216}, {99, 217}, {102, 220}, {103, 221}, {36, 152}, {37, 153}, {38, 154}, {39, 155}, {100, 216}, {101, 217}, {102, 218}, {103, 219}, {36, 154}, {37, 155}, {100, 218}, {101, 219}, {32, 244}, {33, 245}, {34, 246}, {35, 247}, {40, 252}, {41, 253}, {42, 254}, {43, 255}, {36, 248}, {37, 249}, {38, 250}, {39, 251}, {1, 234}, {28, 240}, {29, 241}, {30, 242}, {31, 243}, {24, 236}, {75, 191}, {74, 190}, {73, 189}, {72, 188}, {67, 183}, {66, 182}, {65, 181}, {64, 180}, {25, 237}, {26, 238}, {27, 239}, {64, 182}, {73, 191}, {72, 190}, {65, 183}, {66, 184}, {71, 189}, {70, 188}, {67, 185}, {23, 235}, {71, 187}, {70, 186}, {69, 185}, {68, 184}, {68, 186}, {69, 187}, {1, 257}, {87, 343}, {86, 342}, {85, 341}, {84, 340}, {83, 339}, {82, 338}, {81, 337}, {80, 336}, {79, 335}, {78, 334}, {77, 333}, {76, 332}, {75, 331}, {74, 330}, {73, 329}, {72, 328}, {71, 327}, {70, 326}, {69, 325}, {68, 324}, {67, 323}, {66, 322}, {65, 321}, {64, 320}, {63, 319}, {62, 318}, {61, 317}, {60, 316}, {59, 315}, {58, 314}, {57, 313}, {56, 312}, {55, 311}, {54, 310}, {53, 309}, {2, 258}, {3, 259}, {4, 260}, {5, 261}, {6, 262}, {7, 263}, {8, 264}, {9, 265}, {10, 266}, {11, 267}, {12, 268}, {13, 269}, {14, 270}, {15, 271}, {16, 272}, {17, 273}, {18, 274}, {19, 275}, {20, 276}, {21, 277}, {22, 278}, {23, 279}, {24, 280}, {25, 281}, {26, 282}, {27, 283}, {28, 284}, {29, 285}, {30, 286}, {31, 287}, {32, 288}, {33, 289}, {34, 290}, {35, 291}, {36, 292}, {37, 293}, {38, 294}, {39, 295}, {40, 296}, {41, 297}, {42, 298}, {43, 299}, {44, 300}, {45, 301}, {46, 302}, {47, 303}, {48, 304}, {49, 305}, {50, 306}, {51, 307}, {52, 308}, {88, 344}, {89, 345}, {90, 346}, {91, 347}, {92, 348}, {93, 349}, {94, 350}, {95, 351}, {118, 336}, {119, 337}, {126, 344}, {127, 345}, {120, 338}, {121, 339}, {124, 342}, {125, 343}, {44, 256}, {63, 275}, {62, 274}, {61, 273}, {60, 272}, {45, 257}, {46, 258}, {47, 259}, {108, 320}, {109, 321}, {110, 322}, {111, 323}, {122, 340}, {123, 341}, {48, 260}, {59, 271}, {58, 270}, {57, 269}, {56, 268}, {49, 261}, {50, 262}, {51, 263}, {112, 324}, {113, 325}, {114, 326}, {115, 327}, {52, 264}, {55, 267}, {54, 266}, {53, 265}, {116, 328}, {117, 329}, {2, 331}, {4, 333}, {6, 335}, {16, 345}, {18, 347}, {20, 349}, {22, 351}, {1, 330}, {5, 334}, {17, 346}, {21, 350}, {3, 332}, {19, 348}, {64, 276}, {75, 287}, {74, 286}, {73, 285}, {72, 284}, {67, 279}, {66, 278}, {65, 277}, {96, 308}, {97, 309}, {98, 310}, {99, 311}, {104, 316}, {105, 317}, {106, 318}, {107, 319}, {7, 336}, {15, 344}, {8, 337}, {10, 339}, {12, 341}, {14, 343}, {9, 338}, {13, 342}, {68, 280}, {71, 283}, {70, 282}, {69, 281}, {100, 312}, {101, 313}, {102, 314}, {103, 315}, {11, 340}, {76, 288}, {79, 291}, {78, 290}, {77, 289}, {92, 304}, {93, 305}, {94, 306}, {95, 307}, {80, 292}, {88, 300}, {83, 295}, {82, 294}, {81, 293}, {89, 301}, {90, 302}, {91, 303}, {117, 256}, {123, 256}, {127, 260}, {84, 296}, {87, 299}, {86, 298}, {85, 297}, {124, 257}, {126, 259}, {125, 258}, {128, 261}, {218, 351}, {216, 349}, {210, 343}, {208, 341}, {202, 335}, {130, 263}, {136, 269}, {138, 271}, {144, 277}, {146, 279}, {152, 285}, {154, 287}, {160, 293}, {162, 295}, {168, 301}, {170, 303}, {176, 309}, {178, 311}, {184, 317}, {186, 319}, {192, 325}, {194, 327}, {200, 333}, {129, 262}, {217, 350}, {209, 342}, {137, 270}, {145, 278}, {153, 286}, {161, 294}, {169, 302}, {177, 310}, {185, 318}, {193, 326}, {201, 334}, {131, 264}, {215, 348}, {211, 344}, {135, 268}, {147, 280}, {151, 284}, {163, 296}, {167, 300}, {179, 312}, {183, 316}, {195, 328}, {199, 332}, {132, 265}, {214, 347}, {212, 345}, {134, 267}, {148, 281}, {150, 283}, {164, 297}, {166, 299}, {180, 313}, {182, 315}, {196, 329}, {198, 331}, {133, 266}, {213, 346}, {149, 282}, {165, 298}, {181, 314}, {197, 330}, {139, 272}, {223, 324}, {219, 320}, {207, 340}, {203, 336}, {143, 276}, {155, 256}, {159, 260}, {171, 304}, {175, 308}, {187, 288}, {191, 292}, {140, 273}, {222, 323}, {220, 321}, {206, 339}, {204, 337}, {142, 275}, {156, 257}, {158, 259}, {172, 305}, {174, 307}, {188, 289}, {190, 291}, {141, 274}, {221, 322}, {205, 338}, {157, 258}, {173, 306}, {189, 290}, {160, 261}, {234, 335}, {232, 333}, {226, 327}, {224, 325}, {162, 263}, {168, 269}, {170, 271}, {176, 277}, {178, 279}, {184, 285}, {186, 287}, {161, 262}, {233, 334}, {225, 326}, {169, 270}, {177, 278}, {185, 286}, {163, 264}, {231, 332}, {227, 328}, {167, 268}, {179, 280}, {183, 284}, {164, 265}, {230, 331}, {228, 329}, {166, 267}, {180, 281}, {182, 283}, {165, 266}, {229, 330}, {181, 282}, {155, 288}, {159, 292}, {171, 272}, {175, 276}, {156, 289}, {158, 291}, {172, 273}, {174, 275}, {157, 290}, {173, 274}, {128, 346}, {129, 347}, {132, 350}, {133, 351}, {130, 348}, {131, 349}, {192, 293}, {218, 319}, {216, 317}, {210, 311}, {208, 309}, {194, 295}, {200, 301}, {202, 303}, {193, 294}, {217, 318}, {209, 310}, {201, 302}, {195, 296}, {215, 316}, {211, 312}, {199, 300}, {196, 297}, {214, 315}, {212, 313}, {198, 299}, {197, 298}, {213, 314}, {187, 320}, {207, 308}, {203, 304}, {191, 324}, {188, 321}, {206, 307}, {204, 305}, {190, 323}, {189, 322}, {205, 306} }>;

(II) A more general form is to represent the graph as the orbit of {117, 118} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117)(118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234)(235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351)
b: (2, 117)(3, 116)(4, 115)(5, 114)(6, 113)(7, 112)(8, 111)(9, 110)(10, 109)(11, 108)(12, 107)(13, 106)(14, 105)(15, 104)(16, 103)(17, 102)(18, 101)(19, 100)(20, 99)(21, 98)(22, 97)(23, 96)(24, 95)(25, 94)(26, 93)(27, 92)(28, 91)(29, 90)(30, 89)(31, 88)(32, 87)(33, 86)(34, 85)(35, 84)(36, 83)(37, 82)(38, 81)(39, 80)(40, 79)(41, 78)(42, 77)(43, 76)(44, 75)(45, 74)(46, 73)(47, 72)(48, 71)(49, 70)(50, 69)(51, 68)(52, 67)(53, 66)(54, 65)(55, 64)(56, 63)(57, 62)(58, 61)(59, 60)(119, 234)(120, 233)(121, 232)(122, 231)(123, 230)(124, 229)(125, 228)(126, 227)(127, 226)(128, 225)(129, 224)(130, 223)(131, 222)(132, 221)(133, 220)(134, 219)(135, 218)(136, 217)(137, 216)(138, 215)(139, 214)(140, 213)(141, 212)(142, 211)(143, 210)(144, 209)(145, 208)(146, 207)(147, 206)(148, 205)(149, 204)(150, 203)(151, 202)(152, 201)(153, 200)(154, 199)(155, 198)(156, 197)(157, 196)(158, 195)(159, 194)(160, 193)(161, 192)(162, 191)(163, 190)(164, 189)(165, 188)(166, 187)(167, 186)(168, 185)(169, 184)(170, 183)(171, 182)(172, 181)(173, 180)(174, 179)(175, 178)(176, 177)(236, 351)(237, 350)(238, 349)(239, 348)(240, 347)(241, 346)(242, 345)(243, 344)(244, 343)(245, 342)(246, 341)(247, 340)(248, 339)(249, 338)(250, 337)(251, 336)(252, 335)(253, 334)(254, 333)(255, 332)(256, 331)(257, 330)(258, 329)(259, 328)(260, 327)(261, 326)(262, 325)(263, 324)(264, 323)(265, 322)(266, 321)(267, 320)(268, 319)(269, 318)(270, 317)(271, 316)(272, 315)(273, 314)(274, 313)(275, 312)(276, 311)(277, 310)(278, 309)(279, 308)(280, 307)(281, 306)(282, 305)(283, 304)(284, 303)(285, 302)(286, 301)(287, 300)(288, 299)(289, 298)(290, 297)(291, 296)(292, 295)(293, 294)
c: (1, 118, 235)(2, 134, 257)(3, 150, 279)(4, 166, 301)(5, 182, 323)(6, 198, 345)(7, 214, 250)(8, 230, 272)(9, 129, 294)(10, 145, 316)(11, 161, 338)(12, 177, 243)(13, 193, 265)(14, 209, 287)(15, 225, 309)(16, 124, 331)(17, 140, 236)(18, 156, 258)(19, 172, 280)(20, 188, 302)(21, 204, 324)(22, 220, 346)(23, 119, 251)(24, 135, 273)(25, 151, 295)(26, 167, 317)(27, 183, 339)(28, 199, 244)(29, 215, 266)(30, 231, 288)(31, 130, 310)(32, 146, 332)(33, 162, 237)(34, 178, 259)(35, 194, 281)(36, 210, 303)(37, 226, 325)(38, 125, 347)(39, 141, 252)(40, 157, 274)(41, 173, 296)(42, 189, 318)(43, 205, 340)(44, 221, 245)(45, 120, 267)(46, 136, 289)(47, 152, 311)(48, 168, 333)(49, 184, 238)(50, 200, 260)(51, 216, 282)(52, 232, 304)(53, 131, 326)(54, 147, 348)(55, 163, 253)(56, 179, 275)(57, 195, 297)(58, 211, 319)(59, 227, 341)(60, 126, 246)(61, 142, 268)(62, 158, 290)(63, 174, 312)(64, 190, 334)(65, 206, 239)(66, 222, 261)(67, 121, 283)(68, 137, 305)(69, 153, 327)(70, 169, 349)(71, 185, 254)(72, 201, 276)(73, 217, 298)(74, 233, 320)(75, 132, 342)(76, 148, 247)(77, 164, 269)(78, 180, 291)(79, 196, 313)(80, 212, 335)(81, 228, 240)(82, 127, 262)(83, 143, 284)(84, 159, 306)(85, 175, 328)(86, 191, 350)(87, 207, 255)(88, 223, 277)(89, 122, 299)(90, 138, 321)(91, 154, 343)(92, 170, 248)(93, 186, 270)(94, 202, 292)(95, 218, 314)(96, 234, 336)(97, 133, 241)(98, 149, 263)(99, 165, 285)(100, 181, 307)(101, 197, 329)(102, 213, 351)(103, 229, 256)(104, 128, 278)(105, 144, 300)(106, 160, 322)(107, 176, 344)(108, 192, 249)(109, 208, 271)(110, 224, 293)(111, 123, 315)(112, 139, 337)(113, 155, 242)(114, 171, 264)(115, 187, 286)(116, 203, 308)(117, 219, 330)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 351, 7 ]
351
-1 330 234 257 119
-2 331 258 118 120
-3 121 332 259 119
-4 122 333 260 120
-5 121 123 334 261
-6 122 124 335 262
-7 123 125 336 263
-8 264 124 126 337
-9 265 125 127 338
-10 266 126 128 339
-11 267 127 129 340
-12 341 268 128 130
-13 342 269 129 131
-14 132 343 270 130
-15 133 344 271 131
-16 132 134 345 272
-17 133 135 346 273
-18 134 136 347 274
-19 275 135 137 348
-20 276 136 138 349
-21 277 137 139 350
-22 278 138 140 351
-23 235 279 139 141
-24 236 280 140 142
-25 143 237 281 141
-26 144 238 282 142
-27 143 145 239 283
-28 144 146 240 284
-29 145 147 241 285
-30 242 286 146 148
-31 243 287 147 149
-32 244 288 148 150
-33 245 289 149 151
-34 246 290 150 152
-35 247 291 151 153
-36 154 248 292 152
-37 155 249 293 153
-38 154 156 250 294
-39 155 157 251 295
-40 156 158 252 296
-41 253 297 157 159
-42 254 298 158 160
-43 255 299 159 161
-44 256 300 160 162
-45 257 301 161 163
-46 258 302 162 164
-47 165 259 303 163
-48 166 260 304 164
-49 165 167 261 305
-50 166 168 262 306
-51 167 169 263 307
-52 264 308 168 170
-53 265 309 169 171
-54 266 310 170 172
-55 267 311 171 173
-56 268 312 172 174
-57 269 313 173 175
-58 176 270 314 174
-59 177 271 315 175
-60 176 178 272 316
-61 177 179 273 317
-62 178 180 274 318
-63 275 319 179 181
-64 276 320 180 182
-65 277 321 181 183
-66 278 322 182 184
-67 279 323 183 185
-68 280 324 184 186
-69 187 281 325 185
-70 188 282 326 186
-71 187 189 283 327
-72 188 190 284 328
-73 189 191 285 329
-74 286 330 190 192
-75 287 331 191 193
-76 288 332 192 194
-77 289 333 193 195
-78 290 334 194 196
-79 291 335 195 197
-80 198 292 336 196
-81 199 293 337 197
-82 198 200 294 338
-83 199 201 295 339
-84 200 202 296 340
-85 297 341 201 203
-86 298 342 202 204
-87 299 343 203 205
-88 300 344 204 206
-89 301 345 205 207
-90 302 346 206 208
-91 209 303 347 207
-92 210 304 348 208
-93 209 211 305 349
-94 210 212 306 350
-95 211 213 307 351
-96 308 212 235 214
-97 309 213 236 215
-98 310 214 237 216
-99 311 215 238 217
-100 312 216 239 218
-101 313 217 240 219
-102 220 314 218 241
-103 242 221 315 219
-104 220 243 222 316
-105 221 244 223 317
-106 222 245 224 318
-107 319 223 246 225
-108 320 224 247 226
-109 321 225 248 227
-110 322 226 249 228
-111 323 227 250 229
-112 324 228 251 230
-113 231 325 229 252
-114 253 232 326 230
-115 231 254 233 327
-116 232 255 234 328
-117 233 256 118 329
-118 2 336 117 251
-119 1 3 337 252
-120 253 2 4 338
-121 254 3 5 339
-122 255 4 6 340
-123 341 256 5 7
-124 342 257 6 8
-125 343 258 7 9
-126 344 259 8 10
-127 11 345 260 9
-128 12 346 261 10
-129 11 13 347 262
-130 12 14 348 263
-131 264 13 15 349
-132 265 14 16 350
-133 266 15 17 351
-134 267 235 16 18
-135 268 236 17 19
-136 269 237 18 20
-137 270 238 19 21
-138 22 271 239 20
-139 23 272 240 21
-140 22 24 273 241
-141 242 23 25 274
-142 275 243 24 26
-143 276 244 25 27
-144 277 245 26 28
-145 278 246 27 29
-146 279 247 28 30
-147 280 248 29 31
-148 281 249 30 32
-149 33 282 250 31
-150 34 283 251 32
-151 33 35 284 252
-152 253 34 36 285
-153 286 254 35 37
-154 287 255 36 38
-155 288 256 37 39
-156 289 257 38 40
-157 290 258 39 41
-158 291 259 40 42
-159 292 260 41 43
-160 44 293 261 42
-161 45 294 262 43
-162 44 46 295 263
-163 264 45 47 296
-164 297 265 46 48
-165 298 266 47 49
-166 299 267 48 50
-167 300 268 49 51
-168 301 269 50 52
-169 302 270 51 53
-170 303 271 52 54
-171 55 304 272 53
-172 56 305 273 54
-173 55 57 306 274
-174 275 56 58 307
-175 308 276 57 59
-176 309 277 58 60
-177 310 278 59 61
-178 311 279 60 62
-179 312 280 61 63
-180 313 281 62 64
-181 314 282 63 65
-182 66 315 283 64
-183 67 316 284 65
-184 66 68 317 285
-185 286 67 69 318
-186 319 287 68 70
-187 320 288 69 71
-188 321 289 70 72
-189 322 290 71 73
-190 323 291 72 74
-191 324 292 73 75
-192 325 293 74 76
-193 77 326 294 75
-194 78 327 295 76
-195 77 79 328 296
-196 297 78 80 329
-197 330 298 79 81
-198 331 299 80 82
-199 332 300 81 83
-200 333 301 82 84
-201 334 302 83 85
-202 335 303 84 86
-203 336 304 85 87
-204 88 337 305 86
-205 89 338 306 87
-206 88 90 339 307
-207 308 89 91 340
-208 341 309 90 92
-209 342 310 91 93
-210 343 311 92 94
-211 344 312 93 95
-212 345 313 94 96
-213 346 314 95 97
-214 347 315 96 98
-215 99 348 316 97
-216 100 349 317 98
-217 99 101 350 318
-218 319 100 102 351
-219 320 101 103 235
-220 321 102 104 236
-221 322 103 105 237
-222 323 104 106 238
-223 324 105 107 239
-224 325 106 108 240
-225 326 107 109 241
-226 110 242 327 108
-227 111 243 328 109
-228 110 112 244 329
-229 330 111 113 245
-230 331 112 114 246
-231 332 113 115 247
-232 333 114 116 248
-233 334 115 117 249
-234 1 335 116 250
-235 23 134 96 219
-236 220 24 135 97
-237 221 25 136 98
-238 99 222 26 137
-239 100 223 27 138
-240 101 224 28 139
-241 102 225 29 140
-242 103 226 30 141
-243 104 227 31 142
-244 143 105 228 32
-245 33 144 106 229
-246 34 145 107 230
-247 231 35 146 108
-248 232 36 147 109
-249 110 233 37 148
-250 111 234 38 149
-251 112 39 150 118
-252 113 40 151 119
-253 114 41 152 120
-254 121 115 42 153
-255 154 122 116 43
-256 44 155 123 117
-257 1 45 156 124
-258 2 46 157 125
-259 3 47 158 126
-260 4 48 159 127
-261 5 49 160 128
-262 6 50 161 129
-263 7 51 162 130
-264 8 52 163 131
-265 132 9 53 164
-266 165 133 10 54
-267 11 55 166 134
-268 12 56 167 135
-269 13 57 168 136
-270 14 58 169 137
-271 15 59 170 138
-272 16 60 171 139
-273 17 61 172 140
-274 18 62 173 141
-275 19 63 174 142
-276 143 20 64 175
-277 176 144 21 65
-278 22 66 177 145
-279 23 67 178 146
-280 24 68 179 147
-281 25 69 180 148
-282 26 70 181 149
-283 27 71 182 150
-284 28 72 183 151
-285 29 73 184 152
-286 30 74 185 153
-287 154 31 75 186
-288 187 155 32 76
-289 33 77 188 156
-290 34 78 189 157
-291 35 79 190 158
-292 36 80 191 159
-293 37 81 192 160
-294 38 82 193 161
-295 39 83 194 162
-296 40 84 195 163
-297 41 85 196 164
-298 165 42 86 197
-299 198 166 43 87
-300 44 88 199 167
-301 45 89 200 168
-302 46 90 201 169
-303 47 91 202 170
-304 48 92 203 171
-305 49 93 204 172
-306 50 94 205 173
-307 51 95 206 174
-308 52 96 207 175
-309 176 53 97 208
-310 209 177 54 98
-311 55 99 210 178
-312 56 100 211 179
-313 57 101 212 180
-314 58 102 213 181
-315 59 103 214 182
-316 60 104 215 183
-317 61 105 216 184
-318 62 106 217 185
-319 63 107 218 186
-320 187 64 108 219
-321 220 188 65 109
-322 66 110 221 189
-323 67 111 222 190
-324 68 112 223 191
-325 69 113 224 192
-326 70 114 225 193
-327 71 115 226 194
-328 72 116 227 195
-329 73 117 228 196
-330 1 74 229 197
-331 198 2 75 230
-332 231 199 3 76
-333 77 232 200 4
-334 78 233 201 5
-335 79 234 202 6
-336 80 203 7 118
-337 81 204 8 119
-338 82 205 9 120
-339 121 83 206 10
-340 11 122 84 207
-341 12 123 85 208
-342 209 13 124 86
-343 210 14 125 87
-344 88 211 15 126
-345 89 212 16 127
-346 90 213 17 128
-347 91 214 18 129
-348 92 215 19 130
-349 93 216 20 131
-350 132 94 217 21
-351 22 133 95 218
0

**************