[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 360, 46 ]. See Glossary for some
detail.
PL(MC3( 6, 30, 1, 19, 11, 0, 1), [6^30, 10^18]) = PL(ATD[ 9, 1]#DCyc[
10]) = PL(ATD[ 9, 1]#ATD[ 30, 1])
= PL(ATD[ 15, 1]#DCyc[ 6]) = PL(ATD[ 15, 1]#ATD[ 18, 1]) = PL(ATD[ 18,
1]#DCyc[ 5])
= PL(ATD[ 18, 1]#DCyc[ 10]) = PL(ATD[ 18, 1]#ATD[ 30, 1]) = PL(ATD[ 30,
1]#DCyc[ 3])
= PL(ATD[ 30, 1]#DCyc[ 6]) = PL(CSI(DW( 3, 3)[ 6^ 3], 10)) = PL(CSI(C_
15(1, 4)[ 10^ 3], 6))
= PL(CSI(DW( 6, 3)[ 6^ 6], 5)) = PL(CSI(DW( 6, 3)[ 6^ 6], 10)) =
BGCG(DW( 6, 3), C_ 10, {3, 3', 4'})
= PL(CSI(C_ 30(1, 11)[ 10^ 6], 3)) = PL(CSI(C_ 30(1, 11)[ 10^ 6], 6)) =
BGCG(C_ 30(1, 11), C_ 6, {3', 4, 4'})
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | - | 0 |
2 | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
3 | - | - | - | - | - | - | - | - | 0 1 | - | - | 0 19 |
4 | - | - | - | - | - | - | - | 0 29 | - | - | 18 29 | - |
5 | - | - | - | - | - | - | 11 | - | 1 | 29 | - | 19 |
6 | - | - | - | - | - | - | 0 | 20 | - | 18 | 8 | - |
7 | 0 | 0 | - | - | 19 | 0 | - | - | - | - | - | - |
8 | - | 0 | - | 0 1 | - | 10 | - | - | - | - | - | - |
9 | 0 | - | 0 29 | - | 29 | - | - | - | - | - | - | - |
10 | 0 | 0 | - | - | 1 | 12 | - | - | - | - | - | - |
11 | - | 0 | - | 1 12 | - | 22 | - | - | - | - | - | - |
12 | 0 | - | 0 11 | - | 11 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 27 | 0 | - | - | - |
2 | - | - | - | - | - | - | 10 | 0 27 | 10 | - | - | - |
3 | - | - | - | - | - | - | 21 | - | 27 | - | 0 | 0 |
4 | - | - | - | - | - | - | 1 | - | 7 | - | 0 | 0 |
5 | - | - | - | - | - | - | - | - | - | 0 27 | 10 | 4 |
6 | - | - | - | - | - | - | - | - | - | 0 27 | 20 | 14 |
7 | 0 | 20 | 9 | 29 | - | - | - | - | - | - | - | - |
8 | 0 3 | 0 3 | - | - | - | - | - | - | - | - | - | - |
9 | 0 | 20 | 3 | 23 | - | - | - | - | - | - | - | - |
10 | - | - | - | - | 0 3 | 0 3 | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 20 | 10 | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 26 | 16 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
2 | - | - | - | - | - | - | 20 | 0 | - | 20 | 0 | - |
3 | - | - | - | - | - | - | - | 14 | 0 | - | 20 | 0 |
4 | - | - | - | - | - | - | - | 4 | 0 | - | 10 | 0 |
5 | - | - | - | - | - | - | 1 | - | 14 | 7 | - | 20 |
6 | - | - | - | - | - | - | 14 | - | 17 | 20 | - | 23 |
7 | 0 | 10 | - | - | 29 | 16 | - | - | - | - | - | - |
8 | 0 | 0 | 16 | 26 | - | - | - | - | - | - | - | - |
9 | - | - | 0 | 0 | 16 | 13 | - | - | - | - | - | - |
10 | 0 | 10 | - | - | 23 | 10 | - | - | - | - | - | - |
11 | 0 | 0 | 10 | 20 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 10 | 7 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | - | 0 1 | - | 0 19 |
2 | - | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 |
3 | - | - | - | - | - | - | - | 10 11 | - | - | 11 22 | - |
4 | - | - | - | - | - | - | 0 | - | 0 | 1 | - | 19 |
5 | - | - | - | - | - | - | 0 | 10 | 12 | - | 22 | - |
6 | - | - | - | - | - | - | 11 22 | - | 22 23 | - | - | - |
7 | - | - | - | 0 | 0 | 8 19 | - | - | - | - | - | - |
8 | - | 0 | 19 20 | - | 20 | - | - | - | - | - | - | - |
9 | - | - | - | 0 | 18 | 7 8 | - | - | - | - | - | - |
10 | 0 29 | 0 | - | 29 | - | - | - | - | - | - | - | - |
11 | - | 0 | 8 19 | - | 8 | - | - | - | - | - | - | - |
12 | 0 11 | 0 | - | 11 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | - | - | 10 | 0 | 0 | 10 | - | - |
3 | - | - | - | - | - | - | - | 16 21 | 10 15 | - | - | - |
4 | - | - | - | - | - | - | 16 | - | - | 10 | 0 | 0 |
5 | - | - | - | - | - | - | 26 | - | - | 20 | 0 | 0 |
6 | - | - | - | - | - | - | - | - | - | - | 16 21 | 10 15 |
7 | 0 | 20 | - | 14 | 4 | - | - | - | - | - | - | - |
8 | 0 | 0 | 9 14 | - | - | - | - | - | - | - | - | - |
9 | 0 | 0 | 15 20 | - | - | - | - | - | - | - | - | - |
10 | 0 | 20 | - | 20 | 10 | - | - | - | - | - | - | - |
11 | - | - | - | 0 | 0 | 9 14 | - | - | - | - | - | - |
12 | - | - | - | 0 | 0 | 15 20 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | - | - | 0 | - | 0 | - | 0 | 0 |
3 | - | - | - | - | - | - | - | 0 | - | 0 | 1 | 19 |
4 | - | - | - | - | - | - | - | 1 | - | 19 | 0 | 0 |
5 | - | - | - | - | - | - | 11 | - | 29 | - | 1 | 19 |
6 | - | - | - | - | - | - | 11 | 1 | 29 | 19 | - | - |
7 | 0 | 0 | - | - | 19 | 19 | - | - | - | - | - | - |
8 | 0 | - | 0 | 29 | - | 29 | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 1 | 1 | - | - | - | - | - | - |
10 | 0 | - | 0 | 11 | - | 11 | - | - | - | - | - | - |
11 | - | 0 | 29 | 0 | 29 | - | - | - | - | - | - | - |
12 | - | 0 | 11 | 0 | 11 | - | - | - | - | - | - | - |