[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 360, 44 ]. See Glossary for some
detail.
PL(MC3( 4, 45, 1, 44, 19, 0, 1), [4^45, 90^2]) = PL(MC3( 4, 45, 1, 44,
26, 0, 1), [4^45, 90^2]) = PL(MBr( 2, 90; 19))
= BGCG(W( 10, 2), C_ 9, 4) = BGCG(W( 18, 2), C_ 5, 4) = PL(CS(C_ 45(1, 19)[
45^ 2], 1))
= BGCG({4, 4}_< 14, 4>; K1;3)
Cyclic coverings
| 1 | 2 | 3 | 4 | |
|---|---|---|---|---|
| 1 | - | - | 0 1 | 0 19 |
| 2 | - | - | 0 1 | 45 64 |
| 3 | 0 89 | 0 89 | - | - |
| 4 | 0 71 | 26 45 | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | 0 1 | 0 | - | 0 | - |
| 2 | - | - | - | - | - | 0 19 | 0 | - | 18 | - |
| 3 | - | - | - | - | - | - | 18 | 0 | 2 | 0 |
| 4 | - | - | - | - | - | - | 33 | 33 | 35 | 15 |
| 5 | - | - | - | - | - | - | - | 2 11 | - | 9 18 |
| 6 | 0 35 | 0 17 | - | - | - | - | - | - | - | - |
| 7 | 0 | 0 | 18 | 3 | - | - | - | - | - | - |
| 8 | - | - | 0 | 3 | 25 34 | - | - | - | - | - |
| 9 | 0 | 18 | 34 | 1 | - | - | - | - | - | - |
| 10 | - | - | 0 | 21 | 18 27 | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | - | - | - | 0 1 | - | - | - | - | - | 0 | 0 | - |
| 2 | - | - | - | - | - | - | - | - | - | 0 11 | - | - | - | - | - | 0 | 10 | - |
| 3 | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - | 0 | 10 | 2 | - |
| 4 | - | - | - | - | - | - | - | - | - | - | - | 17 | - | - | 7 | 17 | 19 | - |
| 5 | - | - | - | - | - | - | - | - | - | - | - | 2 | 0 | - | 10 | - | - | 0 |
| 6 | - | - | - | - | - | - | - | - | - | - | - | 7 | 5 | - | 5 | - | - | 15 |
| 7 | - | - | - | - | - | - | - | - | - | - | 0 | - | 2 | 0 | - | - | - | 10 |
| 8 | - | - | - | - | - | - | - | - | - | - | 13 | - | 15 | 3 | - | - | - | 13 |
| 9 | - | - | - | - | - | - | - | - | - | - | 2 7 | - | - | 5 10 | - | - | - | - |
| 10 | 0 19 | 0 9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 11 | - | - | - | - | - | - | 0 | 7 | 13 18 | - | - | - | - | - | - | - | - | - |
| 12 | - | - | 0 | 3 | 18 | 13 | - | - | - | - | - | - | - | - | - | - | - | - |
| 13 | - | - | - | - | 0 | 15 | 18 | 5 | - | - | - | - | - | - | - | - | - | - |
| 14 | - | - | - | - | - | - | 0 | 17 | 10 15 | - | - | - | - | - | - | - | - | - |
| 15 | - | - | 0 | 13 | 10 | 15 | - | - | - | - | - | - | - | - | - | - | - | - |
| 16 | 0 | 0 | 10 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 17 | 0 | 10 | 18 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 18 | - | - | - | - | 0 | 5 | 10 | 7 | - | - | - | - | - | - | - | - | - | - |