C4graphConstructions for C4[ 352, 15 ] = PL(MSY(4,44,23,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 352, 15 ]. See Glossary for some detail.

PL(MSY( 4, 44, 23, 0)) = PL(MSY( 4, 44, 21, 0)) = PL(MC3( 4, 44, 1, 43, 21, 0, 1), [4^44, 44^4])

      = PL(MC3( 4, 44, 1, 43, 23, 0, 1), [4^44, 44^4]) = PL(KE_ 44( 1, 23, 2, 23, 1), [4^44, 44^4]) = PL(Curtain_ 44( 1, 22, 20, 41, 42), [4^44, 44^4])

      = PL(Br( 4, 44; 21)) = PL(ATD[ 44, 2]#DCyc[ 4]) = PL(CS(W( 22, 2)[ 44^ 2], 0))

      = BGCG(W( 22, 2), C_ 4, {2, 4, 5, 7', 8'})

Cyclic coverings

mod 44:
12345678
1 - - - - 0 1 0 23 - -
2 - - - - 0 0 0 0
3 - - - - - - 0 21 0 43
4 - - - - 41 19 21 43
5 0 43 0 - 3 - - - -
6 0 21 0 - 25 - - - -
7 - 0 0 23 23 - - - -
8 - 0 0 1 1 - - - -

mod 44:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 23 24
4 - - - - 43 0 23 22
5 0 0 43 1 - - - -
6 0 0 0 0 - - - -
7 0 42 21 21 - - - -
8 0 42 20 22 - - - -

mod 44:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - - 0 1 23 24 -
4 - - - - 0 1 - - 23 24
5 0 0 - 0 43 - - - -
6 0 0 0 43 - - - - -
7 0 42 20 21 - - - - -
8 0 42 - 20 21 - - - -

mod 44:
12345678
1 - - - - 0 0 - 0 11
2 - - - - 0 0 0 33 -
3 - - - - 1 23 0 33 -
4 - - - - 1 23 - 24 35
5 0 0 43 43 - - - -
6 0 0 21 21 - - - -
7 - 0 11 0 11 - - - - -
8 0 33 - - 9 20 - - - -

mod 44:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 21 0 21 -
3 - - - - - - 0 1 0 1
4 - - - - 0 21 - - 0 21
5 0 43 - - 0 23 - - - -
6 0 43 0 23 - - - - - -
7 - 0 23 0 43 - - - - -
8 - - 0 43 0 23 - - - -