[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 360, 48 ]. See Glossary for some
detail.
PL(MC3( 6, 30, 1, 16, 11, 18, 1), [4^45, 30^6]) = PL(ATD[ 6, 1]#DCyc[
15]) = PL(ATD[ 6, 1]#ATD[ 45, 4])
= XI(Rmap(180,157) { 6, 60| 4}_ 15) = PL(CSI(Octahedron[ 4^ 3], 15)) =
BGCG(W( 6, 2), C_ 15, 1)
= PL(CS(DW( 15, 3)[ 30^ 3], 0)) = BGCG(Pr_ 60( 1, 13, 17, 29); K1;1)
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | 0 16 | - | 0 1 | - |
2 | - | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 |
3 | - | - | - | - | - | - | - | 28 29 | - | - | - | 13 29 |
4 | - | - | - | - | - | - | 0 | 28 | - | 0 | - | 13 |
5 | - | - | - | - | - | - | 21 | - | 16 | 6 | 1 | - |
6 | - | - | - | - | - | - | 14 28 | - | - | 13 14 | - | - |
7 | - | - | - | 0 | 9 | 2 16 | - | - | - | - | - | - |
8 | - | 0 | 1 2 | 2 | - | - | - | - | - | - | - | - |
9 | 0 14 | 0 | - | - | 14 | - | - | - | - | - | - | - |
10 | - | - | - | 0 | 24 | 16 17 | - | - | - | - | - | - |
11 | 0 29 | 0 | - | - | 29 | - | - | - | - | - | - | - |
12 | - | 0 | 1 17 | 17 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | - | - | 0 | - | 0 | - | 0 | 0 |
3 | - | - | - | - | - | - | - | 0 | - | 0 | 16 | 1 |
4 | - | - | - | - | - | - | - | 19 | - | 4 | 0 | 0 |
5 | - | - | - | - | - | - | 11 | - | 26 | - | 16 | 1 |
6 | - | - | - | - | - | - | 29 | 19 | 14 | 4 | - | - |
7 | 0 | 0 | - | - | 19 | 1 | - | - | - | - | - | - |
8 | 0 | - | 0 | 11 | - | 11 | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 4 | 16 | - | - | - | - | - | - |
10 | 0 | - | 0 | 26 | - | 26 | - | - | - | - | - | - |
11 | - | 0 | 14 | 0 | 14 | - | - | - | - | - | - | - |
12 | - | 0 | 29 | 0 | 29 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
2 | - | - | - | - | - | - | 16 | 0 | - | 0 | 16 | - |
3 | - | - | - | - | - | - | - | 16 | 0 | 1 | - | 0 |
4 | - | - | - | - | - | - | - | 2 | 0 | 17 | - | 0 |
5 | - | - | - | - | - | - | 11 | - | 16 | - | 26 | 1 |
6 | - | - | - | - | - | - | 11 | - | 2 | - | 26 | 17 |
7 | 0 | 14 | - | - | 19 | 19 | - | - | - | - | - | - |
8 | 0 | 0 | 14 | 28 | - | - | - | - | - | - | - | - |
9 | - | - | 0 | 0 | 14 | 28 | - | - | - | - | - | - |
10 | 0 | 0 | 29 | 13 | - | - | - | - | - | - | - | - |
11 | 0 | 14 | - | - | 4 | 4 | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 29 | 13 | - | - | - | - | - | - |